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Autonomy is an issue in robotics systems. Currently the robotics research community is 

focusing on autonomy in the decision. The pre-programmed humanoid robots perform the 

operation in a known scenario. The presence of an obscure environment, a lack of 

awareness of the environment, humanoid robot fails to perform the random task. In such 

cases, the preprogrammed robot needs to be reprogrammed to enable it to perform in the 

changing environment. There is very limited success achieved in the autonomy of the 

decision-making process. This research work considered the problem of an autonomy 

while the deicion making in th real time interaction. The reinforcement algorithm helps to 

do the task in such type of unstructured and unknown environment. Reinforcement 

learning problems are categorized into partial Markov Decision Processes (MDP). The 

goal of RL agent is to minimize its immediate and expected costs. When the system 

interacts with the Markov Decision Process, RL agent passes through an intermediate 

sequence of states that depends on another by transition probabilities. The agents action 

takes, and the agents experience a sequence of immediate costs incurred. Reinforcement 

Learning and teaching approach like Queue Learning (Q-Learning) is implemented for 

humanoid robot for navigation and exploration. The Q-learning expresses the expected 

costs to go of a state action pair defined, which is meant to express the expected costs 

arising after having taken action in the state following policy. Based on the optimal policy 

of the reinforcement algorithm, a reinforcement controller was implemented. The 

transition probabilities of the controller depend on the randomness of the controller. The 

random values of the controller decide the action. Simulations were carried out for the 

different positions of the proposed model, and an interesting result were was observed 

while the transition from the sitting position to the goal position. 
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1. INTRODUCTION

From last two decade, the research community focus on the 

developing of the human like walking machine. These walking 

machine do the action similar to humans [1]. 

Anthropomorphic robot has ability to gather the information 

from the surrounding and can perform the desired task. The 

most challenging problem in Anthropomorphic Humanoid 

robot is the decision making, perception, interaction to the 

environment and locomotion. The development of actuator 

and sensoric minimized the locomotion problem, but still 

totally locomotion problem is not solved. Decision making and 

perception is still a big challenge to the robotic research 

community. 

The highly specialized robot is implemented in the industry 

for mass production. Due to human-like shape, the humanoid 

robot is the best suited for acting in our everyday environment 

like stairs climbing, door closing and opening handles, tools 

and human-centered designs. Humanoid robot cannot perform 

the task in a dynamic scenarios. Human like walking machine 

must learn from its mistakes and will adapt accordingly 

without any help from the other guidance. Force sensing and 

compliance at each humanoid robot joint can allow the robot 

to safely act in the unknown environment. The implementation 

of humanoid robot to the community is always an economic 

and social issues. 

The principle motive behind the designing of the humanoid 

robot is to ease human efforts and do the jobs on behalf of them. 

The development of advanced and humanoid robotics has 

certain impact on industrial growth and social impact. The 

futuristic humanoid robots will be able to do industrial and no-

industrial work. Humans are eager to project emotion into 

machines and replicate themselves into mechanical form. 

1.1 Motivation 

The child suffering from the autism spectrum disorder 

disease deficit in social interaction and communication to real 

world. Similarly, the old age people unable to do the 

household activity in the home alone environment. In such 

type of scenario, a walking machine humanoid robot plays an 

important role to the social life of old age people and child 

suffering from the autism disorder disease.  

The behavioral based interaction and self-decision-making 

humanoid robot recognize the eye’s glaze and behavior of the 

old age people and child. After recognizing these parameters, 

humanoid robot executes the task for the people suffering from 

physical and mental disorder disease. Till today, partial human 

thinking behavior implemented in the humanoid robot.  
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Human decision making like intelligence pattern to be 

implemented in the robotic manipulator is the motivation 

behind this work. So that, it can be useful for the physically 

challenged people. 

 

 

2. REINFORCEMENT LEARNING ALGORITHM 

 

The reinforcement algorithm applied in assistive robot for 

educational application. The child’s gaze provides the 

information to the robot. The reinforcement algorithm has a 

set of state. State is the dimensional features. The action has 

finite discrete set of action and generate set of actions for the 

different state. The Q-learning rule helps to choose the action 

depending upon the task. After choosing the action, the 

transition takes place and a reward associated to the action and 

learns from the past history. The reinforcement algorithm 

decomposes the task into set of discrete action, so that it can 

be easily understood by children-robot interaction [2]. The 

reinforcement learning accumulated the knowledge from the 

dynamic balance of the humanoid robot and improving the gait 

during walking. The control architecture of gait synthesizer 

has three components. The neural network trains the action 

selection network using the error signal received from the 

external reinforcement. For the desired state, the action 

evaluation maps a state and a failure into a scalar score. The 

stochastic action modifier use the recommendation action and 

reinforcement to produce a dynamic walking [3, 4]. The work 

on episodic reinforcement learning to control the motor 

primitives in dynamic situation. The policy gradient method 

used in reinforcement algorithm. The motor primitives 

described as two coupled differential equations i.e. a canonical 

system with movement phase and possible external coupling. 

For the desired control of motor both the dynamics of system 

are choose for stable condition. The deterministic mean policy 

depends on the joint position and the basis function. The basis 

function is the motor primitive parameters [5]. 

A collaborative interaction between human and robot based 

on reinforcement learning. The learning is based on 

collaborative Q-learning approach and provides the robot to 

self-awareness and autonomy. In collaborative Q learning 

algorithm, there is two levels of collaboration between human 

and robot. In the first level, the robot decides the action and 

update its state-action values. In second level of collaboration, 

robot takes the request from human advisors. Robot is 

switching from the autonomous mode to semi-autonomous 

mode based on the polices [6]. The reinforcement learning 

algorithm for humanoid gait optimization. The actor-critic 

learning applied for the experience replay and fixed-point 

method to determine the step size. The Markov decision 

process provides the solution for the reinforcement algorithm 

to control the humanoid robot gait. The control process of 

actor-critic works in discrete time to select the state and select 

the proper action. The transition between current states to next 

state happens and a reward assigned to state and action. The 

stochastic control and value function update the learning 

parameter based on the data collected [7]. The fuzzy 

reinforcement hybrid control algorithm for the bipedal robot 

locomotion. The controller has two feedback loops around the 

zero-moment point. The centralized dynamic controller keeps 

tracking of the robot’s normal trajectory and a fuzzy 

reinforcement feedback compensate the dynamic reactions of 

the ground around the zero-moment point. The fuzzy 

reinforcement control algorithm structure based on the actor 

critic temporal difference method. The policy represents the 

set of control parameters [8, 9]. 

 

 

3. REINFORCEMENT LEARNING CONTROLLER 

 

The reinforcement learning which could control the iCub 

humanoid robot. iCub learns a world model from experience 

and controlling the actual hardware in real time with some 

restrictions. Reinforcement learning discretize the real 

configuration of the robot in configuration space. The modular 

behavior environment of iCub humanoid robot generate the 

action and robot try to go in the transition state. The Markov 

model develop the path planner and connect the state to the 

near state [10]. 

The deep reinforcement learning algorithm to train the 

control policies for the humanoid robot interactions. The 

control problem is formalized from the Markov decision 

process. The input to the control policy is, joint position, 

velocity and sensor reading of the hand. The motion capture 

system captures the position of the leg. The positive reward is 

given as 1 when there is a proper switching of leg from one 

position to another position. Otherwise, negative reward been 

assigned to the reinforcement controller. The output of the 

control policy actuates the humanoid arm. The reward is 

provided to correct end configuration of the humanoid arm 

[11]. 

The reinforcement learning using Bayesian optimization 

improve the whole body motion control. The Bayesian 

optimization is a nonlinear and nonconvex optimization 

technique. It evaluates the cost function in the robotics and 

optimize the set of parameters. To ensure smooth trajectory, 

the whole-body control guided by the task in a series of 

waypoints. Three components of costar are evaluated for the 

execution of task. The optimization variables selected from the 

trajectory waypoint [12]. 

A model-based reinforcement algorithm with decision tree 

to train the humanoid robot to kick goals. The model-based 

reinforcement algorithm, learning takes place aggressively 

during model learning. The Q-learning approach adopted for 

the model free reinforcement learning. The Q-learning update 

the state -action for every state -action pair. The reinforcement 

learning with decision tree take the action with a highest value 

and entering into a new state. After entering into a new state, 

award will be received in the new state. Observing new 

experience through the model, the algorithm updates the 

parameter through the model [13]. The application of batch 

reinforcement learning in challenging and crucial domain. 

Reinforcement learning help the robot to gain the ideas form 

the repetitive interaction from the environment. The batch 

reinforcement control algorithm consists of sampling 

experience, training and batch supervised learning. The 

training pattern set estimates the value function. The batch 

supervised generates new estimate for the value function form 

the training set pattern. The behavior-based approach used to 

implement the reinforcement algorithm to take the decision 

[14]. The batch reinforcement requires the sampling data and 

not able to take the decision in unknown environment. In the 

Reinforcement algorithm, the robot is self-capable to handle 

the situation. 

The adaptive allocation method for reinforcement control 

algorithm for humanoid motion control. The actor critic 

learning adopted for the reinforcement learning. This method 

has a separate memory to represent the policy i.e. independent 
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from the value function. The actor calculates the action value 

for the humanoid robot when it observes the state in the 

environment. The critic receives the reward and provide the 

temporal difference. The learning is simulated on the virtual 

body of the humanoid robot to stand up from a chair. The 

humanoid observes the wait, knee, ankle and pitch angle of 

body. The humanoid robot learns to fall down backward. 

Afterwards it falls down forward. Finally, it stands up and 

control its body [15]. The dynamic control approach for the 

humanoid bipedal walking. The controller involves two 

feedback loops. The computational torque controller receives 

the input from impact force controller and reinforcement 

controller. The reinforcement controller maintains the torso 

movement with the help fuzzy feedback. The policy gradient 

reinforcement learning control the trajectory of dynamic 

walking of the humanoid robot [16]. The actor critic neural 

network architecture for continuous action policy of 

reinforcement learning. The deep deterministic policy gradient 

method controls the humanoid body control task. The 

deterministic policy developed by the actor network. The 

action value generates by the critic network. The temporal 

difference minimized by the training of critic network. The 

immediate reward received upon the action and update the 

learning parameter to the database of control architecture [17]. 

The different approach for reinforcement learning algorithm 

for humanoid robot. The natural actor critic learning control 

the motor of humanoid robot. The movement plan has set of 

joint position and joint velocity of the humanoid robot. The 

system has point-to-point continuous movement i.e. the 

episodic task of the reinforcement algorithm. The evaluation 

of basis function for the value is done by the actor critic 

network [18]. 

Algorithm for programming robot by demonstration. When 

unexpected perturbations occur, robot is unable to perform the 

task. The reach of constrained task to the robot by a learned 

speed trajectory. When the feet come into the interaction of 

ground surface, at that time environment is fixed, but the same 

feet come into the contact of the snow like ground, the 

environment is different. The natural actor critic network 

evaluates the policy by approximating the state action values. 

The simulation is carried out for the cubic box and obstacle. 

Using the reinforcement learning, the system takes 330 trials 

to achieve the goal [19]. The control policies in simulation that 

can transfer to dynamical physical system. The policy gradient 

learning method used in reinforcement algorithm to optimize 

the parameters. The natural policy gradient algorithm pushing 

the task to learn. The training of the policy determines the 

action to take and gain a good reward. The structure of training 

informs the policy behavior with the time required to execute 

the task. The reward function reduces the gap between the 

robot and the target [20]. The reinforcement algorithm which 

maps the circumstances to meta parameters. The motor 

primitives used for the meta parameters learning. The 

dynamical movement of the motor represented in the first 

order differential equation for the critical damped. The goal 

parameter is the function of the amplitude parameter 

represents the complex movement. All degree of freedom of 

the system synchronize in the dynamical equation in the 

canonical form [21]. A reinforcement learning algorithm to 

optimize the parameter values for the generation of gait pattern 

in humanoid robot. Locomotion control achieve by the central 

pattern generator. The three-oscillator attached in the foot of 

the humanoid robot. Each oscillator has six sub oscillators 

related to the axis and configured to the parameters. The 

parameters are divided into three groups of offset parameters, 

oscillation parameter and feedback parameters. Two 

parameters have selected for the optimize the gait [22]. The 

intrinsic interactive reinforcement learning algorithm for 

human robot interaction based on the gesture posture. The 

human electroencephalogram generated feedback used for the 

reward. The leap motion controller recognizes the human 

gesture to learn the robot and parallelly the robot maps the 

gesture for action. The contextual bandit approach used to 

enable the robot’s action provided by the human gestures [23]. 

 

3.1 Reinforcement model 

 

The reinforcement learning model depends on the discrete 

set of environment states S, discrete set of agent action A and 

set of reward signal {0, 1}. Trial and error search and the 

delayed reward are the two characteristics of reinforcement 

model. The RL model is defined by characterizing a learning 

problem. Figure 1 shows the model of the reinforcement 

model. 

 

 
 

Figure 1. Reinforcement model of lower body 

 

The basic model of Reinforcement learning consists of three 

steps as follows: 

Step 1: The agent of reinforcement model sense an input i 

from the current state of the surrounding and environment. 

Step 2: Agent chooses the action from the set of actions (A) 

like switch to next state, switch to previous state and idle stop. 

Step 3: The transition of state is sending the information 

through a scalar reinforcement signal (r). 

 

3.2 Q–Learning method 

 

Learning from the environment is very complicate to human 

like manipulator. Supervised learning and unsupervised 

learning are not useful in such scenario. Reinforcement 

learning is different from these two types of learning. 

Reinforcement learning has model-based reinforce learning 

and model free reinforcement learning approach. Model based 

reinforcement learning has limitation, it cannot adopt the 

system changes and fail to do the task. In the model free 

reinforcement learning, system adaptability is very high and 

self-capable to take the decision. Q-learning is adopted for the 

model free reinforcement model due to its simplicity and 

online learning. Reinforcement learning is model free learning, 
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it doesn’t depend on the internal parameters. Q-learning is one 

of approximate tool that is being used for targeting the goal 

position. It is approximate programming of Markov Decision 

Process. The agent has to learn navigation strategy from the 

environment through a reward signal and generate a path. The 

path generated by the agent must be shortest and collision free 

path. The Q-learning approach makes necessary changes in: 

heuristic search. The search algorithm finds the way of 

shortest path [24]. 

In this approach of reinforcement learning from 

demonstration, the humanoid robot learns a reward function 

from the demonstration and a task model from repeated 

attempts (trials) to perform the task [25]. 

The execution of the Q-learning algorithm is as follows: 

Step 1: Initialization of Q(s, a) to generated random values 

by processor. 

Step 2: Observing the current state, s. 

Step 3: Based on the random values, an action, a, will 

perform. 

Step 4: Observing the switching state, s’, and awarding the 

reward, r. 

Step 5: Q(s, a) ←(1-α) Q(s, a)+α(r+γmaxa, Q(s’, a’)). 

 

3.3 Implementation Q-learning algorithm in MATALB 

 

Based on the Q-learning algorithm, one of the sample code 

will be developed in the MATLAB as shown below. Q(s, a), 

represents the state-action pair, α represents epsilon, γ 

represents learning rate. R is the reward. α represents the 

iteration of the individual joint movement while reaching to 

set point to the target point. The significance of the γ represents 

the ability to learn to reach the target point accurately. 

 

learnRate 

γ =.90 

epsilon 

α =.6 

Decay of the epsilon 

Epsilon_Decay=.8 

Discount=.9 

Success_Rate=1; 

Achieved the goal point 

Win_Bonus =100 

Input sense for sensor 

Start_Pt=[-40] 

Goal Point Reached 

Goal_Pt=[0]  

Max_Epi=50000; 

Trajctyory Action 

Action=1° 

Actions=[0, Action] 

Intermediate state 

x=linspace(Start_Pt, Goal_Pt,10) 

Lngth of states 

States=zeros(length(x),1) 

Index=1; 

For j=1:length(x) 

States(index,1)=x(j) 

Index=Index+1; 

EnD 

Assignmnt of reward 

R=States*.1 

Q Values for the state and action 

Q=repmat(R,[1,3 

Z_1=Start_Pt 

For Episodes=1:Max_Epi 

[~,SI_dx]=Min(Sum(States-

repmat(Z_1,[Size(States,1),1])).^2,2)) 

Picking 

if(rand()epsilon!!episodes=Max_Epi)&&rand()<=Success_R

ate) 

Best Action 

[~,aIdx]=max(Q(SI_dx,:)  

else 

aIdx=randi(length(actions),1) 

end 

T=actions(aIdx) 

Z_2=Z_1+T 

Z_1=Z_2 

if(Z_2=Goal_Pt) 

success=true 

Bonus=Win_Bonus 

[~,snewIdx]=min(sum(States-

repmat(z1),[size(States,1),1])).^2,2)) 

Q(SI_dx,aIdx)=Q(SI_dx,aIdx)+learnRate*(R(Snew_Idx)+Dis

count*max(Q(Snew_Idx,:) )-Q(SI_dx,aIdx)+Bonus) 

Break 

Else 

Bonus=0 

Success=False 

End 

 

3.4 Limitation of reinforcement learning 

 

The most challenges are the trade-off exploration and 

exploitation in the reinforcement learning. An agent has to 

erase the previous learning from the past and has to make 

precise selections of action in the future. The agent of 

reinforcement learning is independent and determined its own 

by learning from the interaction to the environment. The 

learning rate of agent can improve the decision-making 

process while interacting to the environment. The agent 

considered the environment. The intermediate states and 

features are the parameters of the environment. Agent sense 

the environment and learns the optimal policy while transition 

from the initial sate to the goal state by taking the action in 

each state. The agent must be aware of the states while 

interacting with the environment. An agent learns from 

reinforcement feedback received from its environment known 

as positive reward and negative reward. The agents maximize 

the positive reward or minimize the negative reward. The 

hardware limit stops like limit switch, limit sensor avoids the 

exploration and exploitation problem. Actions affect the 

intermediate state of the system and rewards and have the 

ability to optimize the system’s state. Continuous learning and 

adapting through interaction with environment help the agent 

to learn online in terms of performing the required task and 

improving its behavior in real time [26]. 

 

 

4. REINFORCEMENT CONTROLLER 

IMPLEMENTATION 

 

A Simulink block has been created for the reinforcement 

controller in the MATLAB as shown in Figure 2. 

The decision taken by the lower body of humanoid robot by 

knowing the current state from the environment. The 

reinforcement controller does not involve any kinematic and 
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dynamic description. The switching will happen its own. One 

of the states start from the 0° of ankle joint, -10° of knee joint 

and -20° of the hip joint for the right leg. The left leg start 

forms the same and opposite to the right leg joint values. These 

values were sensed by the agent from the environment with the 

help of sensor. The goal state of the system reaches to the 10°, 

15° and 20° of the ankle, knee and hip joint respectively. Time 

elapsed to reach this goal position are independent from the 

kinematics and dynamics calculation. In reinforcement 

controller time taken to reach next state, it is totally dependent 

on the processor capabilities and generating the control signal. 

The reinforcement controller controls the intermediate 

position of the joint between the start point and the target point. 

Figure 3 shows the interaction of reinforcement controller to 

the lower body of Humanoid robot. 

The randomness of the controller helps to take the action. 

The Q-learning algorithm allows the robot to go from one state 

to another state. Randomness only contributes to take the 

action like switch to next position, switch to previous position 

or stay at same position. Randomness effect the processor 

execution time, so that there may be delay to reach to target 

position. 

The reward is gain during the switching by the state-action 

pair. After several running, the state -action pair of the 

reinforcement controller keeps the updated values. In the next 

time of running the system executes with the old values and 

try to switch to the next state. 

 

 

5. RESULT AND DISCUSSIONS 

 

The simulation experiment was carried out for the 

reinforcement controller. Figure 4 shows the initial position of 

lower body of humanoid robot. The initial position of joint 1 

is taken as -10°, initial position of joint 4 is taken as 15° and 

the initial position of joint 5 is -20°. Due to software constraint, 

the initial position is taken as 0° for all the joint. The initial 

position of the lower body is vertically upward position and 

assuming no deviation in other joint 2 and joint 3. Figure 4 

shows the initial posture of the lower body. 

 
 

Figure 2. Simulink block diagram of reinforcement controller 

 

 
 

Figure 3. Interfacing of reinforcement controller to lower body of Humanoid robot 

 

 

683



 
 

Figure 4. Initial state of lower body of humanoid robot 

 

Reinforcement controller takes the input of joint position of 

lower body of the humanoid robot as a starting point. The goal 

point of the joint 1 is 10°, the goal point of joint 4 is -120° and 

the goal point of joint 4 is 0°. These goal points decided the 

one of the states of lower body. The controller takes the input 

and executes the algorithm.  

Figure 5 shows the next state of lean of the lower body of 

humanoid robot. 

 

 
 

Figure 5. Next state of lower body of humanoid robot 

 

During this transition from one state to next state, there is 

no kinematics and dynamics involved. Controller takes its own 

decision to switch over. There is no control over the motion of 

joint by any user or human interface. The switching is totally 

depending on the controller decision. The reinforcement 

controller does not depend upon the preprogram of the robot. 

It is totally dependent upon the transition of probabilities. 

While implementing the reinforcement controller on the 

embedded system, the optimal value was opted for designing 

the hardware. Controller will implement that values to switch 

the system from one position to the target position. Simulation 

result helps to developer to choose the different control 

parameters to switch the system from one to another. 

 

 

6. CONCLUSIONS 

 

Selef awareness and stability is the main issues in the 

humnaoid robot. More number of joint and link, the walking 

machine manipultor bcomes complicated and the reach of the 

dexterity become less. The existing kinemactic configuaration 

causes the locomotion problem. The partiaal success has been 

obtaind towards the self decision making robot. The 

reinforcement algorithms implemented to take the decison in 

the unstructed and unknown enevironment. The Q-algorithm 

adpoted for the developing the set of instructions. The partial 

Markove Decision process model were considerd for the 

developing the reinforcement controller. The randomness of 

the controller deos not depend on the other human assiatance 

and the user. The reward function in the reinforcement 

algorithm is allowing to take the action in unknown and 

unstructrured environment. Still the randomness factor is 

issues in reinforcement algorithm. 
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