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Panoramic Dental Radiography (PDR) image processing is one of the most extensively used 

manual methods for gender determination in forensic medicine. With the assistance of the 

PDR images, a person's biological gender determination can be performed through 

analyzing skeletal structures expressing sexual dimorphism. Manual approaches require a 

wide range of mandibular parameter measurements in metric units. Besides being time-

consuming, these methods also necessitate the employment of experienced professionals. In 

this context, deep learning models are widely utilized in the auto-analysis of radiological 

images nowadays, owing to their high processing speed, accuracy, and stability. In our 

study, a data set consisting of 24,000 dental panoramic images was prepared for binary 

classification, and the transfer learning method was used to accelerate the training and 

increase the performance of our proposed DenseNet121 deep learning model. With the 

transfer learning method, instead of starting the learning process from scratch, the existing 

patterns learned beforehand were used. Extensive comparisons were made using deep 

transfer learning (DTL) models VGG16, ResNet50, and EfficientNetB6 to assess the 

classification performance of the proposed model in PDR images. According to the findings 

of the comparative analysis, the proposed model outperformed the other approaches by 

achieving a success rate of 97.25% in gender classification. 
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1. INTRODUCTION

Nowadays, artificial intelligence is actively used in a variety 

of domains, particularly in health [1, 2], industry [3], natural 

language processing [4], generative networks [5], remote 

sensing [6] etc. However, the modern methods developing 

rapidly in artificial intelligence technologies have shown 

remarkable success in image analysis and become more 

effective in medical applications. This study is based on the 

ground of the convolutional neural network, which has 

provided successful results in various image analyses with 

modern methods. Our dataset consists of 24,000 PDR images 

acquired from the local patients. 

In the events where a significant number of mortalities 

occur as a consequence of natural disasters or catastrophes, 

making identification on human residue is necessary through 

the participation of professionals from various occupational 

groups. Due to the exposure of human remains to extreme and 

destructive external forces and their biological decomposition, 

making such identifications based on the existing remains 

becomes a challenging process [7]. The 2014 INTERPOL 

Disaster Victim Identification Standards emphasizes that 

DNA analysis, friction ridge analysis, and forensic dental 

study methods are the primary, most reliable, and efficacious 

description techniques [8]. The determination of biological 

gender is the initial stage in the identification process.  

Gender identification from human skeletal remains has been 

identified as an important factor in forensic science and bio-

archaeology [9]. When determining gender in the defined 

areas, it is necessary to use as many methods or features as 

possible instead of using a single morphological feature as a 

reference [10]. In the literature, studies have been carried out 

for sex prediction with all existing bones of the human 

skeleton. mandible [11], calcaneus [12], metatarsal bone and 

phalanx [13], femur [9], patella [14], occipital condyle [15], 

hand bones [16] and sternum [17] are used to predict gender 

[18]. 

Despite the adversities, the mandible, which is usually 

known as the strongest, largest, and most resistant bone that 

remains intact, plays a significant role in gender prediction in 

forensic odontology [19, 20]. Therefore, the mandible, a 

skeletal component, is the focus. 

Rather than taking a single morphological character as a 

reference, it is necessary to use as many procedures or features 

as possible while determining the gender of the unknown 

skeletal residues [10]. The PDR images with the mandible may 

provide information about dental status, age range, and gender. 

It is also conceivable to perform identification of a dead body 

or living individual whose identity is unknown, with such 

limited data on hand. Many diverse manual techniques are 

employed for gender prediction from PDR images of teeth. For 

instance, while an adult’s skull is a reference material to 

identify gender with an accuracy of 80%, this accuracy can rise 

to 90% when the mandible is taken into account, additionally 

[21, 22]. Although manual approaches are prone to error, the 

application of the aforementioned techniques requires a certain 

amount of time and experienced specialists (forensic 

anthropologist, pathologist, etc.) who are familiar with such 
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techniques [23, 24]. 

As a result, the PDR images, acquired with fully automatic 

image techniques, covering the entire mandible and 

contributing positively to biometric identification; and thereby 

providing a holistic approach, were used for gender 

classification in our study. 

 

 

2. RELATED WORK 

 

It is possible to identify gender and age from skeletal 

remains in forensic medicine, osteology, and physical 

anthropology; however, gender determination by age is 

considered the most challenging issue [25]. The mandible 

reflects the anatomical distinctions between male and female 

individuals and poses sexual differentiation based on 

morphological characters [26]. The process of manually 

separating morphological characters for gender classification 

is common. Due to the intricacy of PDR images, researchers 

mostly concentrate on different morphometric and non-metric 

parameters of the mandible [27-29]. As a result of 

morphometric studies, Loth et al. achieved over 90% 

classification success as grounding on the characteristic of the 

ramus flexure, which is absent in males but is present in female 

individuals and is also regarded as a part of the mandible [30-

33]. Lin et al. set the upper limit of mandibular flexure, the 

maximum ramus vertical height, and upper ramus vertical 

height as discrimination parameters and correctly classified 

81.7% to 88.8% gender classification among 240 three-

dimensional mandibular models [11]. Deana and Alves 

utilized numerous characteristics in non-metric studies, 

including jaw shape, eversion of the gonial angle, jaw profile, 

contour of the base of the mandible, and shape of the ramus, 

and reported a gender classification rate with an accuracy 

ranging from 75% to 95.2% [34]. Nagaraj et al. studied 

mandibular ramus flexure on a digital orthopantomogram. 

Statistical analysis was performed using SPSS software on the 

data of 100 subjects, and 71% accuracy was obtained [35]. In 

the cited manual studies in the literature, there were intact 

mandibles used without any pathology, loss of mandibular 

molars or abnormal molars, and teeth. Milošević et al. 

proposed an automated solution for gender estimation based 

on deep learning techniques using convolutional neural 

networks from PDR images instead of employing only specific 

metric and non-metric indicators. However, as the test dataset 

advanced from 400 to 2000, the accuracy rate reduced from 

96.8% to 92.3% [7]. Ivan et al. used deep convolutional neural 

networks (DCNN), which have attested successfully in image 

analysis, and achieved 94.3% accuracy in the test dataset used 

in DCNN models [21]. Based on the convolutional neural 

network developed by a multi-feature fusion module, Ke et al. 

suggested a new automated technique for gender estimation 

from panoramic dental x-ray images. With the method 

proposed, they attained 94.6% ±0.58% accuracy on the test 

dataset they used [36]. Ortiz et al. propounded a new technique 

for gender estimation through anatomical points that appear on 

panoramic radiographs using machine learning techniques. 

The accuracy rate was 68% for women and 74% for men [37]. 

The novel methods reported in the literature for gender 

estimation are mainly based on deep learning approaches and 

do not require any manual feature adjustment. 

In addition to these studies, preprocessing techniques to 

improve the quality of dental images by years are presented in 

Table 1, various studies in dentistry that consider deep 

learning-based techniques are presented in Table 2 and the 

development criteria of dental X-ray imaging techniques are 

presented in Table 3 [38]. 

 

Table 1. Preprocessing techniques on dental images 

 
Author - Year Related studies Application 

Patanachai et al. 

[39] - 2010 

Standard and adaptive 

with wavelet transform 

thresholding 

segmentations are 

compared and applied.  

Teeth 

detection 

Frejlichowski and 

Wanat [40] - 2011 

In the automatic 

approach, a horizontal  

integral projection is 

applied to segment the 

teeth. 

Human 

identification 

Pushparaj et al. 

[41] - 2013 

Horizontal integral 

projection with a B-spline 

curve is  

employed to separate 

maxilla and mandible. 

Teeth 

numbering 

Lira et al. [42] – 

2014 

Supervised learning used 

for segmentation and 

feature extraction is  

carried out through 

computing moments and 

statistical characteristics. 

Teeth 

detection 

Abdi et al. [43] – 

2015 

Segmentation processes 

for gap valley extraction,  

contour tracing and 

template matching are 

applied. 

Mandible 

detection 

Poonsri et al. [44] 

- 2016 

Area segmentation using 

K-means clustering  

and template matching 

using correlation are 

applied. 

Teeth 

detection 

Zak et al. [45] - 

2017 

Adaptive individual arch 

tooth segmentation  

thresholding is applied to 

locate the palatal bone. 

Teeth 

detection 

Mahdi and 

Kobashi [46] - 

2018 

Quantum particle swarm 

optimization  

is applied for multi-level 

thresholding. 

Teeth 

detection 

Fariza et al. [47] - 

2019 

Gaussian kernel-based 

conditional in 

segmentation  

operation spatial fuzzy c-

means algorithm is 

applied. 

Teeth 

detection 

Aliaga et al. [48] - 

2020 

Segmentation from X-ray 

images is  

performed using k-means 

clustering. 

Mandible 

detection 

Esmaeilyfard et 

al. [49] - 2021 

Naive Bayesian (NB), 

Random Forest (RF) and  

Support Vector Machine 

(SVM) are used as 

classifiers for prediction. 

Teeth 

detection 
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Table 2. Different teeth studies based on machine learning 

 

Author - Year Models Application Evaluation 

Oktay [50] - 2017 AlexNet Detection and classification Accuracy 

Chu et al. [51] - 2018 Octuplet siamese network  Osteoporosis analysis Accuracy 

Lee et al. [52] - 2019 Mask R-CNN 
Segmentation for diagnosis and 

forensic identification 
F1 score 

Muramatsu et al. [53] - 

2020 
CNN (ResNet50) Detection and classification Confusion Matrix 

Esmaeilyfard et al. [49] - 

2021 
Support Vector Machine (SVM) Detection and classification Accuracy 

 

Table 3. Developmental stages of Dental X-ray imaging techniques 

 
Year Dental imaging methods 

2005 Level Set method 

2006 Mathematical morphology & Connect component labelling 

2007 Four field transformation & Support vector machine 

2008 Clustering & Region growing 

2009 Automatic iterative point correspondence algorithm & Hybrid knowledge acquisition 

2010 Histogram based & Wavelet transform 

2011 Canny, Sobel, Gaussian, Laplacian, Avarage filtering & Active contour 

2012 Homomorphic filter, Distance, Adaptive windowing & Phase Congruency 

2013 Harris operator, SVM Classifier & Gray-level co – occurrence matrix 

2014 Bayesian Classifier, Gaussian filter & Local singularity analysis 

2015 Cluster based Segmentation & Active shape model 

2016 Fuzzy C-means & U-net architecture  

2017 Neutrosophic Orthogonal Matrices, Transfer learning & Machine learning 

2018 Multi-layer perceptron, Backpropagation algorithm & Deep learning-based CNN 

2019 Multilayer perceptron, Auto Regression model & Geodesic active contour 

2020 Deep Convolution Neural Network  

2021 Deep Convolution Neural Network & Transformer 

 

 

3. MATERIAL AND METHODS 

 

3.1 Dataset collection and preparation 
 

For binary classification of the PDRs, a dataset of images 

and label pairs was constructed and structurally tested by 

training in four alternative deep learning network architectures 

(VGG [54] – ResNet [55] – EfficientNet [56] – DenseNet [57]). 

This study examined a dataset of 24,000 PDR images from 

patients aged between 18 and 77 who received dental 

treatment in Diyarbakir Oral and Dental Health Hospital 

Periodontology clinic between 2015 and 2020. The female and 

male patient ratio in the data set was 58% and 42%, 

respectively. The images were captured using the Promax 2D 

digital panoramic x-ray machine (anodic voltage 50-84 KV, 

current 0.5-16 mA, Planmeca, Finland) available in the clinic. 

The acquired PDR pictures had considerable differences in 

terms of contrast, location, and resolution parameters. That 

variation was one of the factors complicating gender 

identification. Figure 1 and Figure 2 illustrates sample female 

and male PDR images taken from a variety of patients. The 

PDR images were pre-processed to reduce complexity and 

focus on the mandible area. The histogram equalization 

method was applied to interpret the mandible area and teeth.  

Furthermore, the resolution of original PDR images was 

resized from 3180 × 1509 to 224 × 224 pixels for the deep 

learning model without interfering with the aspect ratio value. 

An Open CEZERI Library (OCL) was utilized for pre-

processing [58]. 

Table 4 lists the distribution of the PDR image dataset 64%, 

16%, 20% as training, validation and test set, respectively. 

It is clear from the histogram graph that the number of 

patients aged between 25 and 50 are higher than the others. 

 
 

Figure 1. Sample PDR images of female patients by gender 

 

 
 

Figure 2. Sample PDR images of male patients by gender 

 

Table 4. Training, validation and testing rates by gender in 

the PDR image dataset 

 
Class 

label 

Train 

(64%) 

Validation 

(16%) 

Test 

(20%) 

Total 

(100%) 

Female 8,960 2,240 2,800 14,000 

Male 6,400 1,600 2,000 10,000 

Total 15,360 3,840 4,800 24,000 

 

3.2 Transfer learning 

 

Transfer learning is a deep learning method in which model 

parameters are used on a large pre-trained dataset. In other 

words, transfer learning is a machine learning technique in 
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which we reuse a trained model defined as the starting place 

for a model in a new position. Transfer learning is used in 

problems where there is not enough data for training or we 

want better results in a short time. Figure 3 shows the transfer 

learning procedure. 

 

 
 

Figure 3. Transfer learning procedure 

 

3.3 Proposed model 

 

Convolution in the training of the convolutional neural 

networks and increment in subsampling steps causes a 

decrease in feature maps. However, gradient loss occurs in the 

image feature during transitions between cross-layers. The 

DenseNet architecture, in particular, was created to take 

advantage of the feature maps more effectively [57]. Each 

dense block in the DenseNet architecture has two convolution 

layers (conv), which are comprised of a varying number of 

repetitions. These are the 1 × 1 dimensional core defined as 

the bottleneck layer and the 3 × 3 dimensional core that will 

perform the convolution process. A 1x1 convolution layer is 

introduced before each 3 × 3 convolution layer to improve 

computational efficiency; thus, the number of input feature 

maps is reduced. However, each transitional layer contains a 1 

× 1 convolution layer and a 2 × 2 average pooling layer with 

two strides [57].  

 

 
 

Figure 4. General CNN (left) and DenseNet (right) models 

 

In the classical CNN architecture, while each layer only has 

information about the feature map received from the previous 

layer, in the DenseNet architecture, however, each layer is 

updated with the inputs of all back layers. Since each layer is 

coupled feed-forwardly to others, any layer can access the 

feature information of all preceding layers. Reutilization of the 

feature map in dense blocks by different layers boosts the input 

and performance of the next layer, allowing for the generation 

of easy-to-train models. Figure 4 shows the comparison of the 

classical CNN model with the DenseNet model. When 

analyzing layer three in Figure 4, the DenseNet model is 

comprehended to receive information from all back layers, 

whereas the CNN model only gets input from the preceding 

layer, which is layer two. Using such a strategy improves the 

flow of information and feature maps in the DenseNet, 

resulting in a minimum loss. Several variants have been 

designed that belongs to the DenseNet family including 

DenseNet121, DenseNet169, and DenseNet201 [57]. 

When the feature coupling is mathematized; if 𝑋0 is defined 

as the input image, then the 𝐻 can be defined as a composite 

function consisting of three consecutive steps. In other words, 

𝐻, the transfer function, consists of a combination of batch 

normalization (BN), rectified linear unit (ReLU), and 3 × 3 

convolution (Conv.). 

For the general CNN, while 𝑙’th output is generated by the 

𝑙 − 1 ‘th input, 

 

𝑋𝑙 = 𝐻𝑙(𝑋𝑙−1) (1) 

 

In the DenseNet architecture, each layer concatenates the 

feature maps of previous layers and uses them as input for 

itself. Thus, 𝑙' th output is used as 𝑋0, … , 𝑋𝑙−1 input via taking 

the feature maps of all preceding layers and defining them as 

their assembly. 

 

𝑋𝑙 = 𝐻𝑙([ 𝑋0, 𝑋1, 𝑋2, … , 𝑋𝑙−1]) (2) 

 

In the DenseNet, the size of the feature map expands as it 

passes through each dense layer and compiles existing features 

(the 𝑘  parameter) from previous layers. The growing rate 

indicated by the parameter ‘𝑘’ defines how dense architecture 

produces the most advanced outcomes. Thanks to the 

concatenate node built between the layers, the DenseNet 

performs well enough, despite having fewer parameters than 

the classical CNN architecture. The DenseNet121 model we 

proposed achieved better performance with approximately 7M 

parameters when compared to other models we tested in binary 

classification analysis. If every  𝑙 ’th layer of 𝐻  generates 𝑘 

unit of the feature map, then 𝑙’th layer can be defined as: 

 

𝑘𝑙 =  𝑘0 + 𝑘 x (𝑙 − 1) (3) 

 

Here, 𝑘0 refers to the number of channels in the input layer 

[57].  

This study proposed a deep transfer learning strategy of the 

pre-trained DenseNet121 model to conduct binary 

classification from the PDR images. The proposed model was 

trained specifically with our PDR image set. The architecture 

of the DenseNet121 model is depicted in Figure 5. 

The adjusted hyper-parameters of our model consisted of 

the learning rate, batch size, dropout rate, number of epochs, 

and optimizer. Table 2 lists the hyper-parameters used to train 

the proposed deep transfer model. In the performance analysis, 

the best accuracy rate with the minimum loss was attained 

using the values provided in Table 5. The Adam optimizer 

algorithm was used to optimize several DCNN models 

containing medical images [59]. 

In addition, when compared to other optimizers such as 

Stochastic Gradient Descent (SGD) [60] and RMSProp [61], 

the Adam optimizer had an appropriate function with minimal 

memory consumption and fast convergence. Our test dataset 
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had approximately 4,800 PDRs, and such an amount could be 

regarded within the range of an adequate number to evaluate 

the performance of a gender estimation. 

 

Table 5. Selected hyper-parameters to train the proposed 

deep transfer model 

 
Hyper-parameters Options 

Learning rate 0.0001 

Batch size 16 

Dropout rate 0.5 

Epochs 50 

Optimizer Adam 

 

 
 

Figure 5. Architecture of proposed DenseNet121 deep 

transfer learning model for gender classification 

 

In our study, a 5-fold cross-validation technique was used 

to avoid overfitting or bias and to evaluate model training [62]. 

The 19,200 images allocated for the training dataset are 

divided into five layers, and the dataset of each layer was 

sliced into 80 to 20 percent slices. The model was established 

using the train set in all steps and evaluated with the validation 

set. The statistical summary of the evaluation scores of the 

model was examined. The 5-fold cross-validation technique is 

presented in Figure 6. These steps were repeated for the 

specified models (VGG16, ResNet50, EfficientNetB6 and 

DenseNet121) and the averages found as a result of the trials 

were reflected in the tables. 

The analyzes made in the study were evaluated on the 

Google Colab cloud platform [63] with 13,342 RAM - Tesla 

K80 GPU - NVIDIA T4 GPUs Card. 

 

3.4 Evaluation metrics 

 

The confusion matrix is one of the most significant 

performance criteria in multi-classification problems. In this 

context, the accuracy, sensitivity, specificity, recall, and F1 

score criteria are calculated through the confusion matrix [64]. 

The confusion matrix expresses the accuracy of the classifier 

by comparing the actual and predicted label values. Table 6 

shows the general structure of a confusion matrix. 

True positive (TP) and true negative (TN) are where the 

model predicts the correct answer; false positive (FP) and false 

negative (FN) are where the model gets it wrong. 

TP: Female data was estimated accurately and assigned as 

a true-positive label. 

FP: Female data was estimated as Male and assigned as a 

false-positive label. 

FN: Male data was estimated as Female and assigned as a 

false-negative label. 

TN: Male data was estimated accurately and assigned as a 

true-negative label. 

The accuracy refers to the ratio of correct (true) data defined 

to all data used. It is calculated as follows [64].  

 

 
 

Figure 6. The overview of the performed 5-fold cross 

validation in this study 

 

Table 6. Confusion matrix 

 
 Predict Label 

Actual 

Label 

 Female Male 

Female 
True Positive 

(TP) 

False Negative 

(FN) 

Male 
False Positive 

(FP) 

True Negative 

(TN) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)
 (4) 

 

The precision refers to the ratio of positive data identified 

as true to all data identified as true. It is calculated as follows 

[64]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (5) 

 

The specificity refers to the ratio of negative data defined as 

true to the sum of negative data defined as true and positive 

data defined as false. It is calculated as follows [64]. 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 (6) 

 

The recall refers to the ratio of positive data identified as 

true to the sum of positive data identified as true and negative 

data identified as false. It is calculated as follows [65]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 (7) 
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The F1 Score metric is used when calculating the harmonic 

mean, which requires precision [64]. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 x 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 x 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (8) 

 

 

4. EXPERIMENTAL RESULTS 

 

In this section, the VGG16, ResNet50, and EfficientNetB6 

models, commonly used as transfer learning models, were 

compared with the DenseNet121 model, which was 

recommended for binary classification from PDR images. 

Table 7 illustrates the test accuracy values for the DenseNet 

models (121-169-201). With the highest accuracy value 

among the compared ones, the DenseNet121 model came to 

the forefront. Furthermore, the DenseNet121 was utilized as a 

reference model for the binary classification of PDR pictures 

due to its modest number of parameters. The accuracies of the 

proposed models were compared at various image resolutions 

for gender prediction, and the result was given in Table 8. The 

accuracy was significantly lower at the resolution of 96 × 96. 

Therefore, the 224 × 224 PDR resolution was preferred for 

comparative analysis in the study. 

 

Table 7. Comparison of DenseNet models for test accuracy 

values 

 
Model Total Parameters Accuracy 

DenseNet121 8,617,026 0.9725 

DenseNet169 14,880,322 0.9345 

DenseNet201 20,822,594 0.9467 

 

Table 8. Comparison of the proposed model's accuracy at 

different image resolutions  

 
Model Resolution of PDR Accuracy 

DenseNet121 96 × 96 0.8734 

DenseNet121 128 × 128 0.9233 

DenseNet121 224 × 224 0.9725 

 

Table 9 shows the performance accuracy values for the test 

dataset of the four models compared. The selected hyper-

parameters were employed in the training of four deep transfer 

learning. It was noteworthy that the accuracy value of the 

VGG16 was dramatically low. The DenseNet121 model, 

however, had the highest accuracy value among all the models. 

The DenseNet121 architecture was compared with a 

different number of network layers. The results in Table 10 

show that increasing or decreasing the number of network 

layers symmetrically has little effect on the accuracy of gender 

inference. 

 

Table 9. Comparison of deep transfer learning models 

 

DTL model Input shape 
Total 

parameters 
Accuracy 

VGG16 (224, 224, 3) 15,767,874 0.8220 

ResNet50 (224, 224, 3) 26,219,906 0.9260 

EfficientNetB6 (224, 224, 3) 43,855,505 0.9400 

DenseNet121 (224, 224, 3) 8,617,026 0.9725 

 

The test inference times of the compared models is depicted 

in Figure 7. 

In the confusion matrix, the influence of false-positive and 

false-negative rates was presented in Figure 8. The 

Densenet121 model was found to generate minimal false-

negative and false-positive results. For a visual representation 

of how successfully the DenseNet121 model identified 

samples for validation, the confusion matrix was employed. 

Table 11 shows the confusion matrix summary for the 

proposed model and previous deep learning-based PDR 

classification algorithms. The proposed model correctly 

classified 97.25% of the samples. 

 

 
 

Figure 7. The elapsed inference times for the proposed 

transfer learning models 

 

 
 

Figure 8. Confusion matrix analyses of the proposed model 

 

When estimating the PDR image classification, the 

Gradient-weighted Class Activation Mapping (Grad-CAM) 

method reported in the study of Selvaraju et al. [66] was 

employed to determine sections to focus on for the 

identification process. The matrix generated by the filters in 

the last CNN layer of the proposed DenseNet121 model was 

sumerimposed on the actual PDR image for this purpose 

(Figure 9). The CNN feature map concentrating on the focus 

area is shown in the initial columns in Figure 9. The colors in 

the feature map refer to the convolutional neural network’s 

targeted areas. The network’s focus gradually increases as the 

color shifts from yellow to red. However, the secondary 

columns represent a coupling condition (high similarity score). 

The superimposed map shows the focused portions of bright 

yellowish and reddish colors spread over a wide area covering 

the maxilla and mandible. Considering the Grad-CAM and 

superimposed images examined, the proposed model is 

acknowledged to focus on the mandible and the teeth area and 

is a suitable and reliable instrument for forensic medicine 

practices. 

A summary of the studies for gender estimation through 

PDR images is provided in Table 12. We could not compare 

previous studies and the study we proposed since there were 

neither the codes nor the datasets of the gender classification 

to access from the PDR images available in the literature. 

1590



Table 10. Backbone network configuration experiments 

 

 DenseNet121-A DenseNet121-B DenseNet121-C DenseNet121-D 

feature_map_1 (Dense Layer) 1024 1024 1024 1024 

dropout_1 (50%) - - - - 

feature_map_2 (Dense Layer) - 512 512 512 

dropout_2 (50%) - - - - 

feature_map_3 (Dense Layer) - - 256 256 

dropout_3 (50%) - - - - 

feature_map_4 (Dense Layer) - - - 128 

dropout_4 (50%) - - - - 

accuracy: 91.70% 97.25% 95.45% 93.00% 

 

Table 11. Testing analysis of the proposed and the other deep learning based PDR classification models 

 
Model VGG16 ResNet50 EfficientNetB6 DenseNet121 

Precision 0.8075 0.8958 0.9355 0.9680 

Recall 0.8262 0.9547 0.9447 0.9769 

F1 Score 0.8219 0.9148 0.9390 0.9725 

Specifity 0.8175 0.9074 0.9355 0.9680 

Accuracy 0.8220 0.9260 0.9400 0.9725 

 

Table 12. Summary of studies for gender estimation from PDR images 

 

Author Years 
Total 

dataset 
Dental imaging methods Accuracy 

Steyn and İşcan [67] 2008 192 Discriminant function 79.7 - 95.4% 

Jardin et al. [68] 2009 76 Artificial Neural Networks, Metric methods 68 - 88% 

Saini et al. [69] 2011 116 Mandible metric 80.20% 

Indira et al. [70]  2012 100 Mandible metric 76 % 

Kim et al. [12] 2013 104 Discriminant function 65.4 – 89.4% 

Nagaraj et al. [35] 2017 100 Metric measurements 71.00% 

Deana and Alves [34] 2017 128 Metric measurements 75.20 - 95.20% 

Badran et al. [10] 2015 419 Metric measurements 70.90% 

de Oliveira Gamba et al. [27] 2016 160 Metric measurements 93.33 - 94.74% 

Alias et al. [71] 2018 79 Metric measurements 78.50% 

Milošević et al [7] 2019 4,000 Convolutional Neural Network 96.87% ± 0.96% 

Ilić et al. [21] 2019 4,155 Deep Convolutional Network 94.30% 

Ke et al. [36] 2020 19,776 Multiple Feature Fusion 94.60% ± 0.58% 

Blanco et al. [72] 2020 2,289 Deep Neural Network 85.40% 

Mualla et al. [73] 2020 1,429 Deep Neural Network 95.80% 

Rajee and Mythilib [74] 2021 1,000 Deep Convolutional Neural Network 98.27% 

Nithya and Sornam [75] 2021 NAN Deep Convolutional Neural Network 95% 

Esmaeilyfard et al. [54] 2021 485 Support Vector Machine 92.31% 

Santosh et al. [76] 2022 1,142 Library Support Vector Machine 96% 

Vila-Blanco et al. [77] 2020 3,400 Deep Convolutional Neural Network 90% - 96% 

This study 2022 24,000 Deep Convolutional Neural Network 97.25% 

 

      
Grad-CAM female      (a)        Sumerimposed female 

     
Grad-CAM male     (b)        Sumerimposed male 

 

Figure 9. Feature map superimposed on male and female 

PCR test images 

 

Figure 10 shows the performance graph of the training/test 

losses and accuracies of the DenseNet121 architecture for the 

19,200 sampled training dataset. It was observed that the 

proposed model attained significant accuracy and loss values 

even in the 50th epoch. 

 

 
(a) Training and testing accuracy analysis 
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(b) Training and testing loss analysis 

 

Figure 10. Training and validation analysis over 50 epochs 

 

 

5. CONCLUSIONS 

 

Gender prediction is a critical and necessary process in 

forensic identification. Forensic experts and medical 

specialists employ traditional methods for gender estimation 

after years of training and education. In this study we proposed 

the DenseNet121 model using a deep transfer learning 

network and a fully automated technique to process panoramic 

dental x-ray images. The structural flexibility of the 

DenseNet121 architecture and the use of lesser parameters 

resulted in high-speed execution of training and verification 

processes. The weighted loss function was employed to 

eliminate the imbalance in gender classification, and the 

combination of early stopping and transfer learning was used 

to prevent over-learning. The best performance was achieved 

for the 4,800 test datasets with a classification accuracy of 

97.25%. The proposed model, along with Grad-CAM based 

analysis also revealed that the mandible circumference and 

teeth are the most significant areas to consider in gender 

classification. 
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