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The graph convolution algorithm currently suffers from the drawback of not fusing point 

cloud information and point cloud topology structure information based on visual selectivity 

features and using absolute quantities like distance as features, resulting in the algorithm 

losing geometric invariance. This information serves as the foundation for the "Graph 

Convolution Algorithm Based on Visual Selectivity and Application of Point Cloud 

Analysis". In order to propose a graph convolutional kernel and its design method based on 

visual selectivity, the algorithm analyzes the global characteristics of the point cloud "close 

in the vicinity and sparse in the distance," the local selectivity of the point cloud topology 

structure in the neighborhood, and the consistency between features and visual selectivity 

of primates. By combining point cloud information with point cloud topology structure 

information features, a graph convolution computation method was built, and the algorithm's 

geometric invariance was confirmed. The recognition and semantic segmentation 

performances of the approach in this study were verified using the ModelNet40 and 

ShapeNetPart data sets in comparison to the PointNet, PointNet++, DGCNN, KPConv, and 

3D-GCN algorithms. The experimental design demonstrates that the algorithm presented in 

this research is accurate and practical, has geometric invariance, and performs better at 

semantic segmentation and recognition than conventional algorithms. 
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1. INTRODUCTION

3D point cloud data is now easier to collect thanks to 

advances in RGBD and LIDAR sensor technology. This has 

led to the current research hotspot of 3D point cloud data 

processing technology, which is widely used in augmented 

reality, unmanned aerial vehicles, and automatic driving, 

among other things [1-3], and has produced positive research 

and application results. 

Recent literature reviews demonstrate that point cloud data 

exhibits the characteristics of disorder, lack of organization, 

closeness in the immediate area, and sparsity in the distance. 

Due to the grid structure of 2D spatial data, which determines 

the topological relationship of 2D spatial data, traditional 

convolution technology can handle 2D spatial data effectively. 

Point cloud data, on the other hand, has unstructured properties, 

meaning that it is unclear how geographical data is related 

topologically. Therefore, point cloud data cannot be processed 

using conventional convolution algorithms. Unstructured data 

cannot be used for convolution calculations. Researchers use 

both indirect and direct data processing techniques to realize 

point cloud data processing and analysis, with the graph 

convolution algorithm standing out as a key research 

technique. 

The indirect method is to transform the unstructured point 

cloud data into spatial data with a grid structure by creating a 

spatial grid method, and on this basis realize the traditional 

convolution and its improved various operations. This 

approach is motivated by the inherent domain relationship 

determined by the two-dimensional spatial data grid. Voxel 

filtering methods [4-6] and multi-view approaches [7-9] are 

some of its key techniques. 

The voxel filtering method registers the unstructured point 

cloud data as a volume with a three-dimensional spatial grid 

structure using the spatial transformation and spatial sampling 

technology of creating a three-dimensional spatial grid, which 

is motivated by the inherent domain relationship determined 

by the two-dimensional spatial data grid. The traditional 

convolution calculation is carried out on the voxel filter data 

set, and the voxel filter data is directly sampled from the voxel 

filter data or the sensor. In many fields, this methodology has 

produced positive research and application results. The voxel 

filtering approach, however, also has issues with inadequate 

resolution brought on by registration and sampling, as well as 

excessive storage capacity brought on by excessive data 

storage redundancy. The OCTREE approach [5, 6] has been 

presented as a solution to this issue, although the impact is not 

particularly noticeable. The primary issue is that there is an 

excessive amount of human involvement in the sampling and 

registration processes, which obliterates the point cloud's 

underlying spatial organization. 

The multi-view method realizes the conversion and 

dimensionality reduction of the two-dimensional sequence of 

point cloud data before applying the conventional convolution 

operation to the 2D view sequence successively to realize 

point cloud data processing. The multi-view method uses the 

3D research object as the center and the fixed viewing distance 

r as the radius, collecting the two-dimensional data views of 

the research object from various perspectives to produce the 

research view sequence. However, there are furthermore the 
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following three issues: (1) In the process of 2D serialization 

and dimensionality reduction, the multi-view technique loses 

the spatial topology information of the point cloud data; (2) It 

is challenging to reconstruct 3D data. (3) It is impossible to 

realize scene segmentation. These are essential for processing, 

analyzing, and using point cloud data. 

In order to make traditional convolution processes easier, 

the primary idea behind voxel filtering and multi-view 

approaches is to convert unstructured data into structured data 

using gridding or multi-view spatial dimensionality reduction 

[9, 10]. In contrast, the multi-view method gathers point cloud 

data through multi-angle views, converting point cloud data 

into a dimensionality reduction representation of a two-

dimensional grid data sequence. The difference is that the 

voxel filtering method uses sampling to register the point 

cloud data into a three-dimensional grid, realizing the 

structured expression of point cloud data through the 

neighborhood grid technology of Euclidean space. Therefore, 

datasets produced by voxel filtering and multi-view 

processing can be processed routinely using classic 

convolution procedures. 

Gridding data, however, weakens both the topological 

selectivity and the spatial topological link of the point cloud 

data from many perspectives. The term "topological 

selectivity" refers to the qualitatively measurable direction 

selectivity of the point cloud data distribution as well as the 

probability certainty of the strength of the distribution. This 

topological selectivity, which can be completely stated under 

the condition of adequate sampling, can be referred to as the 

topological selectivity of point cloud data. This property is 

invariant in geometry. Therefore, the direct data processing 

approach will successfully address the aforementioned 

shortcomings. 

The direct data processing technique involves immediately 

applying the graph convolution analysis approach to the 3D 

point cloud data without first subjecting it to voxel filtering or 

multi-view conversion. The two most crucial deep learning 

techniques are PointNet [11], PointNet++ [12], and their 

enhanced algorithms that followed [13-20]. 

For the disorganized, unstructured, densely packed but 

sparsely distributed properties of point cloud data. The T-net 

method, point-by-point multi-layer perceptron, and channel-

by-channel maximum pooling method are used by PointNet 

[11] to learn the general properties of 3D point cloud data and 

to address the issue of disorder in this data. The algorithm 

itself has the flaw of being unable to determine what the local 

attributes of the point cloud are. In order to achieve data 

sampling at various scales and resolutions and apply it to the 

sampled point cloud PointNet algorithm, which extracts the 

local feature extraction of the sampled point cloud, the 

PointNet++ [12] algorithm uses two processing methods, 

Multi scale grouping (MSG) and Multi resolution grouping 

(MRG). The issue of the PointNet algorithm ignoring local 

features has been partially resolved. To increase the 

application potential of this kind of algorithm, the follow-up 

algorithms are continuously improved in the acquisition of 

global features, local features, and invariant features. 

The aforementioned approach, meanwhile, overlooks the 

3D point cloud data's spatial topology structure, which has a 

considerable graph structure and can be represented by a graph. 

As a result, a new study area for 3D point clouds has emerged: 

graph convolution analysis method based on graph structure. 

Good research and application development has been made in 

this area. This approach, which is based on the PointNet++ 

algorithm, can extract the local spatial properties of a 

collection of point clouds from their spatial subset. The 

DGCNN technique [21] constructs a local graph structure by 

first determining the closest neighbors of 3D points in the 

feature space, then performing an edge convolution operation 

to extract features. The aforementioned concepts were 

expanded upon by Shen et al. [21], who also discovered 

additional spatial topological data while aggregating features. 

The neighborhood node features used by RS-CNN [22] are 

weighted sums, where each weight is learned using an MLP 

based on the geometric relationship between two points. These 

studies try to understand the local topological characteristics 

of 3D point clouds [23]. 

Although the aforementioned techniques have made 

significant advancements in application and good research 

development in graph representation and graph convolution, 

the following issues still exist: (1) The use of the point cloud's 

spatial topology as two distinct aspects It results in imperfect 

feature learning in various algorithms as opposed to applying 

both to the same algorithm. (2) The algorithm lacks 

neurophysiological evidence to demonstrate its theoretical 

viability. (3) The close in proximity and sparse in distance 

features of the point cloud data are not combined, and a 

topological selectivity calculation rule is created by combining 

it with primate visual selectivity. (4) The algorithm uses the 

actual coordinates of the point or the distance vector as the 

input feature, which results in the model b not having rotation, 

stretching and deformation. 

Graph Convolution Algorithm Based on Visual Selectivity 

and Application of Point Cloud Analysis was subsequently 

proposed in light of this. This algorithm's primary innovations 

are as follows: (1) Inspired by the theory of visual selectivity, 

a graph convolutional kernel and its construction method 

based on visual selectivity are proposed; this method combines 

visual selectivity, close in the proximity and sparse in the 

distance features of point clouds, and point cloud topology 

structure selectivity; it also effectively extracts point cloud 

spatial topology selectivity features, solves the geophysical 

problem, and uses probability calculation method and weight 

normalization method. (2) To learn the spatial features of the 

point cloud elements, a spatial convolution method based on 

the graph convolutional kernel is created and combined with 

the theory of visual selectivity. (3) Create a depth map 

convolutional neural network using the convolution 

computation, then use it to handle 3D point clouds. (4) Create 

the point set's minimal generation subset and minimal support 

structure, then create a graph that expresses all of the point 

cloud's selected properties. 

 

 

2. ALGORITHM DESIGN 

 

The design of the graph convolution kernel and the design 

of the convolution calculation method are the two fundamental 

components of the graph convolution algorithm based on 

visual selectivity. 

The near in proximity and sparse in distance elements of the 

point cloud, as well as the structural selectivity of the point 

cloud topology, are all congruent with the visual selectivity of 

primates. The distribution of the receptive field in the visual 

space of primates follows the visual selectivity trait of "close 

in the vicinity and sparse in the distance." 

As a result, 3D point cloud data has similar characteristics 

and robust visual basis functions in the visual space. In 
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contrast to the visual basis functions with different functions, 

which exist in regions far apart and form a relatively slow-

changing structure, the visual basis functions with different 

functions exist in a fixed spatial region and have a consistent 

spatial topology structure. The point cloud data is a collection 

of point sets with stable spatial information and a spatial 

topology structure, which in turn has a significant data 

redundancy row. 

As a result, the point cloud based on visual selectivity need 

to have the qualities listed below: 

(1) The global point cloud space is made up of a number of 

point cloud subspaces, and its spatial topology is stable and 

consistent. 

(2) Each point cloud subspace in the global space has a 

separate basis function (receptive field) and a topology that is 

either constant or slowly evolving. These properties can be 

calculated using probabilistic methods. 

(3) Each independent subspace has modest topological 

structure change, spatial independence, and functional 

resemblance to visual basis functions; Each point subset in the 

independent space has comparable visual functions, 

comparable visual basis functions, and gradually changing 

visual space topology. 

(4) Each point cloud space's qualities have statistical 

properties. Through statistical analysis, the lack of data 

collection-related spatial completeness is resolved, and the 

collection set can be increased through visually consistent 

selection. 

(5) Each point cloud subset has a minimum generation 

structure, which can represent any point or structure within the 

subset. This structure is made up of the minimum generation 

point set and its spatial support structure. 

 

2.1 Convolution kernel design 

 

Based on the above theoretical analysis, the convolutional 

kernel𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟(receptive field of point p) of point p in the 3D 

point cloud space can be defined as:  

 

𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 = {𝑀𝑝

𝑟 , 𝑒𝑑𝑔𝑒𝑝
𝑟} (1) 

 

where, 𝑀𝑝
𝑟 is the point p and the points of its point cloud space 

with the radius of r; 𝑒𝑑𝑔𝑒𝑝
𝑟  is the set of edges between the 

points in set 𝑀𝑝
𝑟 and point p, i.e., the effective visual topology 

of point p. The set has the following features: 

(1) Set 𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟  is a finite set, i.e., sets 𝑀𝑝

𝑟 , 𝑎𝑛𝑑 𝑒𝑑𝑔𝑒𝑝
𝑟 are 

both finite and have redundancy.  

(2) Since 𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟  is a finite redundant set, there exists at 

least one minimum support set ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 =

{�̅�𝑝
𝑟 , 𝑒𝑑𝑔𝑒̅̅ ̅̅ ̅̅ ̅

𝑝
𝑟} ⊂ 𝑓𝑖𝑙𝑡𝑒𝑟𝑝

𝑟 ,where �̅�𝑝
𝑟 ⊂ 𝑀𝑝

𝑟 , 𝑒𝑑𝑔𝑒̅̅ ̅̅ ̅̅ ̅
𝑝
𝑟 ⊂

𝑒𝑑𝑔𝑒𝑝
𝑟 , ∀𝑒 ∈ 𝑒𝑑𝑔𝑒̅̅ ̅̅ ̅̅ ̅

𝑝
𝑟 𝑎𝑛𝑑 𝑒 ≠ 0 . Thus, in the point cloud, 

ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟  expresses the topological information and the 

topological selectivity of the point cloud area with p as the 

circle center and r as the radius. 

(3) ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟  is not unique. 

(4) Inspired by visual selectivity, ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟  is an 

acquirable and illustrative quantity after training. 

(5) Any point or edge in 𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟  can be expressed by the 

point or edge of ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 . 

(6) Depending on the values of hyperparameter r, the 

support features of point p on different scales can be obtained, 

and the selective features of the global and local point cloud 

structures of that point can be obtained: 𝐺𝑙𝑜𝑏𝑎𝑙_𝑓𝑎𝑒𝑡𝑢𝑟𝑒 ⊂
ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝

𝑟  and 𝑙𝑜𝑐𝑎𝑙 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ⊂ ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 . 

(7) Maximum pooling convolution: When ∀𝑟 ∈ 𝑅 , 

{ℎ𝑜𝑙𝑑𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟} is the set of kernels at different scales r, ∀𝑝 ∈

�̅�𝑝
𝑟. Then, the maximum pooling convolution z of point p can 

be expressed as: 

 

𝑀𝑎𝑥_𝑃𝑜𝑜𝑙_𝑙𝑎𝑦𝑒𝑟(𝑞, ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟) =

max
𝑟

(𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑓𝑓(𝑝, ℎ𝑜𝑙𝑑𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟))  (2) 

 

In the algorithm, the layer formed according to this formula 

is called the maximum pooling layer, which realizes feature 

aggregation at different scales. 

Based on the above analysis, inspired by the theory of 

primate visual selectivity, combined with the distribution of 

points in the point cloud in space, the convolution kernel of the 

point cloud (point cloud space receptive field with p as the 

center and radius r) can be defined for: 

 

ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 = {�̅�𝑝

𝑟 , 𝑒𝑑𝑔𝑒̅̅ ̅̅ ̅̅ ̅
𝑝
𝑟} = {𝑝𝑚, 𝑝𝑛|𝑝𝑚 ∈

Ν(𝑝𝑛 , 𝑟)} = (𝑟, 𝜃, 𝑑𝜃 , 𝑛𝜃 , 𝑤𝜃 , (𝑥, 𝑦, 𝑧))  
(3) 

 

Here, the parameter is the super parameter of the basis 

function, which determines the observation space range of the 

receptive field, determines the size of the receptive field and 

the scale of the observation direction, and is a decisive factor; 

the parameter θ represents the observation direction in the r 

neighborhood, indicating that the basis function points in the 

direction are relatively dense; the parameter 𝑑𝜃 indicates that 

in the direction θ, the point cloud space topology selectivity 

strength is related to the number of point clouds in the 

direction and the distance between the point 𝑝𝑛  and the 

geometric center of the point in the area; the parameter 

𝑛𝜃 indicates that in the direction In the upper r range, the 

number of receptive field basis functions is a concentrated 

expression of visual selectivity; the parameter 𝑤𝜃  indicates the 

update degree of the direction range after each training within 

the r range in the direction. Parameters: represented as the 

spatial position information of point 𝑝𝑚 position. 

In the neighborhood of r, the convolution kernel design 

method of point P is show in Figure 1. 

 

 
Figure 1. The design process diagram of the convolution kernel 
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Step 1. KNN clustering is adopted to divide ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟  

into K subsets: 

 

ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 = ⋃ ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝

𝑟(𝑞)𝐾
𝑞=1   (4) 

 

Step 2. Compute the geometric center 𝑐𝑒𝑛𝑡𝑒𝑟(𝑞) of each 

subset ℎ𝑜𝑙𝑑𝑓𝑖𝑙𝑡𝑒𝑟 𝑝

𝑟 (𝑞):  

 

𝑐𝑒𝑛𝑡𝑒𝑟(𝑞) = (𝑥𝑞 , 𝑦𝑞 , 𝑧𝑞) =

(
1

𝑇
∑ 𝑥𝑞

𝑗𝑇
𝑗=1 ,

1

𝑇
∑ 𝑦𝑞

𝑗𝑇
𝑗=1 ,

1

𝑇
∑ 𝑧𝑞

𝑗𝑇
𝑗=1 )  

(5) 

 

Step 3. Parameter learning: 

 

𝜃 = (
𝜕𝑓

𝜕𝑥
,

𝜕𝑓

𝜕𝑦
,

𝜕𝑓

𝜕𝑧
) = (

𝑝𝑚−𝑝𝑛

∥𝑝𝑚−𝑝𝑛∥
)  

𝑛𝜃 = 𝑠𝑖𝑧𝑒𝑜𝑓(ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟(𝑞))  

𝑤𝜃
𝑖 =

𝑛𝜃
𝑖

𝑛𝜃
𝑖−1  

𝑑𝜃
𝑗

=
𝑑(𝑝,𝑞)

𝑗
×𝑛𝜃

𝑗

∑ 𝑑(𝑝,𝑞)
𝑗𝑀

𝑗=1 ×𝑛
𝜃
𝑗 × 𝑤𝜃

𝑖   

(6) 

 

Step 4. Forming convolutional kernels: 

 

ℎ𝑜𝑙𝑑𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 = (𝑟, 𝜃𝑗 , 𝑑𝜃

𝑗
, 𝑛𝜃

𝑗
, 𝑤𝜃

𝑗
, 𝑥, 𝑦, 𝑧)

𝑟
, 𝑗 =

1,2,3, … , 𝐾  
(7) 

 

where, 𝜃𝑗 , 𝑑𝜃
𝑗

, 𝑛𝜃
𝑗

, 𝑤𝜃
𝑗
, 𝑥, 𝑦, 𝑎𝑛𝑑 𝑧 are learned through training 

 

2.2 Graph convolution algorithm design 

 

The graph convolution calculation is to calculate the direct 

similarity between the filter kernel and the analyzed point, 

therefore, the graph convolution calculation of point Q can be 

expressed as: 

 

𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑓𝑓 = 𝑠𝑖𝑚𝑖𝑙𝑖𝑡𝑢𝑑𝑒(ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 , 𝑄) +

𝑐𝑜𝑟𝑟𝑒𝑐𝑡(ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 , 𝑄)  

(8) 

 

According to the requirements of similarity calculation in 

this paper, combined with the definition of vector inner 

product, the inner product of self-defined matrices A and B is 

defined as: if matrix A is expressed as 𝛼𝑖 , 𝑖 = 1,2,3, . . , 𝐾1 by 

row vector, and matrix B as row vector 𝑏𝑗 , 𝑗 = 1,2,3, . . , 𝐾2 , 

then the inner product is: 

 

𝐴⨀𝐵 =
1

𝑁
∑ 𝑎𝑖⨀𝑏𝑗𝜃𝑖=𝜃𝑗 𝑎𝑛𝑑 𝜃𝑖≠Φ,𝑎𝑛𝑑 𝜃𝑗≠Φ   (9) 

 

where, N represents the number of rows whose corresponding 

rows of matrices A and B are not zero vectors, and Φ represents 

an empty set. Therefore, similar calculations in graph 

convolution are expressed as: 

 

𝑠𝑖𝑚𝑖𝑙𝑖𝑡𝑢𝑑𝑒(ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 , 𝑄) = ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝

𝑟⨀𝑄  (10) 

 

The modified part of the similarity calculation is expressed 

as: 

 

𝑐𝑜𝑟𝑟𝑒𝑐𝑡(ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟 , 𝑄) =

1

max (𝑠𝑖𝑧𝑒(ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟),𝑠𝑖𝑧𝑒(𝑄))

×

𝑗𝑎𝑐𝑎𝑟𝑑(ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟(𝜃), 𝑄(𝜃)) =

1

max (𝑠𝑖𝑧𝑒(ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟),𝑠𝑖𝑧𝑒(𝑄))

×
ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟(𝜃)∩𝑄(𝜃)

ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟(𝜃)∪𝑄(𝜃)
  

(11) 

 

𝑤ℎ𝑒𝑟𝑒, 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 (ℎ𝑜𝑙𝑑𝑓𝑖𝑙𝑡𝑒𝑟 𝑝

𝑟 , 𝑄)  is the matrix ℎ𝑜𝑙𝑑𝑓𝑖𝑙𝑡𝑒𝑟 𝑝

𝑟 . 

The modification of 𝑄  graph convolution increases the 

similarity of graph convolution. To sum up, the graph 

convolutional coefficient is:  

 

𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑓𝑓 = ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟⨀𝑄 +

1

max (𝑠𝑖𝑧𝑒(ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟),𝑠𝑖𝑧𝑒(𝑄))

×
ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟(𝜃)∩𝑄(𝜃)

ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟(𝜃)∪𝑄(𝜃)
  

(12) 

 

Thus, 3D_RFGCN,3D receptive field graph convolution 

algorithm can be expressed as: 

 

Input: Matrix 𝒉𝒐𝒍𝒅_𝒇𝒊𝒍𝒕𝒆𝒓𝒑
𝒓 , 𝒂𝒏𝒅 𝑸 

Proc: 

S1: Solve graph convolutional similarity by 

𝒔𝒊𝒎𝒊𝒍𝒊𝒕𝒖𝒅𝒆(𝒉𝒐𝒍𝒅_𝒇𝒊𝒍𝒕𝒆𝒓𝒑
𝒓 , 𝑸) = 𝒉𝒐𝒍𝒅_𝒇𝒊𝒍𝒕𝒆𝒓𝒑

𝒓 ⨀𝑸  

S2: Solve graph convolutional modification 

coefficient by 𝒄𝒐𝒓𝒓𝒆𝒄𝒕(𝒉𝒐𝒍𝒅_𝒇𝒊𝒍𝒕𝒆𝒓𝒑
𝒓 , 𝑸) =

𝟏

𝐦𝐚𝐱 (𝒔𝒊𝒛𝒆(𝒉𝒐𝒍𝒅_𝒇𝒊𝒍𝒕𝒆𝒓𝒑
𝒓 ),𝒔𝒊𝒛𝒆(𝑸))

×
𝒉𝒐𝒍𝒅_𝒇𝒊𝒍𝒕𝒆𝒓(𝜽)∩𝑸(𝜽)

𝒉𝒐𝒍𝒅_𝒇𝒊𝒍𝒕𝒆𝒓(𝜽)∪𝑸(𝜽)
 

S3: Solve graph convolutional coefficient by 

𝒄𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒄𝒐𝒇𝒇 = 𝒔𝒊𝒎𝒊𝒍𝒊𝒕𝒖𝒅𝒆(𝒉𝒐𝒍𝒅_𝒇𝒊𝒍𝒕𝒆𝒓𝒑
𝒓 , 𝑸) +

𝒄𝒐𝒓𝒓𝒆𝒄𝒕(𝒉𝒐𝒍𝒅_𝒇𝒊𝒍𝒕𝒆𝒓𝒑
𝒓 , 𝑸)  

Output: Solve graph convolutional coefficient 

𝒄𝒐𝒏𝒗𝒐𝒍𝒖𝒕𝒊𝒐𝒏𝒄𝒐𝒇𝒇. 

 

2.3 Maximum pooling layer 

 

Maximum pooling: When ∀𝑟 ∈ 𝑅 , {ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟} 

represents the set of kernels at different scales r, ∀𝑝 ∈
�̅�𝑝

𝑟 . Then, the maximum convolution z of point p is:  

 

𝑀𝑎𝑥_𝑃𝑜𝑜𝑙_𝑙𝑎𝑦𝑒𝑟(𝑞, ℎ𝑜𝑙𝑑_𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟) =

max
𝑟

(𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑐𝑜𝑓𝑓(𝑝, ℎ𝑜𝑙𝑑𝑓𝑖𝑙𝑡𝑒𝑟𝑝
𝑟))  

(13) 

 

In the algorithm, the layer formed according to this formula 

is called the maximum pooling layer, which realizes feature 

aggregation at different scales. 

 

2.4 The overall structure of the algorithm 

 

2.4.1 Classification algorithm design 

In order to identify which known category the input 3D 

point cloud data s belongs to, the algorithm in this paper fuses 

the 3D_RFGCN layer and the 𝑀𝑎𝑥_𝑃𝑜𝑜𝑙_𝑙𝑎𝑦𝑒𝑟 layer into one 

layer, and realizes the classification through a multi-layer 

perceptron (MLP). The standard 𝑠𝑜𝑓𝑡_𝑚𝑎𝑥 loss function and 

gradient descent method are used for parameter learning of this 

algorithm. Therefore, the classification algorithm is designed 

as Figure 2: 
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Figure 2. Classification algorithm structure 

 

2.4.2 Semantic segmentation algorithm design 

The 3D point cloud data can be semantically segmented 

using the algorithm shown in this research. We propose a 

shared MLP method for point-by-point classification in order 

to accomplish this goal. The characteristics of 3D point cloud 

data between different layers do not match because the 

algorithm uses a pooling mechanism. Accordingly, this paper 

defines the following aggregation operations: 

 

𝑝�̅�
𝑗+1

= 𝑎𝑟𝑔𝑚𝑖𝑛{∥ 𝑝 − 𝑝𝑛
𝑗

∥ |∀𝑝 ∈ 𝑝𝑗+1}  (14) 

 

Therefore, the generated pooled features are 2, and the 

corresponding semantic segmentation network is as Figure 3. 

 

 
 

Figure 3. Segmentation algorithm structure 

 

2.4.3 Algorithm invariance 

Although previous works like [14, 21, 23-30] report good 

geometric invariance performance, they typically take into 

account global coordinates or call for point cloud 

normalization to reduce this data variance, which will limit 

their immutability. Through the use of 3D convolution kernels, 

the text algorithm learns relative quantity features such as 

directional information and directional selectivity in the local 

receptive field. The formation of these features is independent 

of specific positions and distances, and the algorithm uses a 

pooling mechanism to further increase its geometric 

invariance. As a result, the algorithm presented in this paper 

demonstrates strong shift, scale, and rotation invariance. 

3. EXPERIMENTS AND RESULTS ANALYSIS 

 

3.1 Classification algorithm 

 

3.1.1 Datasets 

ModelNet40 dataset, which contains 40 categories with a 

total of 12311 models. According to the experimental needs of 

the classification algorithm, each category of the data set is 

divided into a training set and a test set according to 7:3, and 

the ratio of sample data is: training set:test set=8613:2698; and 

1024 samples are resampled from each model Points form a 

new training and testing set. 
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3.1.2 Network parameter configuration 

In the parameter setting of the three-dimensional graph 

convolutional neural network in this paper, the feature 

extraction is 5 layers, and the order of convolution kernels 

from the bottom layer to the top layer is (32, 64, 128, 256, 

1024); the number of supports is S=1, , The number of domain 

nodes is M=32; the maximum pooling layer of the network is 

3; the sampling rate is 4; the output result is a 1024-

dimensional vector; the learning rate is 0.00001; batch_size=8; 

the optimization method is ADAM. 

 

3.1.3 Experimental results 

On the same data set, compare the classification 

performance of our algorithm with the traditional algorithms 

PointNet [12], PointNet++ [12], DGCNN [21], KPConv [24] 

and 3D-GCN [23]. The experimental results are shown in 

Table 1. 

The data in the above table demonstrates that when 

numerous state-of-the-art methods are compared with the 

algorithm in this article, the algorithm in this paper has 

comparable or good performance when there is no geometric 

change in the test data. 

A 3D point cloud dataset with 1024 sample points is created, 

and the point cloud data is standardized to a unit sphere with 

zero mean without data augmentation in order to assess the 

model's invariance. The geometric invariance of the algorithm 

in this study and the technique above is confirmed under the 

three conditions of translation, stretching, and rotation. The 

graphic displays the outcomes of the experiment: 

 

 

Table 1. Classification performance comparison 

 
Algorithm INPUT Point Acc(%) Algorithm INPUT Point Acc(%) 

ECC [29] xyz 1K 87.4 SO-Net [26] xyz 2k 90.9 

PointNet [11] xyz 1K 89.2 KPConv [25] xyz 6.8k 92.9 

Kd-Net(depth=10) [28] xyz 1K 90.6 PointNet++ [13] Xyz,normal 5k 91.9 

PointNet++ [12] xyz 1K 90.7 So-Net [26] Xyz,normal 5k 93.4 

KCNet [21] xyz 1K 91.0 3D-GCN [24] xyz 1k 92.1 

MRTNet [27] xyz 1K 91.2 ours xyz 1k 94.9 

DGCNN [20] xyz 1K 92.9     

 

     
(a) Shift                                  (b) Scala 

   
(c) Rotate 

 

Figure 4. Evaluation of invariant properties on ModelNet40, (a) Parallel shift: Object moves randomly within distance 

(unshifted version denoted as 0) (b) Scale: Object scaled to a different size (original size denoted as 1), (c) Rotation: An object 

rotated in an upward direction (degrees are indicated in this figure).  
Note that the DGCNN in [21] is pre-trained on objects with scaling variables (i.e., the scaling range is within [0.5, 1.5]), but it cannot handle scaling variables that 

are not shown as shown in (b). 

 

1512



The Figure 4 shows that extracting features from global 

coordinates causes PointNet and DGCNN to perform much 

worse with coordinate shift. The only model that can identify 

with sufficient performance given the scale variables is my 

algorithm, which performs better in terms of shape rotation 

invariance. The efficacy and robustness of the suggested 

approach are thus supported by the aforementioned 

experiments. 

 

3.2 3D model segmentation algorithm 

 

3.2.1 Datasets 

The ShapeNetPart dataset [31] is used in this study as the 

verification database to assess the algorithm's capacity for 3D 

object segmentation. The collection consists of 16 different 

item categories represented by 16881 CAD models, with each 

object point corresponding to a part label. Each object type has 

access to 2 to 6 part categories, for a total of 50 categories. 

This experiment extracts 1024 points from each 3D model for 

training and testing to compare with conventional algorithms. 

 

3.2.2 Method of evaluation 

The mean intersection-over-union ratio (mIoU), which 

represents the average IoU for each part type in the object 

category, is used in this study to assess segmentation 

performance. 

IoU, a notion utilized in target identification, is short 

for Intersection over Union. IoU determines the intersection 

and union ratio, or overlap rate, between "predicted boundary" 

and "actual border." The best scenario is total overlap, or a 

ratio of 1. 

𝐼𝑜𝑈(𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡 , 𝑆𝑇𝑟𝑢𝑒) =
𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡⋂𝑆𝑇𝑟𝑢𝑒

𝑆𝑃𝑟𝑒𝑑𝑖𝑐𝑡⋃𝑆𝑇𝑟𝑢𝑒
  (15) 

 

The average of the IoUd of all shape instances in the object 

category is known as the joint mean intersection (mIoU), and 

it is written as follows: 

 

𝑚𝐼𝑜𝑈 =
1

𝑁
∑ 𝐼𝑜𝑈(𝑖)𝑁

𝑖=1   (16) 

 

where, N represents the number of instances in the object. In 

this experiment N=16. 

 

3.2.3 Network parameter configuration 

In Figure 3, the model architecture is displayed. The feature 

extraction portion is composed of two 3D Graph Max pooling 

layers with fixed sample rate r=6 and five layers with kernel 

numbers (128, 128, 256, 512) at pertinent layers. We set the 

neighbor number M=80 for the receptive field in 3D-GCN and 

the support number S=1 for each core. Features for 

segmentation are concatenated from layer outputs at various 

scales, as discussed in Section 2.3. We also have a one-hot 

vector indicating the object type related to the aforementioned 

features, which is then followed by three shared MLP layers 

to categorize the segmented labels for each point, as in 

PointNet [21]. We use the ADAM optimizer to train b our 

algorithm with a learning rate of 0.001, decaying by half every 

10 epochs. 

 

3.2.4 Experimental results 

The segmentation performance of the algorithm is shown in 

Table 2. 

The proposed algorithm, which does not use global 

coordinates, produces results that are comparable to or even 

superior to those of more recent methods, according to 

experimental findings. Therefore, the proposed method has 

good segmentation performance. 

The results of the geometric invariance verification are 

shown in Table 3: 

 

Table 2. The segmentation performance of the algorithm 
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Kd-Net 
[31] 

77.4 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 84.9 87.4 86.7 78.1 51.8 69.9 80.3 

MRTNet 

[27] 
79.3 83.0 81.0 76.7 87.0 73.8 89.1 67.6 90.6 85.4 80.6 95.1 64.4 91.8 79.7 87.0 69.1 80.6 

PointNet 
[11] 

80.4 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6 

KCNet 

[20] 
82.2 84.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3 

RS-Net 

[22] 
81.4 84.9 82.7 86.4 84.1 78.2 90.4 69.3 91.4 87.0 83.5 95.4 66.0 92.6 81.8 56.1 75.8 82.2 

SO-Net 

[25] 
81.0 84.9 82.8 77.8 88.0 77.3 90.6 73.5 90.7 83.9 82.8 94.8 69.1 94.2 80.9 53.1 72.9 83.0 

PointNet++ 

[12] 
81.9 85.1 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6 

DGCNN 

[29] 
82.3 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6 

KPConv 

deform 

[24] 

85.1 86.4 84.6 86.3 87.2 81.1 91.1 77.8 92.6 88.4 82.7 96.2 78.1 95.8 85.4 69.0 82.0 83.6 

3D GCN 
[23] 

82.1 85.1 83.1 84.0 86.6 77.5 90.3 74.1 90.9 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8 

My 

algorithm 
82.5 85.9 84.2 85.0 86.9 76.9 90.9 75.12 91.1 87.2 83.1 96.2 68.8 94.2 82.1 58.8 76.5 82.9 
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Table 3. The results of the geometric invariance verification of the proposed algorithm 

 

Object GT KPConv [25] shift scaling 
PointNet++ 

[13] 
shift scaling 

Airplan 

       

chair 

  
     

Motorbik

e 
       

Lamp 

       

Object GT 3D GCN [24] shift scaling My method shift scaling 

Airplan 

       
chair 

       
Motorbik

e 

       
Lamp 

       
 

Part segmentation is visualized using ShapeNetPart. We 

contrast the results of our segmentation with those from 

PointNet++ [23] and KPConv [30]. To evaluate the invariance 

capabilities of each model, additional displacement (by a 

factor of 100) and scale (by a factor of 10) alterations are 

shown. Keep in mind that the designation for the ground truth 

element is GT. 

 

 

4. CONCLUSIONS 

 

The "Graph Convolution Algorithm Based on Visual 

Selectivity" is suggested in this research. The program creates 

a theoretical feature graph convolution algorithm based on 

relative amounts and presents a new graph convolutional 

kernel and its design process based on the visual selectivity 

feature. The algorithm's geometric invariance is established, 

and 3D point cloud processing is where it is used. Verify the 

performance advantages of this algorithm over the PointNet 

[12], PointNet++ [13], DGCNN [21], KPConv [25], and 3D-

GCN [24] algorithms on the ModelNet40 and ShapeNetPart 

datasets. Also, confirm the algorithm's geometric invariance. 

The algorithm's performance will be improved in the future 

in the following two ways:  

(1) Algorithm parameter setting and performance 

optimization are realized based on the number and mode of 

connections between human visual cells. 

(2) Examine how attention mechanisms and visual 

selectivity can be combined, then either enhance the existing 

algorithm or suggest a brand-new one. 
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