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This research aims to propose a new approach by combining the Optical Mapping Algorithm 

(OMA) with the Adaptive Kalman Filter (AKF) to improve the early detection of cardiac 

arrest. To improve the overall performance of the proposed approach and reduce the 

execution time significantly, a parallel implementation is suggested using the open-source 

computer vision (OpenCV) library tool and optimized for heterogeneous multi-core systems. 

The OpenCV library incorporates many image processing functions that are used to extract 

the distinctive features of the digital image to indicate the presence or absence of cardiac 

arrest in order to save the largest possible number of human lives. Experimental results 

confirm the efficiency of the proposed implementation; as for a loop with a sequence of 

operations repeated 64 times, the achieved speedup is 5X with an accuracy improvement of 

96%. This is due to the exploitation of several optimization techniques, such as pipelining 

and loop unrolling. The accuracy of dark spot detection of blood vessels by combining the 

AKF with OMA was improved from 50% to 83.3% compared with the AKF approach alone. 

Thus, the proposed approach and its parallel implementation are very useful in early cardiac 

arrest detection to preserve human lives. 
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1. INTRODUCTION

Cardiovascular diseases are among the leading diseases that 

threaten human lives worldwide [1]. Cardiovascular diseases 

are the number one cause of death in the United States [1]. The 

recorded number of deaths due to these diseases has increased, 

which makes the process of earlystage disease detection a vital 

process to identify whether a person has a risk of acquiring a 

cardiovascular disease or not. Approximately, 17.9 million 

people died of cardiovascular diseases in 2019. This 

represented 32% of the total deaths that took place in the world 

in that year. Among these deaths, 85% were due to heart attack 

and stroke [1]. This prompted us to research for updated and 

improved methods for the earlier detection of cardiac arrest. 

The analysis of the heart electricity using optical maps is 

one of the methods used for early detection of cardiac arrest 

which is based on a devolved algorithm such as an optical 

mapping algorithm (OMA) [2]. Optical mapping (OM) 

technology can also help in recording the movement of the 

heart without affecting it because it does not require physical 

contact. Moreover, OM technology can provide electro-spatial 

activity maps that incorporate information from the whole 

heart surface, thus providing more information for medical 

investigation than traditional electrode technology [2]. 

The selection of the appropriate filter to be applied with 

OMA is a very critical issue since it has a high effect on the 

result classification. Therefore, several kinds of filters were 

studied and analyzed [3-5] carefully where the Adaptive 

Kalman Filter (AKF) was adopted and combined with the 

optical mapping algorithm to improve the accuracy of cardiac 

arrest detection of blood vessels. However, the early detection 

of a cardiac arrest using OMA with AKF is a mathematically 

complex process that requires a lot of time to get the desired 

result since it usually needs to process a huge amount of data. 

Thus, this helps in achieving the desired results with a 

reasonable level of accuracy when performing the analysis of 

depolarization features [2]. The use of the AKF in proper 

applications introduces the challenge of performing an 

extremely large number of computation operations in a 

reasonable portion of time [2]. So, real-time applications have 

strict requirements that may not be met because of their 

complexity. So, one of the purposes of the research aims to 

accelerate the examination process of anticipated cardiac 

arrest and reduce its processing time. This is achieved by 

proposing a parallel implementation that includes reviewing, 

investigating, discussing, and analyzing the theoretical 

concepts of a hybrid algorithm of the OMA and the AKF. 

Accordingly, in this research, different optimization and 

parallelization techniques were adopted and applied to 

introduce an improved cardiac arrest detection software 

solution to provide real-time support for the specialists in their 

fields. Parallelization techniques break down complex 

operations into smaller and simpler operations that can be run 

concurrently. This helps in dividing the overall work and 

distributing it among several threads in order to perform the 

overall task and achieve the desired results quickly [6, 7]. 

The organization of the paper is as follows: Section 1 

provides an introduction that explains the problem and aims of 

the study. Section 2 reviews the relevant literature, examining 

the theoretical and practical aspects of OMA and AKF. The 

theory of OMA is explained in Section 3. Section 4 explains 

the theory of AKF. The OpenCV library tool is presented in 

Section 5. Section 6 describes the methods, techniques, and 

procedures for conducting the research. The experimental 
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results are analyzed in section 7. Finally, section 8 provides a 

conclusion of the proposed research. 

 

 

2. RELATED WORK 

 

A number of studies have negotiated several aspects related 

to the implementation of the OM in many applications using 

various parallel processing platforms. The optical image of a 

normal heart is usually acquired by charge-coupled device 

(CCD) cameras and Photodiode Array (PDA) detectors. Qu et 

al. [8] studied a comprehensive imaging system that used three 

PDAs to image Langendorff live rabbit hearts with or without 

irregular heartbeats. The studies' results revealed that the PDA 

system could achieve a higher Signal to Noise Ratio (SNR) at 

nearly ten times faster than the CCD camera.  

Wang et al. [9] described in detail the results of their study 

using the OM. They were able to detect the transmembrane 

potential and intracellular calcium concentration transient in 

ventricular tissue specimens using Guinea pigs and rabbit 

animal models. They also indicated that exponential fitting 

met the requirement for a post-cutting recovery time of thirty-

six minutes for pigs and sixty-three minutes for rabbits in order 

to obtain (97.5%) of the APD final steady position values. 

Attin and Clusin [10] discussed the basic concepts of the OM 

technique and how it could be applied to theelectrophysiology 

of the heart to study its normal rhythm and irregular heartbeats. 

These techniques present an opportunity to get recordings of 

membrane potential with a higher spatial and temporal 

resolution than electrical mapping. It also helps to obtain 

timely recordings of membrane potential and calcium 

transients in the entire heart.  

Previous research reported that fluorescent optical data 

digital filtering was also an important requirement for strong 

successive data analysis [11]. An adjustable spatial-temporal 

Gaussian filter is used for tackling OM signals and filter 

parameters that can be selected automatically with no further 

user input. Moreover, they developed an adaptive spatial-

temporal Gaussian filter for examining fluorescence-optical 

data with low SNR. The result allows the use of an adjustable 

filter method, which completely automatically identifies filter 

parameters in accordance with the signal features of the 

recorded data. Allan [12] developed a new method of 

comprehensive OM by applying a single camera to examine 

myocardial electrophysiology in separated Langendorff live 

rabbit hearts using recorded data from the panoramic OM 

system and filtered it for the purpose of analysis. He also 

studied the change of heart electricity under various activity 

conditions in both normal hearts and rabbit hearts. In addition, 

he examined the variations in the pattern of electricity 

activation according to the variations in system activity.  

Contacting cardiac electrogram is one of the applications 

that uses OM [13]. It attempts to evaluate and validate the 

performance of a two-dimensional free movement marker 

tracing algorithm that follows movement distortion in video 

images [13]. The computer simulation is applied to produce 

artificial OM videos that indicate the heart systole and diastole. 

They also examined the movement tracing and stability 

algorithms on the artificial OM using the experimental data. 

Moreover, optical maps with a significant reduction in motion 

artifacts indicated potential wave actions that spread through 

the movement of the heart surface. Finally, they pointed out 

how a decrease related to the dissociation of movement 

artifacts could be quantified and tied to tracing accuracy. 

Meng et al. [2] presented an implementation of OMA using 

GPU for cardiac electro-physiology. They divided the process 

and assembled the arrays of data to avoid the GPU memory 

space limitation. The proposed implementation of GPU was 

faster than parallelization using the multicore platform. It was 

capable of processing the OM video at 578 frames per second, 

which approximately improves the speedup 158 times 

compared to the use of the OpenMP tool solution on a 

multicore system. Further, Meng et al. [2] examined real-time 

OM technology and explained how they used dense spatial 

electrophysiology. They also studied the acceleration of the 

OM approach in heterogeneous systems. The proposed 

architecture improved the speed 273 times compared to the use 

of regular machines with multiple cores and traditional 

software tools. 

Several scholars have studied the AKF in object tracking 

and the variations in the earlier works [14]. The AKF allows 

estimating the conditions of the object's movement in the case 

of tracking a moving object. A vascular tracing method based 

on the KF [15]. The vessel position measurements are made to 

give an accurate prediction of the B-spline control points of 

velocity and position over time. Results indicate two 

sequences of the exact coronary artery motion. This makes it 

easy to control the occurrence of any clot in real time [15]. 

Salleh et al. [16] proposed Kalman filtering for the noise 

reduction of the statistical heart sound. The heart sound cycles 

are found with additional noise for the measurement. The 

model is designed into a state space form to enable the use of 

KF to predict the clear heart sound cycles to detect possible 

heart problems [16]. 

 

 

3. OPTICAL MAPPING ALGORITHM (OMA) 

 

The technology of OM has proved to be a beneficial means 

to record and study heart electricity. Optical mapping 

calculates the electrical impulses of the heart after injecting a 

voltage-sensitive fluorescent dye [17]. Optical mapping can be 

used in many applications that need features of images since it 

does not essentially intervene with the heart [18, 19]. It 

introduces an intensive spatial heart surface electrical map 

[20]. Electrical phenomena can be envisaged by measuring 

different light intensities with one or more high-speed 

Complementary Metal Oxide Semiconductor (CMOS) 

cameras, which provide clear resolution signals. Similarly, 

optical mapping involves the use of filters and resolution 

signal techniques similar to those used in whole-heart 

electrophysiology [2]. 

Applying mechanical power to the heart muscle using 

electrodes can make modifications to the electrical activity 

through Mechanic Electrode Feedback (MEF) [21]. Optical 

maps are often applied to detect irregular heartbeats. Using 

real-time visualization, one might be able to instantly diagnose 

irregular heartbeats and study them more closely. Moreover, 

although one can detect the existence of irregular heartbeats 

using an ECG device, a deeper understanding of this condition 

can be obtained using OM through determining action 

potential duration and amplitude. This requires repetitive 

loops and communication speed [2]. 

Recording action potentials of OM is performed using a 

high-speed sensor. A potentio-metric fluorescent dye is used 

by OM in which emission intensity varies inversely with the 

voltage of the transmembrane [17]. The response time of 

changing fluorescence dyes into corresponding voltage is very 
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fast, so the dye response time is neglected and the limitation in 

temporal resolution is only from recording technology [17]. 

Researchers used the latest technologies in imaging which 

allow them to achieve high spatial and temporal resolution of 

monitoring voltage transactions through transmembrane 

optically. Additionally, applying forces on the heart 

mechanically with electrodes can change the electrical activity 

through Mechanolectrode Feedback (MEF) [21].  

The optical mapping algorithm is computationally intensive 

due to its operations; it also consumes a lot of time even with 

using a highly optimized approach implemented on a multi-

core CPU platform because of the high data productivity in 

which it takes a long time to tackle a small amount of data [2]. 

Initially, given the intensity of the raw image, the noise can be 

reduced using spatial and phase filtration [17]. Each image is 

divided into a number of pixels. Each pixel works like a sensor 

on a heart location. The difference in pixel intensity over time 

is proportional to the voltage of the selected location. 

Therefore, a base pixel of a 100 × 100 resolution video is equal 

to 10,000 traditional sensors that bring about additional precise 

and global information over normal electrode techniques [20]. 

In order to take advantage of all the optimization possibilities 

of OMA, a full study and analysis should be performed for 

parallelism possibilities in their tasks. The OMA is divided 

into many steps as follows: 

 

3.1 Raw camera data 

 

Video raw data typically includes measurable sensor noise. 

The raw image of the signals' intensity should be processed by 

applying a set of methods involving spatial phase 

displacement and filtraization to decrease the noise. The 

operation of OMA consists of processing video data to reduce 

biological features like repolarization, depolarization, and 

activation time. Direct extraction of the biological properties 

from raw data outputs is deemed extremely incorrect for most 

medical applications, which has been suggested and proved 

[22]. Therefore, a number of experiments require the 

elimination of noise and blur owing to the heart contraction 

using a combination of ratiometry and motion tracking [2]. 

 

3.2 Normalization 

 

The first OMA operation on video raw data is normalization. 

This process is one of the most important techniques used to 

re-scale the data values of different features to be in a smaller 

range from (0) to (1) or (-1) to (1). Normalization is separately 

implemented every second of a video. In order to calculate the 

base value of normalization for a pixel location, the mean 

value is found in the temporal array using Eq. (1). The standard 

deviation is determined based on Eq. (2) [23]. Then, each pixel 

of an image will be normalized using Eq. (3) with the 

correspondent normalization base value [2]. 

 

𝜇 =
∑ 𝑥(𝑖)𝑛

𝑖

𝑛
 (1) 

 

𝜎 = √
∑ (𝑥(𝑖) − 𝜇)2𝑛

𝑖

𝑛
 (2) 

 

𝑍 = (
(𝑥 − 𝜇)

𝜎
) (3) 

 

where, Z represents the normalized pixel, x represents raw 

pixel, μ represents mean value and σ represents the standard 

deviation. 

Normalization determines whether a particular pixel is 

useful to reduce computational complexity [2]. Obviously, a 

pixel is signaled validly if it achieves the following conditions: 

·If the pixel's value range is greater than a given range, 

then the pixel is in action. 

·If the maximum pixel's values are greater than the given 

values, then the pixel is considered active as a heart pixel. 
 

3.3 Inversion 

 

Image inversion is an essential technique for quantum 

information processing and in image segmentation, where 

images are divided into various segments to process each one 

separately to increase image enhancement [24]. The 

normalized image data is represented as a matrix of data. Each 

row of the matrix indicates the row of the image and its value 

indicates the matching pixel grey level. The white color value 

is (255) and the black color value is (0). The pixels of the 

normalized image matrix will be multiplied by (255), then it 

will be inverted by subtracting its cell values from the number 

of gray shades based on Eq. (4) [24]. 

 

𝐼 = 1 − 𝑧 (4) 

 

where, I refers to the inverted pixel and z refers to the 

normalized pixel. 

 

3.4 Phase shift spatial filter 

 

A phase shift spatial finite impulse response (FIR) filter and 

a temporal median filter are included in OMA to improve the 

electrical signal [2]. A kernel window first goes through low 

interpolation using a factor of (10) and then applies a phase 

shift spatial filter. The procedure applies to both spatial and 

temporal filters on the raw data in the kernel window. The 

phase variation function employs a window through time, 

indicating a kernel that determines valid pixels with a 

dimension that defines the window center. The phase moves 

the entire window at the appropriate time, using it as a 

reference for the center pixel. The moved window is turned 

back along with the amount of mean shift. The Fast Fourier 

Transform (FFT) is also applied to compute the amount of 

phase shift [2].  

The signal moves as a waveform, where all the adjacent 

pixels defer in phase with the filtered pixel, as shown in Figure 

1 [2]. These phase variations represent noise on the filtered 

image if the spatial filter is directly stratified. To reduce the 

noise in the image data, a 2D spatial filter (5×5 Gaussian filter 

(δ=1.179) is used. All of the image pixels are exchanged with 

the convolution of the 5×5 Gaussian filter and 24 phase-shifted 

adjacent pixels. The 2D filter procedure and its coefficients are 

illustrated in Figure 2. 

The Gaussian filter was considered since it is one of the 

most important types of AKF. It was used to convert the image 

from one form to another to obtain a contrast of properties of 

the image. The kernel was applied to every pixel in the image 

so that the image appears to have a more specific form. 

Accordingly, it is possible to determine the basic colors of a 

digital image by extracting the basic characteristics from the 

original image, so the object could be identified by converting 

the digital image to a gray scale and applying the Gaussian 
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kernel in order to give a high contrast to the areas of dense 

color according to the color gradations required to be found. 

The original image is divided into squares according to the 

size of the kernel. It performs an arithmetic operation by 

multiplying itself with every number in the subset. The result 

of the calculation process forms the new image, and the 

resulting image is the required feature. Unfortunately, this 

process requires high computational time. Therefore, the 

contrast is taken through the FFT to help find the contrast on 

the coordinate axis. 

 

 
 

Figure 1. Phase differences of filtered pixels 

 

 
 

Figure 2. 2-D filter procedure and its coefficients 

 

3.5 Padding zeros 

 

Padding bits is a mechanism of adding extra bits to a given 

matrix of pixel values of an image for the purpose of 

determining its frames and boundaries. The padding zeros 

function is applied to the input array before FFT to make the 

length of the array input an integer power of 2. The Adaptive 

Kalman Filter (AKF) is utilized by this process to determine 

the boundaries of the object so that the searching process for a 

row containing zeros is better than the search for a full area. 

Thus, the process of obtaining the result becomes easier, faster, 

and more accurate. AKF consists of a set of mathematical 

operations that render a precise calculation of the mean for 

estimating the state of a process condition to reduce the mean 

squared error. AKF helps to estimate the past, present, and 

future conditions of a moving object when the exact nature of 

the identified system is not known. It allows correcting and 

limiting the areas where movement is sought in the next step 

[25]. 

 

3.6 Interpolation 

 

The input array should be extended to the length raised to 

the power of the interpolation factor. Then, a coefficient array 

of a corresponding filter is generated by the algorithm. The 

extended array passes across the filter in order to make the 

output array of interpolation [2]. In the OMA, more frames 

with video data are given for interpolation to improve the 

sampling rate of the time axis [2]. 

 

3.7 Two-dimensional spatial filter 

 

A 2-D spatial filter is applied to individual frames to 

enhance the signal. The signal moves as a waveform, all the 

adjacent pixels defer in phase with the filtered pixel. It is 

important to remove the phase variations by moving the pixels 

across the time axis. In order to identify the phase shift 

between two pixels, suppose two signals S1 and S2 where the 

signal S2 is the shifted time version with signal S1 delay of 𝑡0 

as represented in Eq. (5) [17].  

 

𝑆2(𝑡) = 𝑆1(𝑡 − 𝑡0) (5) 

 

The relation between the Fourier transformations of S1 and 

S2 is illustrated in Eq. (6) where 𝑡0 is found using Eq. (7). The 

Inverse Fast Fourier Transforms (IFFT) are taken on both sides 

based on Eq. (8) [17]. 

 

𝑆2(𝑓) = 𝑒−𝑗2𝜋𝑓𝑡0 𝑆1(𝑓) (6) 

 
𝑆2 (𝑓)𝑆1 ∗ (𝑓)

|𝑆2(𝑓)𝑆1 ∗ (𝑓)|
= 𝑒−𝑗2𝜋𝑓𝑡0 (7) 

 
𝑆2 (𝑓)𝑆1 ∗ (𝑓)

|𝑆2(𝑓)𝑆1 ∗ (𝑓)|
 ) = 𝛿(𝑡 − 𝑡0) (8) 

 

The time shift operations include fetching the reference FFT 

array and the array that should be shifted. Then, calculate the 

conjugation of the reference FFT array and multiply it by the 

other FFT array. Next, the IFFT of the output array achieved 

in the second step is carried out and the maximum value of the 

output array is found. Thus, the indicator of the maximum 

value is the required time difference t0. The adjacent pixels are 

shifted with the correspondent time variations after the 𝑡0’s 

are found in all filter windows. The output data of the phase 

shifting is extended to a factor which is the size of the window 

owing to the fact that every pixel has its own filter window. 

 

3.8 Median filter 

 

The output of the phase-shift filter applies a temporal filter 

to further enhance the image quality and strip noise after 

correcting the phase spatial filter. The median filtering is used 

to maintain the steep upstroke of the potential of optical action 

which alters a pixel with the median value of the set and a 

number of its adjacent pixels along the time axis [26]. The 

heart’s actions will be better kept up, and the image will be 

ready for analysis. 

 

 

4. ADAPTIVE KALMAN FILTER (AKF) 

 

The extraction of cardiorespiratory system signals resulting 

from non-contact sensing arrangements is a challenging 

mission, and it is likely disrupted by the noise of measurement. 

Basic filtering methods cannot extract information for control 

purposes. The AKF approach using the real-time filtering 

system was presented. It permanently estimates heart and 

breathing rates to improve performance through feedback to 

the system. The covariance matrices of the sensor and system 

noise are adapted to the targeted application automatically for 
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the purpose of improving the separation capabilities of signals 

[25]. The AKF approach continuously enhances the ability to 

separate the targeted signals from the sensor raw data, thus 

making it possible to apply real-time filtering. Moreover, it is 

possible to use the AKF approach to measure heart and 

breathing rates in real time. When the AKF matrices are 

adapted, the estimation results are improved and they make the 

filter able to detect possible cardiac arrest [25]. The adaptive 

Kalman filter consists of three steps as follows: 

 

4.1 Prediction 

 

Eq. (9) can be used to calculate the predicted state, and Eq. 

(10) can be used to calculate the next estimate variance [27, 

28]. 

 

�̂�𝑘+1
− = 𝐴�̂�𝑘 (9) 

 

𝑃𝑘+1
− = 𝐴𝑃𝑘𝐴𝑇 + 𝐵𝑄𝐵𝑇 (10) 

 

where, �̂�𝑘+1
−  is the predicted state vector, 𝑃𝑘+1

−  is the variance 

matrix for �̂�𝑘+1
− , xk is the current state, A is a (N×N) matrix that 

represents the state at time step (K) to the state at step (K+1), 

B is a (N×1) matrix that relates the input to the state x, Pk is 

the current variance and Q is the process noise covariance. 

 

4.2 Measurement 

 

The predicted residual vector, which represents the 

difference between the actual measurement and the predicted 

one, is expressed by Eq. (11) [27]. The measurement before 

covariance is found by Eq. (12) [27]. The Optimal Kalman 

gain is found using Eq. (13) [27]. 

 

�̃�𝑘 = 𝑧𝑘+1 − 𝐻�̂�𝑘+1
−  (11) 

 

𝑆𝑘 = 𝐻�̂�𝑘+1
− 𝐻𝑇 + 𝑅 (12) 

 

𝐾𝑘+1 = �̂�𝑘+1
− 𝐻𝑇𝑆𝑘

−1 (13) 

 

where, zk+1 is the actual measurement and H is a (M×N) matrix 

that relates the state with the measurement zk, R is the 

covariance of the measurement noise. 

 

4.3 Updating 

 

The updated state vector can be calculated through Eq. (14) 

[27]. The updated error covariance estimate can be calculated 

through Eq. (15) [27]. 

 

�̂�𝑘+1 = �̂�𝑘+1
− + 𝐾𝑘+1�̃�𝑘 (14) 

 

𝑃𝑘+1 = (𝐼 − 𝐾𝑘+1𝐻)𝑃𝑘+1
−  (15) 

 

 

5. OPEN SOURCE COMPUTER VISION (OPENCV) 

 

OpenCV is a powerful tool containing libraries that can be 

used to perform tasks in many applications, such as computer 

vision, detecting and tracking of objects, landmark detection, 

camera movements, video actions tracing, object 3D models 

extracting, and producing a high resolution image of the whole 

scene [29]. OpenCV contains many of the algorithms needed 

by the computer vision process. It also has an independent 

architecture that can be used to build more complex structures 

[29]. 

OpenCV has interfaces for C++, MATLAB, Java, and 

Python. Its template interface easily works with the standard 

template library (STL) containers. It has many functions and 

ready design blocks that support the process of implementing 

more than 500 algorithms [29]. Architectural units of the 

OpenCV allow the use of static libraries that are fully reliant 

on a coding system. The codes are converted into an 

executable file by taking a copy of the required codes and 

making them a part of the program, since codes are connected 

at the compile time. It also supports the use of shared libraries 

at runtime (running of executable codes) by referencing the 

required shared code [29]. 

The OpenCV libraries contain many modules. The most 

essential one is a multi-dimensional array (Mat) that is 

responsible for basic data structures and primary functions. 

Other important modules also consist of the image processing 

(imgproc) module that allows the use of needed operations to 

process images such as filtering, warping, resizing, color 

conversion, histograms, interpolation, padding, interpolation, 

and others. OpenCV also contains the video analysis (video) 

module that covers movement algorithm estimates, tracing of 

objects, and background removal. Moreover, the object 

detection (objdetect) module is also available to detect objects 

such as faces, eyes, people, things, animals, and others [29]. 

OpenCV can also automatically distribute outputs by 

reallocating the memory for output function parameters. 

Moreover, the OpenCV implementation supports multi-

threading and re-entry capability. The same functions or 

various classes can be called from various threads because 

reference counting processes apply to the atomic-specific 

module orders [29]. 

 

 

6. RESEARCH METHODS, TECHNIQUES AND 

PROCEDURES 

 

To detect cardiac arrest early, two methods were developed 

and implemented. The first method is the Adaptive Kalman 

Filter, and the second method is our proposed method, which 

combines the AKF and OMA to improve the accuracy of 

detection. The coding system was designed to provide image 

maps of digital images using the latest developments in 

available programming techniques and OpenCV Libraries. 

The proposed system includes a number of basic steps to help 

the specialist doctor to extract the distinctive features of digital 

images which can indicate the presence or absence of cardiac 

arrest. 

The processes of OMA were applied, which consisted of 

filters, shifting, flipping (convolve) and transformation of 

digital images so that the computer can read them better and 

the appropriate decision can be made by classification 

algorithms. Further, AKF was adopted and applied since it 

continuously enhances the ability to separate the targeted 

signals from the sensor raw data. 

Moreover, various parallelism and optimization techniques 

are selected and applied among the OMA's internal steps. 

Every OMA step is effectively optimized to enhance speed up, 

latency, and throughput. The proposed parallel 

implementation is constructed on a heterogeneous computing 

system that contains several computation elements (cores) 

where the OpenCV tool is used to create a sufficient number 

of threads to utilize the available cores. Heart images are 
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mainly appropriate for processing on parallel structures using 

multi-core processors, where each CPU can be operated on a 

sub-image through partitioning of the original images. 

However, the application of these parallelization methods 

requires an intensive examination of the algorithm 

functionality. A generalized model of coarse-grained 

parallelism is executed; this helps to create a more powerful 

design that achieves the real-time requirements. The default 

proposed algorithm parameters are tuned while utilizing the 

OpenCV library to perform target operations.  

Forking multiple threads, on the other hand, introduces the 

challenge of evenly distributing overall work among these 

threads; additionally, there is an overhead associated with 

resolving several multi-thread issues such as communication, 

synchronization, and load balancing. A data dependency is a 

critical issue that reduces the efficiency of the constructed 

parallel approach since it is not possible to speed up the 

execution of a program that contains a series of sequential 

operations and depends on the results of the stages that precede 

them. Therefore, the program must be written in a way that 

exploits the features of the existing homogeneous architecture. 

There are many software libraries that provide the ability to 

create and manage threads, such as open multi-processing 

(OpenMP) [30], open computing language (OpenCL) [31-33], 

and Intel threading building blocks (ITBB) [34]. In this 

proposed study, the OpenCV library tool is used where several 

optimization techniques are possible; auto-parallelization and 

auto-vectorization are used to exploit all the capabilities of the 

heterogeneous multicore CPU-based system. Using the fork-

join model, the primary thread spawns several slave threads, 

each executing a specific task before being terminated and 

returning to the joined primary thread. The overall task can be 

divided into sub-tasks and each of these sub-tasks can be 

handled by one or more threads, as shown in Figure 3. This 

implies that the algorithms can be divided to be separately 

processed without any interference. The OpenCV library uses 

the fork-join model to create a sufficient number of threads to 

utilize all available computation cores and maximize the CPU-

core utilization factor. 
 

 
 

Figure 3. Distributing the main task into several sub tasks 

using the fork-join model 

 

Figure 3 shows the image distribution to the various cores 

using a sufficient number of threads. At the fork section, each 

thread has its own core affinity. This indicates that the thread 

(1) has affinity (1) and therefore should be executed on core 

(1) and so on. The thread affinity is also applied for image 

partitioning. The selected image is divided on a height basis. 

The threads work horizontally on the indexes measured in 

accordance to Eq. (16), where the vertical workload is 

measured in accordance to Eqns. (17), (18), and (19) [35]. 

 

𝑊𝑥 = 𝐼𝑆𝑥  (16) 

 

𝐼𝑓 (𝐴𝐹) = 0, 𝑈𝐵 = 0, 𝐿𝐵 = 𝐼𝑆𝑦  (17) 

 

𝐼𝑓 (𝐴𝐹) > 0, 𝑈𝐵(𝑛) =
𝐼𝑆𝑦

𝐴𝐹
 (𝑛 − 1) + 1 (18) 

 

𝐼𝑓 (𝐴𝐹) > 0, 𝐿𝐵(𝑛) =
𝐼𝑆𝑦

𝐴𝐹
 (𝑛) (19) 

 

where, Wx is the work indexes, ISx is the horizontal image size, 

𝑈𝐵 is the upper vertical index limit, 𝐿𝐵 is the lower vertical 

index bound, ISy is the vertical image size, and the 𝐴𝐹 is the 

current thread core affinity. 

Optimal load balancing to distribute the work among 

multiple threads is a big concern to reduce the entire number 

of clock cycles required to perform the target task. Therefore, 

the tasks were split dynamically and assigned to corresponding 

threads so that each thread had an equal amount of work to 

accomplish. The compiler that is associated with the OpenCV 

library strives hard to achieve load balancing and minimize the 

execution time aspect for the appropriate task. Improving the 

load balancing through minimizing the idle time and reducing 

the number of stall cycles for all threads optimizes the resource 

utilization and enhances the feasibility of using other possible 

optimization techniques such as nested input and output, 

memory prefetching, and reordering patterns of data access.  

The whole system processing is partitioned into a number 

of basic steps. In this research study, we investigated the 

pseudocode implementation for each step, and the procedure 

could be assumed to tune the performance and achieve a 

reasonable execution time. However, parallelizing the 

proposed method depends mainly on loops that implement a 

significant portion of the overall execution time. These 

improvements, such as loop unrolling, loop pipelining, loop 

dataflow, loop merging, and loop exchange, are applied to 

improve the cache performance and the parallel processing 

capabilities of the proposed implementation.  

Figure 4 shows the proposed hybrid procedure that 

combines the AKF and the OMA algorithms. The proposed 

model is implemented in two possible paths (phases), and each 

path involves several steps. In the first path, it involves the 

feature detection of noisy raw camera data through AKF 

directly without passing it to OMA, while in the second path, 

it shows applying both the OMA and the AKF approaches as 

shown in Figure 4. 

 

 
 

Figure 4. The proposed method combining AKF with OMA 
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The implementation of OMA consists of three steps; the 

first step is the data pre-processing that consists of the four 

stages (Normalization, Inversion, Interpolation, and Padding). 

The second step is the shift kernel that consists of the five 

stages (FFT, Conj. Multi., IFFT, t0 searching and time shift). 

The third step is the filtraization, which consists of the two 

stages (temporal median filter and 2D Gaussian filter). After 

the raw data passes through these three steps, processed data 

is obtained. Then, it passed to the second phase (AKF), which 

consists of another three stages: the prediction, the 

measurement, and the updating stage. The following is an 

explanation of these steps in detail. 

 

PHASE 1: OPTICAL MAPPING ALGORITHM (OMA) 

 

6.1 Normalization step 

 

The normalization process is used to limit the range of pixel 

density values of the digital image between zero and one in 

order to facilitate their reading by the Adaptive Kalman 

classification algorithm and reduce the size of the spacing 

among the image data [36]. The normalization pseudocode is 

shown in Figure 5. Fortunately, there was no dependency 

between the iterations of the while loops in the first step. 

Optimization techniques through multithreading, 

vectorization, and loop pipelining were applied by dividing the 

summation into sub-sums and finding their local values, then 

adding them to have the total sum. This will help in decreasing 

the execution time, which positively improves OMA 

performance. The mean value in step 2 was calculated by 

dividing the summation of pixels’ values over the number of 

pixels (n×m), then the result was calculated in the same way 

of finding the sum value in the first step, which was used to 

determine the standard deviation in order to get the z-score 

normalization values. 

 

 
 

Figure 5. Normalization algorithm pseudocode 

 

6.2 Inversion step 

 

The inversion process is used to change the grayscale image 

colors from white to black and vice versa. Figure 6 shows the 

inversion pseudocode process. There are no dependencies 

between the iterations of the loop, so the image is split into (n) 

partitions by applying the loop unrolling technique to improve 

the execution time. 

 

 
 

Figure 6. Inversion algorithm pseudocode 

 

6.3 Interpolation step 

 

The inverted image array is expanded using interpolation by 

a factor of 10. The expanded array passed through a coefficient 

array of the FIR filter to generate an interpolated output array 

in order to promote the rate of sampling across the time axis 

for identifying edges. Interpolation is used to solve 

discontinuity artifact problems, blurring in the edge regions 

and their angles [37]. Figure 7 shows the pseudocode of the 

interpolation step. There is a clear dependency between steps 

(1) and (2) together with the inverted image from the earlier 

step, as shown in Figure 7. Thus, the vectorization 

optimization technique could be used to reduce the data 

dependency and the execution time as well. Steps (3) and (4) 

could be fully parallelized by dividing the main loop into 

multiple loops horizontally or vertically, each of which is 

handled by a separate thread, where all threads are executing 

their tasks concurrently. Then, the full interpolated image 

should be accomplished after collecting partial results from all 

considered threads. 

 

 
 

Figure 7. Interpolation algorithm pseudocode 
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6.4 Padding step 

 

The padding process is used to isolate the image and 

distinguish its edges in order to be easily tracked by the 

proposed algorithm by adding a frame with zero padding. 

Figure 8 shows the padding process pseudocode. There is a 

high inter-dependency among steps (2) and (1), together with 

the interpolated image from the previous step, as shown in 

Figure 8. Thus, vectorization is used here to reduce the data 

dependency and perform the process with a lower number of 

clock cycles. 

 

 
 

Figure 8. Padding algorithm pseudocode 

 

6.5 Time shift step 

 

Finding Fast Fourier Transform (FFT), conjugation, and 

IFFT of the time shift could be executed through multithreaded 

parallelization technique since there is no data dependencies 

upon splitting the original matrices into (n) partitioned. Figure 

9 shows "Time shift" procedures containing FFT and IFFT 

processes. 

 

 
 

Figure 9. Time shift algorithm pseudocode 

 

The FFT method is used to convert the range of digital 

image pixel values from the time domain to the frequency 

domain and display them in another form that is easy to 

distinguish. This helps in identifying non-periodic signs such 

as the noise, which could be processed at the last stage using a 

2-D low pass filter to measure and extract several features of 

the digital image. Moreover, the IFFT is also applied to the 

output array from the conjugation of the original FFT array 

and the FFT shifted array. The filter mechanism is used 

according to the concept of kernel filterization through 

applying a filter with a specific size to the digital image. The 

OpenCV Library contains many optimized functions to 

implement both the FFT and the IFFT algorithms that are used 

in this processing step. 

The Gaussian process is also considered here to obtain the 

contrast of the image properties. It is applied to each pixel in 

the image to give the image a more specific shape. 

Accordingly, it is possible to determine the basic colors of a 

digital image by extracting the basic features from the original 

image. So, the object could be identified by converting the 

digital image into a grayscale and applying the Gaussian 

kernel in order to increase the contrast level of denser color 

areas according to the color gradations that are required to be 

found. The OpenCV tool contains many functions that can be 

used to parallelize the implementation of the Gaussian 

function, where pragmas such as loop unrolling and loop 

pipelining can be used to increase the amount of work per 

clock cycle.  

Although the proposed kernel is a two-dimensional square 

area that is smaller than the original image, the original image 

is divided into squares that match the kernel in size. The 

original image pixels’ values are updated upon performing the 

multiplication operations with the proposed kernel, and the 

new image should contain the required feature. Therefore, the 

degree of intensity of illumination on the image is reduced or 

increased through changing the pixel density, but the process 

probably consumes more time. To solve this issue, the contrast 

is taken by applying Fourier equations to the image matrix to 

obtain the contrast level value on the coordinate axis. 

Applying the FFT on the proposed matrices leads to achieving 

a high contrast level when the illumination intensity is large 

and a low contrast level when the illumination intensity is low. 

Finally, the resulted image will be prepared to be processed by 

the proposed filter in the next step to remove those unwanted 

details. 

 

6.6 Median filter 

 

The median filter is found to be a proper filter to reduce the 

noise and maintain the feature of the heart's actions. Data 

dependencies do not exist among the loop iterations of the 

median filter, as can be seen in Figure 10, so the pipeline 

optimization technique is used to improve the performance in 

terms of the execution time [26]. Next, the original image is 

inverted by applying the Gaussian method to normalize the 

image after it has been transferred to its original shape. Then, 

the data is prepared to be processed by the AKF to detect the 

location of the object in the processed input image. 

 

 
 

Figure 10. Median algorithm pseudocode 
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PHASE 2: ADAPTIVE KALMAN FILTER (AKF) 

 

The AKF is used to detect the change in the current frame 

of the image compared to the next frame during the diastole to 

track and monitor heart dimensions. In addition, when the 

heart systole occurs, images are compared in both cases to 

determine the differences between them. The AKF algorithm 

depends on the presence of an object whose dimensions and 

location are determined in the selected image. Also, when any 

change occurred in the image, the AKF algorithm calculated 

the amount of change in the shape of the image or its 

dimensions. If different images are available, the AKF 

algorithm will show a black screen, indicating that there are no 

changes. In this case, the amount of change in the two heart 

images between diastole and systole can be calculated several 

times by using the parallel processing tool with proposed 

optimization techniques to process a series of images 

concurrently. The series of images is a representation of the 

frames in the videos, so the image series can be like an 

animation that displays a specific movement. The adaptive 

Kalman filter algorithm flowchart is shown in Figure 11. 

 

 
 

Figure 11. The Adaptive Kalman Filter (AKF) algorithm 

flowchart 

 

The AKF consists of three steps: the prediction, the 

measurement, and the updating step. Most of the arithmetic 

operations (multiplication, addition, and subtraction) in these 

steps have no dependency. So, these steps can be executed in 

parallel by applying the loop pipelining and loop unrolling 

optimization techniques. The size of the output processed 

image from the OMA is (1024×1024). The number of forked 

threads in the proposed system is 1, 8, 16, 32, and 64. So, tasks 

are divided evenly between the threads based on Eq. (20). 

 

𝑇𝑎𝑠𝑘_𝑝𝑒𝑟_𝑡ℎ𝑟𝑒𝑎𝑑 =
Number of matrix rows

Number of threads
 (20) 

 

Furthermore, the measurement step does not have to wait 

for the prediction step to complete all of its iterations, and the 

same thing occurs between the measurement and updating 

steps. Once the current value is determined, then it can be 

forwarded to the next step to allow operations overlap 

execution by applying the dataflow optimization technique as 

shown in Figure 12. Dataflow is an optimization technique that 

is applied to the steps to allow parallel execution [38, 39]. Step 

2 can’t start until step 1 completes all its iterations. However, 

by applying the dataflow optimization technique, step 1 can 

forward the result from the first iteration to step 2, and then 

both steps can be processed concurrently. The same thing is 

between steps 2 and 3, as shown in Figure 12. The OpenCV 

tool automatically inserts channels between the proposed steps 

to ensure that data can flow asynchronously from one loop to 

the next [40]. 

 

 
(a) Without dataflow 

 
(b) With dataflow 

 

Figure 12. Data flow technique 

 

 

7. RESULTS AND DISCUSSION 

 

This study designs, analyzes, and implements an intelligent 

system for early detection of potential cardiac arrests in 

humans using two approaches: the adaptive Kalman filter and 

a hybrid approach of both the adaptive Kalman filter and the 

OMA. Figure 13 shows the result of each step of the OMA 

approach. 

 

 
 

Figure 13. The result of OMA 

 

The proposed system is tested on two homogeneous systems 

having different characteristics. The first system (Device1) is 

an Intel Core i5@ 2.7 GHz CPU that consists of two cores, and 

the second system (Device2) is an Intel Core i8 @ 4.00 GHz 

CPU that consists of four cores. Tables 1 and 2 show the 

results of applying the AKF approach and the AKF with the 

OMA approaches using Device1 and Device2 respectively. 

Both approaches are constructed (1) without using any sort of 

parallelization techniques (using a sequential single-thread), 
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(2) and with using the proposed parallelization procedure 

(several numbers of threads are spawned) on both Device1 and 

Device2. A reasonable speedup and improvement are achieved, 

which leads to the construction of a real-time system for 

cardiac arrest detection and improving the capabilities of the 

health care sector. From the Tables 1 and 2, the computational 

speedup improves three times on the Device1 and up to five 

times on the second system, Device2. This confirms the 

efficiency of the parallelization approach and the utilized tool 

in this study. 

 

Table 1. The results of applying the AKF approach on Device1 and Device2 for 64 iterations with a various number of threads 

 
Adaptive Kalman filter approach 

Number of Threads Device1 Speed Up Improvement percentage Device2 Speed Up Improvement percentage 

1 73889.8   15226.50   

8 26473.1 2.79 0.64 3371.09 4.52 0.78 

16 24552.3 3.01 0.66 3194.20 4.77 0.79 

32 24528.5 3.01 0.67 3184.01 4.78 0.79 

64 27486.6 2.69 0.62 3193.29 4.77 0.79 

* Time is in microseconds 

 

Table 2. The results of applying a hybrid of the AKF and OMA approaches on Device1 and Device2 for 64 iterations with a 

various number of threads 

 
Adaptive Kalman filter with optical mapping 

Number of Threads Device1 Speed Up Improvement percentage Device2 Speed Up Improvement percentage 

1 81767.0   34269.60   

8 30922.9 2.64 0.62 7305.41 4.69 0.79 

16 37646.3 2.17 0.54 7090.44 4.83 0.79 

32 32571.2 2.51 0.60 6990.56 4.90 0.80 

64 32235.9 2.54 0.60 6922.36 4.95 0.80 

* Time is in microseconds 

The accuracy of the classification is a very essential task 

that should be performed to prove the feasibility of the 

proposed approaches. Cardiac arrests can be interpreted 

through the analysis of the captured medical image, and thus 

the image of blood vessels that contain clots can be 

distinguished through the presence of a group of dark spots in 

the image of blood vessels. This indicates the presence of a 

clot or the possibility of its occurrence. This is what 

distinguishes the possibility of cardiac arrest in the target 

image from those that are classified as healthy blood vessels. 

The dark point appearing in the vascular images may not be 

clearly distinguished by the human eye. However, upon 

generating the grayscale image, the contrast point can be easily 

distinguished because it is considered an impurity point that 

differs from the surrounding points. 

Both approaches are applied to the input image to detect the 

dark spots of blood vessels as shown in Figure 14. Table 3 

displays 21 objects detected using the hybrid approach, which 

includes both the AKF and OMA algorithms, where the object 

with the largest area (#19 in table 3) is the image frame and 

objects with areas in the range of 1,3 are considered false 

objects (noises). Therefore, only six objects can be considered 

true objects. However, applying the AKF approach only 

detects three objects. These results demonstrate the feasibility 

of using the proposed hybrid approach to achieve more 

accurate results in the process of object identification. 

Table 4 shows the accuracy of dark spot detection in blood 

vessels. The selection of the appropriate filter to be applied 

with OMA is a very critical issue since it has a high effect on 

the classification accuracy. Table 4 shows that the selection of 

hybrid AKF and OMA algorithms is very useful and 

appropriate for object detection, where the accuracy is 

improved from 50% to 83.3%. 

 

 
 

Figure 14. AKF with OMA detected objects result 

 

Table 3. Areas of detected objects 

 
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Object # 

1032 29 95294 1 1 2 1 1 1 1 1 1 1838 191 1 2 1 1 3 32 49 Area 

 

Table 4. Accuracy comparison between using AKF alone and AKF with OMA 

 
Approach Number of true objects Number of detected objects Accuracy 

AKF 6 3 50% 

Hybrid (AKF and OMA) 6 5 83.3% 
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8. CONCLUSIONS 

 

The optical mapping algorithm is carefully studied, 

analyzed, implemented, and parallelized to detect cardiac 

arrest through the detection of dark spots in blood vessels. 

Different optimization and parallelization techniques were 

adopted and applied to reduce the execution time in order to 

obtain faster results to serve a group of people, patients and 

doctors. Since the selection of the appropriate filter to be 

applied with OMA is a very critical issue since it has a high 

effect on the classification accuracy, the adaptive Kalman 

filter is adopted and combined with the optical mapping 

algorithm. The experimental results demonstrate the 

efficiency of using hybrid AKF and OMA in the process of 

object detection, where the accuracy is improved from 50% to 

83.3% compared to using only the AKF approach. The 

achieved speedup is five times compared with the sequential 

one, where more speedup is achieved by increasing the 

problem size and the number of iterations. This is due to the 

exploitation of the parallel and pipelined platform of multicore 

and the inherent parallelism in the proposed approach 

operations where many optimizations are incorporated. 
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