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The problem of controlling the angle of attack of the aircraft is one of the difficult and
complex problems due to the problems of nonlinear kinematics, variable parameters and
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uncertainty model. The design of the angle of attack control according to the robustness
control algorithm often leads to a higher order robustness controller. Using a higher-order
controller has many disadvantages, so it is necessary to have solutions to reduce the order
of the controller. This paper presents the idea of designing a low-order controller for the
aircraft's angle of attack control system using the order reduction algorithm. In order to
meet the requirements of performance and stability when parameters change, the optimal
controller of the aircraft's angle of attack is usually of high order. The paper has used order
reduction algorithms to reduce the order of high-order angle of attack controller, the results
show that: 4"-order controller or 1%-order controller can be used instead of high order
controller. Using a low-order controller to control the aircraft's angle of attack shows that
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the quality of the control system is comparable to that of a high-order controller.

1. INTRODUCTION

The problems of nonlinear kinematics, variable parameters
and uncertainty models are the main difficulties and
complexities of the aircraft control problem [1]. The flight
control principle uses classical mechanics to balance
aerodynamic lift and mechanical torque. There are four main
forces acting on an aircraft in flight, namely lift, drag, thrust,
and weight. Lift and drag are the ‘‘aerodynamic forces’’
arising from the relative motion between the aircraft and the
surrounding air. Thrust is provided by the propulsion system,
and the force due to gravity is called "weight. " According to
the principle of flight control, we need to balance the four main
forces above so that the aircraft can move freely in space. To
do that, it is necessary to control three basic components,
namely the rudder, the elevator, and the aileron [1]. Based on
these components, we can control the movement of the aircraft
in terms of roll, pitch and yaw [1]. The high-altitude rudder
can be raised or lowered to change the lift of the tail, creating
torque around the wing axis (pitching moment). The two
height rudders are always controlled to move in the same
direction, with the same deflection angle. By varying the
aircraft's pitch and angle of attack, the aircraft's elevator
controls the direction of the aircraft [1]. The requirement of
the aircraft's angle of attack control system is that the system
needs to have good performance, strong stability when the
parameters of the model change. There have been studies on
aircraft frequency control [1-3], but this is still a problem that
attracts many researchers. Most of the research works consider
the robust controller to be the most suitable controller for the
aircraft's angle of attack control system. However, the control
design according to the robust control method often leads to
high-order controllers [1-3]. In practice, the use of high-order
controllers has many disadvantages. Therefore, robust control
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design is often accompanied by a requirement to reduce the
controller order [4-9].

The authors [1] propose to use the balanced truncation
method to find a low-order stable controller for the aircraft's
angle of attack sustained control system. However, to find a
low-order stable controller, there are many different order
reduction algorithms [10-14]. The balanced truncation
algorithm has been improved to apply to unstable systems [11],
continuous systems [12] and discrete systems [13], or
continuous to discrete conversion [14]. Some popular order
reduction methods are the method of preserving the dominant
point [7] or the optimal method of Hankel [15], etc. Therefore,
to find a suitable low-order controller, we need to compare and
evaluate the low-order controllers, which are the result of
using different algorithms to reduce the high-order controller.
In the content of this paper, we will introduce the high-order
robust controller of the aircraft's angle of attack control system.
We will apply order reduction algorithms to reduce the order
of high-order robust controllers. By comparing and evaluating
the low-order controllers, we will choose the most suitable
low-order controller to replace the high-order controller.

The layout of the paper consists of the following parts: Part
1 is an introduction, part 2 is an introduction to model of
control system and high-order robust controller. Part 3 is the
result of reducing the controller order by different methods.
Part 4 is the simulation results of the control system using low-
order controls. Section 5 is the conclusion of the paper.

2. MODEL OF CONTROL SYSTEM AND HIGH-
ORDER ROBUST CONTROLLER

An aircraft's angle of attack is the angle between the
direction of the gas (or liquid) flow velocity vector and the
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axial direction of the fuselage. For aircraft in flight, increasing
velocity and angle of attack results in increased lift in the
wings. At the same time, increasing the angle of attack also
leads to an increase in induced drag. The aircraft's angle of
attack (o) is controlled by the deflection on the control surface
(Elevator) [1]. Figure 1 shows the aircraft's angle of attack as
follows:

Lift

Resultant Force

Chord line

" o—,
-~
-

Flow direction

Centre of Pressure

Figure 1. The angle of attack of the aircraft [1]

The block diagram of the aircraft's angle of attack control
system is shown in Figure 2 as follows, where the input is the
lift deflection (Og) at the pilot's command and the output is the
desired angle of attack (o).

3r(s) U(s)

» G(s) u(SZ

>

R(s)

Figure 2. Block diagram of angle of attack control system [1]

In Figure 2, 8g(s) - Deflection of elevator as commanded by
the pilot; a(s)- The desired angle of attack of the aircraft; G(s)-
Transfer function between Sg(s) and a; R(s)- Controller; U(s)-
Output of controller.

The authors [1] have built the transfer function model of
between O and a as follows:

3.0604s+182.5
1.775s° +1.598s +1

G(s) =

Design the angle of attack controller according to the robust
optimization algorithm [1] to obtain the following controller.

437.6s° +37170s* +1555000s°

_ +44630000s” + 225400000s + 242800000
3.152s° +504.7s° + 40850s* +1584000s°

+44650000s° + 225400000s + 242800000

R(s)

Using a high-order controller (6"-order controller) will
cause many disadvantages in practice, while using a low-order
controller in practice brings many advantages such as easier
analysis, much faster simulation, controller synthesis easier
[1-9]. Therefore, it is necessary to simplify the high-order
controller.
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3. REDUCING HIGH ORDER CONTROLLER

The 6™ order controller is a stable model, so we can apply
order reduction methods for the stable model to simplify this
controller. The balanced truncation method is considered to be
the most popular order reduction method [10]. This method
has been improved and extended to be applicable to both stable
and unstable systems- Zhou's balanced truncation algorithm
[11], continuous system [12] and discrete system [13]. In
addition, the remaining group of popular order reduction
methods is the method that preserves the dominant poles [8, 9].
The group of methods that are also popular is the Hankel
optimization algorithm [14, 15].

To simplify the high-order controller, we use different order
reduction algorithms, namely the algorithm to preserve the
dominant pole (modal truncaton) [8, 9], Zhou's balanced
truncation algorithm [11], Optimal Hankel norm
approximation (Hankelmr) [14, 15]. The results of order
reduction are shown in the following Tables 1-3.

Table 1. The result of order reduction of the 6™-order
controller according to the algorithm of preserving the
dominant poles [8, 9]

Order Rr(s)
138.85° +1.096.10*s? + 4.272.10°5 +1.154.10"
s* +154.2s° +1.204.10°s® +4.298.10°s +1.153.10°
141.2s% +8671s +1.106.10°
s® +140.7s* + 85355 +1.204.10°
141.7s +5842
s? +121.25+6171
126.9
s+78.11

Table 2. The result of order reduction of the 6™"-order
controller according to the optimal hankel norm
approximation [14, 15]

Order Rr(s)
4 139.1s° +1.074.10%s? + 4.16.10°s +1.1.10’
s* +152.85° +1.18.10%s? + 4.175.10°s +1.099.10°
3 148.6s% +8490s +3.057.10°
s® +147.2s* +8907s + 2.959.10°
) 114.55 + 6905
s% +105.1s+ 7710

1 304.9

s+208

Table 3. The result of order reduction of the 6M-order
controller according to the optimal hankel norm
approximation [14, 15]

Order Rr(s)
4 138.85° +1.092.10*s? + 4.25.10°s +1.148.10"
s* +153.85° +1.199.10*s? + 4.274.10°s +1.147.10"
3 138.5s% +7308s +1.705.10°
s® +129.9s% + 78975 +1.647.10°
138.1s+5703

2 s?+114.9s+ 6198

_ 144
1 $+98.93
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Figure 3. Step response of the 4™-order reduction and the 6™-order controller
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Figure 5. Step response of the 2"-order reduction and the 6™-order controller
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To compare and evaluate low-order controllers, we use step
response and bode diagram. Figures 3-9 show the response
comparison results of the original controller and the low-order
controller.

From Figure 3, we see that the step response of the 4"-order
controller and the 6-order controller is completely coincident.

From Figure 4, we see that:

+ In the time interval t < 0.0143s, the step response of the
3-order controllers and the original controller is completely
coincident.

From the time interval t > 0.0143s, the step response of the
3-order controller and the original controller starts to differ,
in which the step response of the 3-order controller according
to Zhou's balance truncation algorithm gives the smallest
deviation, the step response of the 3"-order controller
according to the modal truncation algorithm gives the largest
deviation.

The step response of the 3"-order controller according to

Zhou's balance truncation algorithm and the 3"-order
controller according to the optimal Hankel norm
approximation is completely coincident.

From Figure 5, we see that the step response of the 2nd order
controller and the original controller has many differences, of
which the smallest difference is that of the 2"®-order controller
according to the modal truncation algorithm, the biggest
difference is that of the 2"-order controller according to the
optimal Hankel norm approximation.

From Figure 6, we see that

+ The difference between the step response of the first order
controller according Zhou's balance truncation algorithm and
the original controller is minimal.

+ The difference between the step response of the first order
controller according to the method truncation algorithm and
the original controller is the largest.

From Figure 7, we see that the bode diagram of the 4"-order
controllers and the original controller is completely coincident.
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Figure 6. Step response of the 1%*-order reduction and the 6™-order controller
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Figure 7. Bode diagram of the 4"-order reduction controllers and the 6™-order controller
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Figure 8. Bode diagram of the 3-order reduction controllers and the 6™-order controller
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From Figure 8, we see that the bode diagram of the 3-order
controller according to Zhou's balance truncation algorithm
and the optimal Hankel norm approximation coincides with
the bode diagram of the original controller.

From Figure 9, we see that the bode diagram of the 2"-order
controllers has a small deviation from bode diagram of the
original controller in which the smallest deviation belongs to
the 2"-order controller according to Zhou's method truncation
algorithm and the modal truncation algorithm; the largest
deviation belongs to the 2nd order controller according to the
optimal Hankel norm approximation.

From Figure 10, we see that the bode diagram of the 1%-
order controller has a small deviation from bode diagram of
the original controller, in which the smallest deviation belongs
to the 1%-order controller according to Zhou's method
truncation algorithm and the modal truncation algorithm; the
largest deviation belongs to the 1%-order controller according
to the optimal Hankel norm approximation.

Comment: If we want to minimize the simplification error
of the original controller, we choose a 4™ order controller
instead of the original controller. We will choose the first order
controller according to the Zhou's balance truncation
algorithm instead of the original controller if the requirement
to simplify the original controller is to find the lowest order
controller.

4. APPLICATION OF ORDER REDUCTION
CONTROLLER IN THE AIRCRAFT'S ANGLE OF
ATTACK CONTROL SYSTEM

Using the 4"-order controllers in Tables 1, 2, 3 and 1%*-order
controllers according to Zhou's balance truncation algorithm
in section 3 in the aircraft's angle of attack control system, the
results are shown as follows (Figure 11, Figure 12):

437 69+37170<%+15550007+446300002 +2254000005+242800000

3.0604s+182 5

2152884504757 +408505%+158400053+446500002+2254000005+242800000

177552 +1.508s+1

Gth-order controller

Angle of Attack System

138.85%+1.096e457+4 272e55+1 15487 3.06045+182.5
4154 25341 204e4s2+4 298efs+1 153e7 177552 +1 598s+1
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+ e + edsst e st »
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Figure 11. Simulink diagram of the control system using the 6""-order controller and the low-order controller
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Figure 12. Aircraft's angle of attack response when using the 6"-order controls and the low-order controller
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Comment: The response of the control system when using
the 4™-order controller and when using the original controller
is completely coincidental.

The response of the control system when using the first-
order controller according to the Zhou's balance truncation
algorithm and when using the original controller is different
but still meets the system's stability requirements.

Thus, the 4™-order controller and 1%-order controller can
replace the 6%M-order controller while the quality of the
generator angle of attack control system is still guaranteed.
The control programming for the 4"-order controller and 1%-
order controller is simpler than for the 6™-order controllers.
Therefore, the aircraft's angle of attack system uses a
controller 4-order controller and 1%-order controller will have
simpler program code, which will increase calculation speed,
reduce processing time, and will better meet real-time control
requirements.

5. CONCLUSION

Using the optimal robust algorithm to design the aircraft’s
angle of attack controller not only helps to meet the
performance requirements of controlling the angle of attack,
but also ensures strong stability over a wide range of parameter
value changes of the system. The paper used model order
reduction algorithms to find a low-order controller, which can
replace the 6™-order controller of the aircraft's angle of attack
control system. The results of comparison and evaluation of
order reduction controllers show that: it is possible to use a 4-
order controller or 1%-order controller to replace a 6™-order
controller. The identification of a low-order controller that can
replace a 6"-order controller is the main contribution of this
paper. Using a 4"-order controller or 1%-order controller will
help program code simpler, increase the calculation speed, the
processing time is faster and ensure the real-time of the control
system. Compared to the result in the study [1], the low-order
controller (1% order controller) has a lower order than the low-
order controller in ref. [1]. The results of the paper reinforce
the applicability of model order reduction algorithms in the
problem of determining low-order robust controllers, and at
the same time show that Zhou's balanced truncation algorithm
is the algorithm for the best order reduction efficiency among
the balanced truncation algorithms. To clarify the efficiency of
the low-order controller, in the next studies we will focus on
the experimental results of the control system using the low-
order controller. At the same time, this paper only deals with
the controller that is a stable linear system, in the next articles,

we will focus on the controller that is an unstable linear system.
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