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Detecting Optic Disc (OD) and Exudates (EXs) in the fundus images has been challenging 

and demanding for the computer-aided diagnosis system. Existing algorithms for detecting 

OD and EXs are mainly based on traditional learning methods that heavily rely on enhanced 

OD and EXs features. Unlike traditional learning methods, a novel simultaneous detection 

of OD and EXs is presented. In this proposed novel Color Features, Local Homogeneity and 

Contextual Features (CFLHCF), the input original fundus image is preprocessed by color 

normalization, contrast enhancement, noise removal, and OD localization which the EXs is 

differentiated from its background information. Then, the preprocessed images are given as 

the input to Mathematical Morphology Binary Segmentation (MMBS) with Sobel Edge 

Detection (SED) technique, which detects the EXs from the given fundus images. An 

MMBS with a SED technique is implemented to boost a highly accurate segmented model 

for small EXs regions of EXs. The DiaretDB0, DiaretDB1, and STARE datasets are used to 

validate the proposed method. On the DiaretDB0 dataset, this technique archived an average 

sensitivity of 98.44% for EXs and a specificity of 98.72% for non‒EXs, which can 

potentially classify EXs even when the regions are trivial. With respect to sensitivity and 

specificity values, this method outperformed the previous state‒of‒the‒art methods by 

roughly 1.24% and 1.09% in the detection of EXs. Additionally, we show the EXs‒diagnosis 

in ~7 seconds per image.  
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1. INTRODUCTION

One of the observable diseases of the eyes is diabetic 

retinopathy (DR). Retinal monitoring is the foremost clinical 

intervention to prevent menacing eye disease progression that 

may cause permanent blindness [1]. By 2030, there will be 440 

million diabetic individuals worldwide, predicts the World 

Health Organization (WHO) [2]. EXs is early clinically signed 

of DR and are detectable through diagnosing the lesions in the 

eye. Methods for determining EXs are crucial for DR in the 

early stages [3]. In clinical practice, EXs is the earliest 

clinically detectable lesion. It is usually the basis for 

diagnosing DR. Therefore, diagnosing DR at the preclinical 

stage is essential, similar to detecting blood sugar levels in pre-

diabetics. Automatic detection of EXs and classification 

afterward are challenging issues since the images are complex. 

Often, it is found that fundus images were unevenly 

illuminated and poorly contrasted. Examples of existing 

problems regarding fundus EXs images are shown in Figure 1. 

EXs regions are close to each other in some cases. Moreover, 

the contrast between the EXs and non‒EXs is sometimes 

extremely low. There is prior research on detecting EXs from 

fundus images, most of which started from improving the 

quality of an image and extracting features used in EXs 

segmentation stages. However, the detection performance of 

EXs tends to decrease dramatically when incorrect 

segmentation occurs. Typical errors include a tiny number of 

EXs pixels missing and disconnecting segmented boundaries 

of EXs regions. In order to resolve the identified complicated 

issues, the state‒of‒the‒art EXs detection has been developed. 

This paper focused on developing an application for EXs 

detection in sensor retrieved fundus images. About 100 related 

articles published until 2021 in IEEE Xplore Digital Library, 

Science Direct, Springer Link, and PubMed database have 

been reviewed. Numerous investigations have proposed 

innovative methods. A novel approach to detecting EXs 

comprises fuzzy image processing techniques and Circular 

Hough Transform was presented by Rahim et al. [4], which 

yielded successful results in the classification stage of fundus 

imaging. However, the accuracy rate of this method was 

relatively low. Similarly, Paing et al. [5] looked at a method 

for segmenting EXs on low‒quality fundus images using an 

adaptive artificial neural network (ANN). This method utilized 

less computation time when classifying EXs pixels from non‒

EXs pixels. Next, Omar et al. [6] examined a combination of 

texture features and the ANN method in detecting EXs and 

lesions in obtained fundus images. In the first stage, the EXs‒

pixels were extracted from non‒EXs using different local 

binary pattern variants, and their shape was also measured. 

Before the EXs was extracted, the region affected by the non‒

EXs had been removed to obtain a better EXs segmentation 

result by ANN classifier. Then, Tennakoon et al. [7] developed 

a new algorithm for segmenting EXs by the convolution neural 

networks (CNN) method. Additionally, Gondal et al. [8] 

attempted the CNN method to classify and detect EXs. 

Inspired by the deep learning method, Kwasigroch et al. [9] 
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attempted a method for automatic segmentation and detecting 

EXs from fundus images. The technique involved segmenting 

EXs contours and applying deep CNN to classify the EXs. 

Additionally, Kaur and Mittal [10] segmentation of EXs from 

acquired fundus images using a dynamic decision thresholding 

method. In addition, Kwasigroch et al. [11] proposed EXs 

detection in DR, using a profound learning algorithms method. 

Moreover, Seth and Agarwal [12] introduced an algorithm to 

classify EXs using a CNN with a Linear Support Vector 

Machine (LSVM). The feature extraction was based on a CNN 

candidate segmentation with clear borders. This study 

conferred the classification method to detect EXs based on 

LSVM. Additionally, Lam et al. [13] implemented CNN for 

EXs detection on low‒quality images, following instructions 

for computing the location and discrimination of several types 

of discoveries in fundus images using a limited number of 

training samples. Another automatic EXs segmentation 

application was developed by Zhao et al. [14]. This technique 

involved the automatic segmentation of EXs in a supervised 

learning pipeline. Chowdhury et al. [15] analyzed 

segmentation methods to detect EXs in a DR diagnosis 

application. A morphological opening operation was proposed 

to address the elimination of OD and blood vessel trees in the 

color fundus image. Detecting abnormalities in the retina was 

segmented using a random forest classifier. Afterward, the 

selected sample EXs was classified using the K‒means 

clustering technique. Additionally, Khojasteh et al. [16] 

presented a CNN for detecting EXs on color fundus images. 

Intensity variation and inverse surface adaptive thresholding 

approaches were also used by Karkuxhali and Manimegalai 

[17] to identify EXs pixels on color fundus images. In 2020, 

Wang et al. [18] examined CNN, multi-feature joint 

representation, and the mathematical morphology method. 

The results yielded an SEN of 94.77% on the HEI‒MED; 

however, the SEN was less, scoring 89.90% on the e‒Optha 

datasets. Lastly, Auccahuasi et al. [19] developed a deep 

learning method to distinguish between EXs and non‒EXs 

regions.  

 

 
(a)                                                  (b) 

 

Figure 1. Example of fundus images; (a)‒(b) retina showing 

signs of EXs (yellow dots in black lines mask correspond to 

EXs pixels in the original fundus images 

 

Built on the previous success, in this work, we aim to 

propose a novel CFLHCF combined MMBS‒SED for 

simultaneous detection of OD and the presence of EXs 

features in fundus images. We formulate this problem as the 

feature analysis problem, in which one task is for OD 

localization and the other is for EXs detection. Due to the 

causal relationship between OD and EXs features, a 

mathematical morphology operator and threshold technique 

are applied to incorporate the properties of OD features 

extracted from fundus images for EXs detection. In the end, 

the proposed novel CFLHCF and MMBS‒SED techniques are 

two parts. First, color normalization, contrast enhancement, 

noise removal, and OD localization are used to separate the 

EXs from their background information in the input original 

fundus image. Second, for EXs detection and diagnosis, the 

preprocessed images are given as the input to Mathematical 

Morphology Binary Segmentation (MMBS) with Sobel Edge 

Detection (SED) technique, which detects the EXs from the 

given fundus images. An MMBS with a SED technique is 

implemented to boost a highly accurate segmented model for 

small EXs regions of EXs. With the help of two independent 

testing sets constructed from three freely available datasets, we 

evaluate the proposed method in the experiments for 

identifying bright lesions and detecting referable EXs, which 

are important for EXs screening. We also compare the 

performance of the proposed method with those of three expert 

ophthalmologists. 

 

 

2. PROPOSED METHODOLOGY 

 

In this section, the proposed CFLHCF and MMBS‒SED for 

EXs detection is developed, which following five stages: 1) 

image pre-processing, 2) elimination of the OD, 3) extraction 

of EXs via color component features, 4) selected samples of 

EXs, and 5) EXs classification, respectively. The fundus 

images are modified in the first stage to normalize illumination, 

contrast enhancement, noise removal, color space selection, 

and optic disc localization. In the second stage, CFLHCF is 

adopted to obtain EXs candidates. Next, MMBS‒SED is used 

to distinguish EXs from non‒EXs candidates. The following 

subsections discuss the details of each stage. 
 

2.1 Image preprocessing 
 

We apply a histogram specification technique [20] to the 

Red (R), Green (G), and Blue (B) chanel images to the original 

fundus images. The intensity of the original images is 

normalized and equalized with the reference histogram images 

selected by human experts. Segment reallocation and 

intersegment transformation are used to obtain the transformed 

histograms for both images with and without edges. These two 

histograms utilized to perform histogram specifications are 

combined to get the desired histogram. In this example, the 

input image’s gray level, i, is mapped to another gray level, d, 

by Eq. (1): 
 

in desiredC (i)=C (d)  (1) 

 

where, Cin(i) and Cdesired(d) are the cumulative distribution and 

histogram, respectively, derived from the original fundus 

image. In other words, we look for the gray level, d, by Eq. (2): 
 

-1
desired ind =C (C (i))  (2) 

 

We use Eq. (2) to transform each gray level in the original 

image into a normalized image. The output image is 

transformed back to RGB if the input image was originally 

RGB. However, at this stage, as observed from the image’s 

center out to its periphery, the brightness gradually reduces 

when the distance to the center image is increased (see Figure 

1(b)). To increase the contrast between the EXs lesions in the 

image, a local contrast enhancement approach [21] must be 

used. The local contrast method was applied as follows: Given 

a small N×N running window w and the intensity of a color 

component image for the pixel range p, then the color image 

is converted to the full range image fnew [0, L‒1] with the linear 
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stretching using Eq. (3): 

 

( )
( ) ( )

( ) ( )

 

 

 
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w w
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w w
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f = L-1

Max - Min
 

(3) 

 

where, ψ(Min) and ψ(Max) are the sigmoidal function of the 

minimum and maximum value of the enhanced features 

among RBG color component of the fundus image p, and 

L=256 for 24‒bit images. The sigmoid function, which is also 

known as the standard logistic function is generated by 

applying Eq. (4): 

 

( )
( )


 
 
 

-1

w
w

w
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p = 1+exp

s
 (4) 

 

In Eq. (4) derivatives are given as Eq. (5) and Eq. (6) and 

applied to all images to contrast windowing: 

 

( )
w 2 (i.j) w(k,l)

1
m = p i, j

N
 (5) 

 

( )( )


2

w w2 (i. j) w(k,l)

1
s = p i, j - m

N
 (6) 

 

where, mw and Sw are the input image’s local mean and 

standard deviation-correspondingly, which changes for every 

location. As usual, w(k, l) and N are the locations of the pixel 

within the window and the number of window sizes. 

Considering Eq. (4), the gain value determines the real contrast 

by controlling the speed at which the function changes from 

minimal to maximum. For the upper limit of acceptable 

standard deviation values and window size, we select Sw=0.2 

and N=59×59, respectively. While the local enhancement 

method increases the luminosity of images, it also increases 

the brightness of noise or artifacts, which can lead to 

incorrectly classifying these pixels as EXs lesions. Hence, the 

third pre-processing step used image denoising by a median 

filtering method [22]. The image was filtered with an 

arithmetic mean filter of size 3×3, the smallest filter required 

in this instance to remove the most visible signs of impulse 

noise. Finally, we adopted the J model selection criterion to 

measure various color model efficiency to select the suitable 

model color selection criterion [23]. The matrix function J 

calculated the within‒class (Sw) and between‒class (Sb) scatter 

matrices. The class reparability of the region of interest pixel 

class for various color models, Eq. (7), can be used to get this 

function. 

 

 
 
 

b

w

S
J = trace 

S
 (7) 

 

The parameter J is a set of overall clustering color pixels, while 

the denominator is assumed to be the number of regions where 

an image should be segmented. Here, Sw is the distribution of 

sample points around each mean vector, and Sb is the mixing 

weights of the sample pixels around the mean vector. The 

method for estimating both clusters can be defined as Eq. (8) 

and (9) respectively. 

 

( ) 
C C

2

b i i i i
i=1 i-1

1
S = N  M -M with M = N M

N
 (8) 

where, C is the estimated color pixels regarded as one class 

and Ni is the image that has N pixels at the ith color pixel class 

Ci. The whole samples in the image form dataset are 

N = N .i i  

 

( )
 

  
i i

C C
2

w i i n i i n
i=1 n C n Ci i

1 1
S = S  with M = X -M and M = X

N N
 

(9) 

 

where, C is the number of clusters, Xn is the sample color points 

n, and Mi is the mean vector of class Ci. Based on the suitable 

color model selection, six delicately selected models are used 

in this experimental testing: RGB, YIQ, LUV, LAB, HSL, and 

HSI. 

In the experiments, we used 89 fundus images to test the 

effect of color model selection on the function J selection 

criterion. The quantitative results for the different color 

models are shown in Table 1. A higher value of J indicates 

quantitative results in a more detailed segregation 

classification, while other members within each class are 

closer. Based on the experimental testing, the final choice of 

color model is the LUV color model. Therefore, this stage 

converts the RGB color space into LUV and evaluates the 

processed luminance space as a combination with empirically 

set weights. 

 

Table 1. A comparative analysis of color models 

 
Images YIQ HSL RGB HSI LAB LUV 

image001 1.87 2.11 2.21 2.20 3.01 3.09 

image002 2.06 2.09 2.29 2.31 2.93 3.14 

image003 1.99 2.31 2.18 2.33 2.88 3.30 

image004 2.12 2.17 2.17 2.29 2.91 3.11 

… … … … … … … 

image089 2.09 2.22 2.31 2.37 2.89 3.13 

Average 2.16 2.19 2.29 2.31 2.91 3.12 

 

2.2 Elimination of the optic disc (OD) 

 

Due to the candidate EXs’ similarity to a yellow region in 

fundus images in terms of shape, color, intensity, brightness, 

and sharpness, the elimination of OD is a critical step in the 

proposed methods to classify the EXs [24, 25]. The area in the 

fundus image with the brightest yellow lesion is the OD. At 

other times, the OD is not discernible in the yellowish 

component and has to be localized in the red component. 

Therefore, OD elimination is not an easy matter. Some of these 

difficulties in OD elimination are shown in Figure 2. 

In this work, the method attempted to locate OD accurately 

by a mathematical operator and threshold technique. In order 

to remove blood vessels from the OD region and approximate 

the OD, we first used the elimination method utilizing 

mathematical based on the closing operator (Figure 3(b)). 

Object contours are smoothed, thin connections are broken, 

and thin protrusions in the OD region are removed while 

morphologically closing is used on EXs. As shown in Figure 

3(b), the results of closing with a structuring element weight 

of 7.8 were used. Afterward, the resultant image was binarized 

by automatic thresholding according to the OTSU threshold 

[26], see Figure 3(c). The result of the thresholding was a 

binary image where the OD found region was marked with 1’s 

and the background of the fundus image with 0’s. To take 

advantage of this feature, all the OD pixels from Figure 3(c) 

were used to create the candidate OD region in Figure 3(d). 

The largest pixel did not correspond to the true OD pixels, 

1559



 

which is the step’s fundamental weakness. As a result, a 

mathematical dilation operator with a flat disk shape 

structuring element weight of 7.5 was applied to extend the 

OD region. The dilation achieved with this element is shown 

in Figure 3(e) (the OD region is larger to accommodate the 

dilation). Then, the OD was binarized using thresholding with 

a weight of 0.65 (Figure 3(f)). The associated OD components 

were included in the new binary image, as was previously 

mentioned. The “good” of these results was finally localized. 

The OD could then be classified as the fundus image’s largest 

circular connected component. It was discovered that the OD 

region was cropped as ∼3,200 pixels in the fundus image. 

With the help of the OD, elimination could process only the 

pixels of the OD and omit the background pixels by applying 

Eq. (10) [24, 25]. 

 


2

Area
C = 4

Perimeter
 (10) 

 

where, C is the ratio of the OD region’s area to its perimeter 

square’s compactness, Area denotes the size of the OD 

candidate area, and perimeter represents the number of pixels 

along its perimeter (see Figure 3(g)). Then, a binary mask of 

the boundary candidates is overlaid on the original image (see 

Figure 3(h)). 

 

 
 

Figure 2. Structure of OD and varying size, color, intensity, 

and location in fundus images 

 

 
(a)                         (b)                          (c)                          (d) 

 
(e)                          (f)                          (g)                          (h) 

 

Figure 3. Output images of the OD elimination. (a) pre-

processed image, (b) applying morphological closing 

operator, (c) thresholded image using OTSU threshold 

method, (d) OD is eliminated on the pre-processed image, (c) 

applying morphological dilation operator, (f) thresholded 

image using OTSU threshold method, (g) candidate OD 

regions using Eq. (10), (h) final OD elimination and 

superimposed on the original image 

 

2.3 Extraction of exudates via color features and local 

homogeneity 

 

When a fundus image is provided, function J from the 

preceding section converts the original image into LUV space. 

At this point, the fundus image was expected to contain P 

pixels, and C initialized cluster centers. The metric interval (M) 

is calculated asM = P /C.  In order to calculate the distances 

between pixels and cluster centers, color information values in 

the potential minor neighborhood should be in a 3×3 

representation of the EXs region. After then, each cluster 

center is updated using the identified pixel centroid. This 

procedure is repeated until there is no longer any change in the 

distance between successive cluster centers. In Color Features 

and Local Homogeneity (CFLH), the distance (D) between the 

cluster centers and the color R, G, B or L, U, V pixel positions 

is calculated [27]. The cluster center of pixel distance from 

pixel x to y is defined by Eq. (11) and (12). 

 

 (11) 

 

 (12) 

 

where, the weight factor, m, has to have a range of 0 to 255 

(RGB) and 0 to 1 (LUV), M is the region size, and x and y are 

the color values of the EXs pixel at the position of x and y in 

the fundus image. In CFLH, several regions were extracted as 

features, including blood vessels, red spots, microaneurysms, 

and related to non‒EXs. The EXs extraction is based on color 

information with in-depth features to discriminate between 

EXs and non‒EXs components. The feature of EXs lesions is 

that they both appear as yellow dots and are more visible than 

the surrounding tissue. The extraction was necessary for 

collecting and providing data on EXs lesions in fundus images 

because the authors and supervisors didn’t have any medical 

expertise in fundus images when the research began. Three 

professional ophthalmologists were able to highlight EXs 

locations on fundus images effectively. The EXs regions 

should be marked (see Figure 4); we can select the class of the 

EXs. 

 

 
 

Figure 4. Marking EXs regions with an expert 

ophthalmologist 

 

The whole EXs regions are represented by yellowish areas 

in the color component features. Hence, these regions and 

color shading were targeted for classifying the EXs regions. 

After being careful with the color model selection in the 

previous section, we compared RGB and LUV color 

information that were well‒suited for classifying the whole 

EXs‒region. The color information values in the possible 

minor neighborhood are the size of 3×3 used to represent the 

EXs region in each model, as shown in Table 2. 

 
 
 

2
2 2
RGB XY

m
Distance= D + D

M

 
 
 

2
2 2
LUV XY

m
Distance= D + D

M
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Table 2. The color information values to represent the EXs‒

region in the smallest possible neighborhood is of size 3×3 

 
Images RGB LUV 

im
ag

e0
0

1
 

{R:226, G: 193, B: 0}, 

{R:225, G: 192, B: 1}, 

{R:221, G: 186, B: 0}, 

{R:224, G: 191, B: 2}, 

{R:224, G: 189, B: 3}, 

{R:220, G: 184, B: 0}, 

{R:220, G: 184, B: 0}, 

{R:219, G: 183, B: 1}, 

{R:216, G: 179, B: 0} 

{L:0.90, U: 0.47, V: 0.99}, 

{L:0.91, U: 0.46, V: 0.98}, 

{L:0.90, U: 0.46, V: 0.99}, 

{L:0.90, U: 0.46, V: 0.98}, 

{L:0.91, U: 0.45, V: 0.98}, 

{L:0.90, U: 0.46, V: 0.98}, 

{L:0.90, U: 0.46, V: 0.99}, 

{L:0.91, U: 0.46, V: 0.99}, 

{L:0.91, U: 0.46, V: 0.99}, 

 

In order to distinguish EXs candidates from background 

feature candidates, a set of color information was used to prove 

that the yellowish color has relativity with the EXs‒region in 

terms of the intensity feature. In this way, the EXs pixels in 

RGB and LUV channels (see Table 2) that the EXs have 

different non-EXs contrast in other channels. 

 

2.4 Candidates of exudates using contextual features 

 

In the previous section, the above color component features 

analysis uses yellow to represent the region of the whole EXs 

while red, brown, and orange colors represent non‒EXs 

regions. An example of the proposed novel contextual feature 

is illustrated in Figure 5. Consider Figure 5, yellow pixels are 

the position of the current EXs candidate region in the RGB 

channel, and the corresponding neighbor EXs positions are 

marked as blue circles. 

 

 
 

Figure 5. Example of a manually cropped image containing 

EXs regions of interest, (a) original fundus images; (b) color 

information, and a close‒up view of the EXs‒region 

 

Essentially, the proposed contextual feature is an 

adjustment to the mean RGB value of each candidate. 

Therefore, in order to distinguish EXs (yellow features) from 

other color features, the RGB distance between neighboring 

pixels is taken into consideration. In RGB color information, 

the probability color values range from 0 to 255 (R:0‒255, 

G:0‒255, B:0‒255). Therefore, the minimum (Min) and 

maximum (Max) intensity of the pixels values within the RGB 

(red, green, and blue) color model are 0 (no color) and 255 

(full color). The LUV color model, in contrast, is used to 

describe the color’s brightness or intensity from 0 to 1. The 

function is chosen as the local mean and global mean value 

inside each color information, creating the non‒EXs and EXs 

regions that are used in the proposed novel contextual feature 

to calculate the average color value in RGB and LUV color 

images. Here, let Lmean represent the local mean intensities of 

the color channel, Confeature denotes a novel contextual feature 

defined as Eq. (13) and (14), respectively. 

 

mean

Total intensities value in 
L =

Number of  w

the window 

indow size
 (13) 

Feature

Total value of  the
Con =

Total

 loca

 of  w

l m

in

ean 

dow 
 (14) 

 

To understand that a local mean intensity creates even 

ranges between the Min and the Max values (the weighted 

average values), Table 2 shows the relationship between the 

intensities value in the window and the number of window 

sizes. Consider in red (R) color channel in an image, (226, 225, 

221, 224, 224, 220, 220, 219, 216), the sum of that point’s nine 

neighbors divided by 9. To obtain the weighted average of 

maximum values, the total value of 1,995 divided by 9 is 221. 

This weight of 221 is considered the weighted average of the 

EXs in the Red (R) color channel, with the smallest possible 

neighborhood being the size of 3×3. The neighborhood’s 

center is then transferred to the next nearby location. The 

process is repeated to produce the subsequent value of the 

output image in each window. In this case, the weight of 221 

depends on the square of size 3×3 at the red color channel. The 

neighborhood’s average pixel intensity is transformed into an 

intensity (also called local homogeneity). Similarly, the total 

value of the local mean intensity with the same metric can be 

defined as a novel contextual feature by Eq. (12). For example, 

if the total value of the weighted average is 221, 221, 212, 198, 

and 201 in the whole window of 5. A novel contextual feature 

by the total value of 1,053 divided by 5 is 210.  

This technique, sometimes called global means intensities. 

Therefore, this single value represents a novel contextual 

feature for classifying the EXs regions in the red space. If the 

confidences with a novel contextual feature of RGB color 

channels are 210, 189, and 201 while LUV color channels are 

0.90, 0.46, and 0.99, respectively. In terms of the classification 

of EXs as depicted in Figure 6. Examining effects, as Figure 

6(a) depicts, a novel contextual feature gets good classification 

results of RGB with “imag016.png” from the DiaretDB0, and 

Figure 6(b) the segmentation results in LUV space. 

 

2.5 Exudates classification using MMBS-SED 

 

Following the extraction of the candidate EXs region in the 

previous phase, the classification errors with various 

thresholds are calculated. Thresholds ranging from 0 to 1 are 

listed at this stage. The threshold with minimum classification 

error is adopted. As for the EXs, the color feature, local 

homogeneity, and contextual features can be regarded as the 

main landmark for distinguishing EXs from the other features 

in fundus images, which plays an important role in retinal 

image analyses. The proposed CFLHCF and MMBS‒SED 

methods mainly rely on two assumptions. First, locate the EXs 

appear as a yellow and bright region using optimal threshold 

and mathematical morphology; secondly, the EXs shape 

exhibited using Sobel edge detector. The EXs detection 

method consists of the following two parts: 

1) Optimal threshold and mathematical morphology to 

locate the EXs regions. 

2) Candidate EXs regions selection using Sobel edge 

detector. 

Step 1: Locate the EXs by computing the histogram 

probabilities of the fundus image by Eq. (15) [26]. 

 

( )
( ) ( ) 

( )

number r,c image r,c = i
P i =

R,C
 (15) 

 

where, R is the number of rows and C is the number of columns, 
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and P(i) is the histogram probabilities. R represents the index 

for a row and C is a column of the image. 

Step 2: Calculate within‒class variance of EXs and non‒

EXs pixels. The within‒class variance defines by Eq. (16(a)-

(b)). 

 

  2 2 2
Within B B E E= w (t)* (t)+w (t)*  (16a) 

 

and 

 


T-1

B
i=0

w (t)= p(i)  (16b) 

 

where,  2
Within

 is the weighted sum of the variances of each 

cluster, 2
B

(t)  is the variance of the pixels in the below threshold 

(Background), w (t)E
 is the variance of the pixels in the above 

threshold (EXs), w (t)B
 is the weight of background pixels, and 

w (t)E  is the weight of EXs pixels respectively. 

Step 3: Compute between‒class variance of EXs and non‒

EXs pixels by the optimal OTSU method. This method is far 

faster than the simple threshold. The between-class variance is 

defined as Eq. (17). 

 

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

  

   

 

2 2 2
Between Within

2 2

B B E E

2

B E B E

  = -

          = w t * t - +w t * t -

          = w t * w t * t - t

 

(17) 

 

where, 2  and μ are the overall mean and combined variance 

of the image, respectively. An example of the optimal 

threshold value of 0.68 is selected, and the result is shown in 

Figure 6(c). However, selecting a higher threshold value than 

0.68 does not give a better result since dark EXs regions are 

now considered to belong to the non‒EXs. 

Step 4: Mathematical morphology to locate the EXs regions. 

As seen in the example in Figure 6(c), the threshold method 

does not give adequate segmentation that provides good 

results. Thus, a mathematical morphology approach based on 

the dilation operator should be applied in this stage. 

Mathematical techniques are divided into larger regions based 

on predefined criteria. Additional criteria increase the power 

of the segmentation method, such as region, size, and likeness 

between the EXs pixel and non‒EXs. The mathematical 

morphology and the size of the structure element are 

determined as follows: 

In the first round, all-white pixels cannot be marked as EXs 

regions or their neighborhood pixels. Therefore, in the second 

round, the white pixel is dilated as the flat structuring 

element’s size increases. In the third round, the white pixels 

are dilated by the size of the flat structuring element is 7.4, so 

dilation is performed. In the fourth round, a mathematical 

erosion is used to remove small pixels in the dilated mask. In 

this round, the size of the flat structuring element in 

mathematical erosion is the same as that used in dilating. In 

the fifth round, to classify all regions of the EXs in the mask, 

the algorithm computes the area of the EXs in the sixth round. 

In the seventh round, if the compactness is higher than a 

present threshold, the pixel is considered EXs regions in the 

eighth round. Otherwise, the pixel is regarded as a part of the 

non‒EXs region in the ninth and tenth rounds. If all EXs pixels 

have been marked, the processing task is stopped. After the 

EXs regions have been found, binary masks are given as input 

to the next stage of boundary detection. 

Step 5: The boundaries of the EXs are detected at this stage 

using four different edge detectors, including Robert, Sobel, 

Prewitt, and Canny edge detectors. The Sobel operator [28] 

uses a 3×3 neighborhood based on a gradient operator, the 

convolution masked by two kernels, and the Robert edge 

detector [28] calculates the gradient operator around the 

central pixel using a 3×3 neighborhood. The Prewitt edge 

detector [28], and the second derivative zero-crossing point 

correspond to the Canny edge detector [29], with a negligible 

risk of weak edges. The experiment suggests a Sobel edge 

detector is best for detecting EXs boundaries (see Figure 6(d)). 

Compared to the other three edge detectors, it can also identify 

true EXs boundaries with the minimum number of errors. 

 

 
 

Figure 6. CFLHCF and MMBS‒SE detection results of 

imag016.png from DiaretDB0. (a) the detection results in 

RGB space, (b) the detection results in LUV, (c) a 

thresholding result with 0.68, (d) applying Sobel edge 

detector 
 

 

3. DATASET AND PERFORMANCE EVALUATION 

METRICS 

 

The effectiveness of the proposed approach is validated in 

this section through a comprehensive explanation of three 

publicly available datasets and performance evaluation criteria. 

Three criteria have been used to evaluate the performance of the 

proposed method: 1) sensitivity, 2) specificity and 3) accuracy 

to segment the EXs. Finally, the outcomes of the proposed 

approach are evaluated against current best practices. The 

details are outlined below. 
 

3.1 Datasets 

 

Different publicly available annotated datasets of fundus 

images in the field of fundus imaging have multiple objectives, 

characteristics, and levels of completion. The most important 

component is the ground truth data, which offers the benchmark 

against which the algorithms can be developed and evaluated. 

The retina datasets are most frequently used based on their 

ground truth and number of images, including the DiaretDB0 

[30], DiaretDB1 [31], STARE [32], MESSIDOR Digital 

Fundus Images [33] (MESSIDOR), Kaggle Dataset [34], and 

Retinopathy Online Challenge (ROC) [35]. The recordings are 

found in the DR databases as fundus images. However, we 

proposed to focus on EXs detection in fundus images. Therefore, 

we used three publicly available datasets in this study: 

DiaretDB0, DiaretDB1, and STARE datasets. The type of 

problem and proposed approaches developed by researchers and 

specialists determine the choice and importance of datasets 

chosen for data processing. Tomi Kauppi also created the 

publicly available DiaretDB0 dataset. We captured 130 color 

fundus images for this dataset. There were 20 standard fundus 

images, and 110 were considered DR images. We chose ground 

truth information of EXs in the 89 fundus images from the 

DiaretDB1, a publicly available dataset. There are 5 normal 
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images, whereas 84 were given aberrant images and annotated 

by four ophthalmologists. It has 1,728,000 high-resolution 

images taken at 50-degree angles field of view (FOV). The 

fundus images are 1500×1152 pixels in size. Four hundred 

fundus images make up the STARE dataset, which was created 

by the University of California, San Diego. A 35-degree FOV 

was used to take 400 fundus images for the STARE, of which 

322 were classified as non-EXs and 78 as EXs. The images have 

a size of 700×605 resolution images with 24‒bits per pixel. 
 

3.2 Assessment of detection performance 

 

Three different kinds of evaluation criteria (e.g., Sensitivity 

(SEN), Specificity (SPEC), and Accuracy (ACC)) are used to 

verify and evaluate the efficacy of the CFLHCF and MMBS‒

SED method. SEN is the percentage of EXs that the process 

correctly identified as EXs. SPEC represents the percentage of 

non‒EXs detected as non‒EXs by the process. These criteria are 

defined as Eq. (18)-(20). 

 


TP

Sensitivity = 100
TP+FN

 (18) 

 


TN

Specficity = 100
TN +FP

 (19) 

 

where, TN (True Negative) is the number of non-EXs 

successfully classified as non-EXs, FN (False Negative) is the 

number of non-EXs not classified, FP (False Positive) is the 

number of EXs not classified, and TP (True Positive) is the 

number of EXs correctly classified as EXs. Moreover, we used 

the percentage of ACC performance measures in this study. 

The accuracy value can be defined as Eq. (20). The ACC value 

is adopted to evaluate the method’s effectiveness in the study, 

consisting of the SEN on the vertical axis and SPEC on the 

horizontal axis. 

 


TN +TP

Accuracy = 100
TN +TP+FN +FP

 (20) 

 

 

4. RESULTS  

 

In this subsection, the experiments based on three freely 

accessible datasets are used to evaluate the proposed method. 

In these experiments, the method is assessed using pixel-based 

evaluation criteria. In pixel-based criteria, the connected 

component pixel validation is used to count the number of 

correctly identified pixels. Based on the above descriptions, 

the SEN, SPEC, and ACC values were calculated by pixel-

based evaluation on, DiaretDB0, DiaretDB1, and STARE 

datasets under varying regions and sizes. Below is a 

description of the details. 

 

4.1 The performance of the proposed method 

 

The technique was developed using MATLAB 2019b on a 

desktop with CPU Intel(R) Core(TM) i7‒6700K, 4.00 GHz, 

and 8 GB RAM. The performance of the proposed method has 

achieved overall datasets with RGB and LUV color models in 

Table 3. The DiaretDB0 offers an SEN rate of 98.12%, a SPEC 

rate of 98.08%, and an ACC rate of 98.10%, respectively. In 

order to test the suggested method on the input dataset, we 

chose 297 fundus images. The experimental results on the 

DiaretDB1 dataset demonstrate that EXs classification SEN, 

SPEC, and ACC were 98.41%, 98.29%, and 98.32%, 

respectively. Finally, we used the proposed methods to test the 

STARE for EXs detection. The detection of EXs was 

performed using the proposed method and yielded SEN, SPEC, 

and ACC of 98.79%, 99.81%, and 99.34%, respectively. The 

proposed methods are excellent for EXs classification with the 

LUV color model in STARE because they obtained the best 

sensitivity and specificity values. However, STARE’s fundus 

images are smaller than those in the DiaretDB0 and DiaretDB1 

databases. The excellent segmentation results in fundus 

images “img013.png” and “img016.png” from the DiaretDB0 

and “img016.png” from the DiaretDB1 with RGB and LUV 

color models, which includes large and small EXs regions as 

shown in Figure 7. An example segmentation results in fundus 

images “img0306.png” and “img0359.png” from the STARE 

with RGB and LUV color models, which include large and 

small EXs regions shown in Figure 8. 

 

 
 

Figure 7. Visual examples of the proposed method for EXs 

detection on DiaretDB0 and DiaretDB1 datasets, where the 

regions in black line represent EXs, (a)‒(a4) EXs 

segmentation results of fundus image “img013.png” from the 

DiaretDB0 dataset with RGB, (b)‒(a4) EXs segmentation 

results of fundus image “img013.png” from the DiaretDB0 

dataset with LUV, (c)‒(c4) EXs segmentation results of 

fundus image “img016.png” from the DiaretDB1 dataset with 

RGB, (d)-(d4) EXs segmentation results of fundus image 

“img013.png” from the DiaretDB1 dataset with LUV 

 

4.2 Comparison with the state-of-the-art method 

 

An efficient method to segment and detect EXs in fundus 

images is proposed. There are algorithms in the literature for 

segmenting EXs using different techniques. Pereira et al. [36] 

offered double thresholding and Ant Colony algorithms for 

classifying EXs in fundus images. The proposed method was 

relatively good in results on HEI‒MED: the SEN of 80.82% 

and SPEC of 99.16%, Naqvi et al. [37] have proposed scale-

invariant feature transform and K‒means clustering for 
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classifying EXs on DiaretDB1. They reported an SEN of 

92.70% and a SPEC of 81.02% for classifying EXs. 

Annunziata et al. [38] used a green color model for detecting 

EXs. They reported 71.28% SEN and 98.36% on SPEC for 

EXs. Imani and Pourreza [39] have proposed dynamic 

thresholding and mathematical morphology method for 

classifying EXs in fundus images on the DiaretDB1. They 

reported 89.01% on SEN and 99.93% on SPEC. Kaur and 

Mittal [40] have used iterative clustering in their algorithm to 

find EXs on the STARE. They reported 96.41% SEN and 

96.57% SPEC with 81 fundus images. Mo et al. [41] have 

combined the probability map and maximal probability region 

for identifying true hard EXs. They reported 92.55% on SEN 

and 71% on predictive capabilities, but the system was tested 

with only 169 fundus images. The comparative analysis of the 

detection of EXs with the state‒of‒the‒art methods was 

comprehensively summarized, as shown in Table 4. 

 

Table 3. Comparison of exudates detection performance on 

three different publicly available datasets 

 
Databases Performance 

measures (%) in RGB 

space 

Performance 

measures (%) in LUV 

space 

 SEN SPEC ACC SEN SPEC ACC 

DiaretDB0 

(130 

image) 

89.01 88.90 88.04 98.12 98.08 98.10 

DiaretDB1 

(89 

images) 

90.89 89.94 89.16 98.41 98.29 98.32 

STARE 

(78 

images) 

91.80 91.23 91.40 98.79 99.81 99.34 

 

 
 

Figure 8. Visual examples of the proposed method for EXs 

detection on STARE datasets, where the regions in black line 

represent EXs, (a)‒(a4) EXs segmentation results of fundus 

image “img0306.png” from the DiaretDB0 dataset with 

RGB, (b)‒(a4) EXs segmentation results of fundus image 

“img0306.png” from the STARE dataset with LUV, (c)‒(c4) 

EXs segmentation results of fundus image “img0359.png” 

from the DiaretDB0 dataset with RGB, (d)‒(d4) EXs 

segmentation results of fundus image “img0359.png” from 

the STARE dataset with LUV 

Table 4. Comparison of the obtained EXs detection performance of state‒of‒the‒art methods with the proposed method 

 

Author Year Method Journal 
Performance Measures (%) 

Sensitivity Specificity Accuracy 

Rahim et al. [4] 2016 Fuzzy image processing Brain Informatics - - 93.00 
Paing et al. [5] 2016 ANN IEEE 95.00 95.00 96.00 

Omar et al. [6] 2016 Region-based multiscale LBP texture 
Inter. Conf. on Control, Decision, and 

Information Technologies 
98.68 94.81 96.73 

Tennakoon et al. [7] 2016 CNN 
In Proc. Ophthalmic Medical Image 

Analysis 
98.27 99.12 97.46 

Gondal et al. [8] 2017 CNN 
IEEE Inter. Conf. on Image 

Processing 
93.60 97.60 - 

Kwasigrochet al. [9] 2018 Deep CNN 
IEEE International Interdisciplinary 

Ph.D. Workshop 
89.50 50.50 81.70 

Kaur and Mittal [10] 2018 Dynamic decision thresholding 
Biocybernetics and Biomedical 

Engineering 
88.85 96.15 93.46 

Lam et al. [13] 2018 CNN 
Investigative Ophthalmology Visual 

Science 
- - 98.00 

Zhao et al. [14] 2018 R-sGAN technique 
IEEE Transactions on Medical 

Imaging 
79.01 97.95 - 

Chowdhuryet al. [15] 2019 
Random forest classifier-based 

approach 

Medical & Biological Engineering & 

Computing 
86.41 77.39 80.61 

Khojastehet al. [16] 2019 Deeply learnable features Computers in Biology and Medicine 97.60 - 99.00 

Karkuxhali and 

Manimegalai [17] 
2019 

Intensity variation and inverse surface 

adaptive thresholding 

Biocybernetics and Biomedical 

Engineering 
97.43 98.87 - 

Wang et al. [18] 2020 
Deep model learned information and 

multi-feature joint representation 

Computer Methods and Programs in 

Biomedicine 
94.77 - - 

Naqvi et al. [37] 2015 Scale-invariant feature Computers in Biology and Medicine 97.18 83.10 95.02 

Annunziata et al. [38] 2016 Green channel homogenization 
IEEE Journal of Biomedical and 

Health Informatics 
71.28 98.36 95.62 

Imani and Pourreza 
[39] 

2016 
Dynamic thresholding and 
morphological processing 

Computer Methods and Programs in 
Biomedicine 

89.01 99.93 - 

Kaur amd Mittal [40] 2018 
Image intensity and vascular 

information 

Biocybernetics and Biomedical 

Engineering 
- 96.41 96.57 

Mo et al. [41] 2018 
Cascaded deep 

residual networks 
Neurocomputing 92.55 - - 

Proposed method 2022 CFLHCF and MMBS-SED IIETA 98.79 99.81 99.34 
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5. CONCLUSIONS 

 

In this paper, the method proposed by the color features, the 

local homogeneity, and a novel contextual feature was 

successfully used in fundus images to detect the EXs. Total 

fundus images and their ground truth information were 

provided by DiaretDB0, DiaretDB1, and STARE datasets. The 

quality of fundus images varies due to three imaging 

techniques for classifying EXs regions of the poor‒quality 

image proposed. Afterward, the yellowish feature extraction 

process consisting of candidate regions was classified into 

EXs and non‒EXs. In addition to thresholding, two techniques 

were applied in the EXs segmentation: an optimal thresholding 

method for candidate EXs and a mathematical morphology-

based method for small EXs region detection. From Figure 7 

and Figure 8, it is clear that the proposed method overcomes 

the problem of EXs detection from poor fundus images. 

Moreover, in the works of prior research, the proposed method 

was used in poor‒quality fundus images, and in most of them, 

it worked well. The outcomes demonstrated that this technique 

could be used to help a specialist segment fundus image into 

EXs and non-EXs, supporting the specialist in early screening. 
 

 

6. FUTURE DIRECTIONS 

 

Image processing methods have been proposed to diagnose 

DR in fundus images. In the future, we will combine different 

lesion segmentation methods based on machine learning 

optimizations and double thresholding [42] to classify DR into 

cotton wool spots, microaneurysms, hemorrhages, and EXs. If 

the final detection result of this combination is sufficiently 

good, it is possible to automate the early screening of EXs in 

fundus images. The automated screening application would 

reduce experts’ workload since only fundus images, identified 

as normal or abnormal by the automatic application, need to 

be further examined by experts. 
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