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Data in the health sector are often lacking and unbalanced. It is because collecting data takes 

time and many resources. One example is sleep apnea data which takes about 8–10 hours to 

get data and uses specialized hardware like polysomnography (PSG). This study proposes a 

data augmentation technique to handle unbalanced data using DCGAN and several deep 

learning models such as 1D-CNN, ANN, LSTM, and 1D-CNN+LSTM as a classifier for 

apnea detection. The DCGAN architecture used is CNN on the generator and discriminator. 

DCGAN will create new synthetic data by mimicking the original dataset. This experiment 

uses a dataset from PhysioNet, the Apnea-ECG, and the MIT-BIH PSG Database. 

Furthermore, the dataset is preprocessed to remove noise, and the features are extracted 

manually. The test scenario is to create 10% synthetic data and 50% sleep apnea data to be 

added to the original dataset. Then compare the performance of multiple deep learning 

models before and after adding data. The results indicate that augmentation with DCGAN 

can improve the performance of almost all models, with the highest increase of 1.78% on 

the 1D-CNN+LSTM model and 4.80% on the LSTM model for the Apnea-ECG and MIT-

BIH datasets, respectively.  
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1. INTRODUCTION

Sleep apnea is a disorder that interferes with breathing while 

sleeping. This disorder can cause sufferers to often wake up 

from sleep because of difficulty breathing. There are three 

types of sleep apnea, namely, Obstructive Sleep Apnea (OSA), 

Central Sleep Apnea (CSA), and Mixed Sleep Apnea (MSA). 

With OSA being the most common sleep disorder. In most 

cases, this disorder often affects people of old age and people 

who are overweight (obese). This disorder can be diagnosed 

using polysomnography (PSG), the gold standard in the world 

of health. Getting this data takes a long time [1] and costs 

between $3000-$6000 for every test [2]. 

With the rapid development of artificial intelligence (AI), AI 

can be used in various fields of life, including the health sector. 

Implementing AI in the health sector, especially in detecting 

sleep apnea, can promise a cheap and fast solution to dealing 

with various problems. Some examples of research conducted 

in detecting sleep apnea are supervised machine learning and 

deep learning methods. Mukherjee et al. [3] used the deep 

learning ensemble model technique, which produces the 

highest accuracy of 85.58%. Then Banluesombatkul et al. [4] 

tried to create a filter at the preprocessing stage. Filtering is 

used to remove disturbing noise and the accuracy results 

obtained are 79.45% using the MrOS sleep study dataset (Visit 

1). 

There are high demands on deep learning models to detect 

sleep apnea accurately. It is required for the model to be able 

to provide high and reliable performance in completing its 

tasks. To achieve this, models can be trained using datasets 

that have been collected and labeled by experts. However, 

collecting this data has challenges, such as the small and often 

unbalanced data. Privacy concerns cause this lack of data 

availability and require high costs to obtain the data. 

Furthermore, health experts are also required to conduct the 

labeling process. This problem is exacerbated because when 

each new sensor is used, another way of obtaining new data is 

needed, and re-labeling the data is required [5]. 

The purpose of this study is to try to deal with some 

problems in the health sector, such as (i) creating synthetic 

data by following the distribution of the original data, (ii) 

trying to balance the data, and (iii) seeing how far it can 

improve the performance of the model that will be used. This 

study tried to use Deep Convolutional Generative Adversarial 

Networks (DCGAN) using the CNN architecture. For the 

dataset, using a public dataset, namely PhysioNet Apnea-ECG, 

and for classification tasks using several deep learning models 

such as ANN, 1D-CNN, LSTM, and 1D-CNN+LSTM. By 

doing data augmentation, it is hoped that the performance of 

the classifier model could be improved. The classifier’s 

performance will be evaluated by comparing the performance 

using the original dataset and the augmented data. 

2. RELATED WORK

Classic machine learning models like SVM, k-Nearest 

Neighbors (kNN), etc., and deep learning models like CNN, 

LSTM, ANN, etc., work very well for detecting sleep apnea 

because they only have two classes: apnea or normal (binary 

classification). 

Early detection of OSA can save lives and reduce the cost 

of expensive treatment. Sheta et al. [2] proposed a method of 

Computer-aided Diagnosis (CAD) that can detect OSA 
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quickly. CAD uses several kinds of models from ML as well 

as DL. The CNN+LSTM model obtains the highest accuracy, 

with an accuracy of 90.75% on training and 86.25% on 

validation. Other CAD systems proposed by Faust et al. [6] 

used the LSTM model with 10-fold cross-validation to get 

99.80% accuracy, 99.85% sensitivity, and 99.73% specificity. 

Chaw et al. [7] used SPO2 data from patients taken from the 

sleep lab to train the CNN classifier to detect OSA with an 

accuracy reaching 91.30%, which is better than the ANN 

model. Erdenebayar et al. [8] tried using six DL models for 

OSA detection. The dataset used was taken from 86 patients 

in the sleep lab. Of the six models, 1D-CNN and GRU were 

considered the most suitable for detecting OSA. Where 1D-

CNN got 98.50%, 99%, 99%, and GRU got 99%, 99%, 99% 

on sensitivity, specificity, and accuracy. 

Detecting OSA can also be done using a dataset in the form 

of a video, as Rajawat et al. [9]. The CNN model uses fusion 

and ensemble learning methods with 98.80% accuracy. Then 

the research conducted by Hafezi et al. [10] tries to apply 

another way of detecting OSA. The trick is to use the 

accelerometer sensor to capture the movement of the patient’s 

trachea. The results are then compared with the measurement 

results from PSG using Pearson and Spearman’s, which result 

in an R-value of 0.84, showing a high correlation. 

In addition to data from sleep labs or hospitals, there are a 

few other publicly available datasets for model training 

processes, such as MrOS [11, 12], PhysioNet Apnea-ECG [13], 

etc. Banluesombatkul et al. [4] used the public dataset from 

MrOS and proposed a model to classify whether patients have 

sleep apnea. Classification is based on AHI values normal and 

severe) by combining 1D-CNN as feature extraction, LTSM 

for sequence processing, and DNN as the final classifier, 

producing an accuracy of 79.45%. Chang et al. [14] also 

proposed 1D-CNN to detect sleep apnea using raw signals 

from the PhysioNet Apnea-ECG dataset with an accuracy of 

87.9%. 

Selecting the essential features in training ML and DL 

models can affect the model’s performance [2]. The previous 

studies discussed above have used raw ECG signals, video 

data, image data, etc. Almazaydeh et al. [15] tried to use ten 

features that had been manually extracted from the PhysioNet 

Apnea-ECG dataset (7 features [16] and 3 features [17]) and 

used SVM as a classifier with the highest accuracy of 96.5%. 

Cheng et al. [18], and Feng and Liu [19] also perform manual 

feature extraction by retrieving the RR interval from the 

PhysioNet Apnea-ECG dataset. Cheng et al. used RNN with 

an accuracy of 97.80%, and Feng et al. used SVM-HMM 

(SVM combined with Hidden Markov Model), resulting in 

84.70% accuracy. Almutairi et al. [20] also use RR interval 

and QRS amplitude with several models, such as 1D-CNN, 

1D-CNN+LSTM, and 1D-CNN+GRU, with the best accuracy 

results obtained from the 1D-CNN+LSTM model of 89.11%. 

Furthermore, Mukherjee et al. [3] also perform manual feature 

extraction by taking three features, namely RRI, EDR, and 

RAMP, then using the ensemble learning method with the 1D-

CNN model [20-22] with the best accuracy achieved is 

85.58%. Apart from the RR interval, another RR amplitude 

feature that can be used to detect sleep apnea is the HRV. 

Tripathi [23] take HRV and EDR from the processed ECG 

signal and then train it into the Kernel Extreme Learning 

Machine (KELM) model with four different kernels, and the 

best results are obtained from the KELM kernel RBF with an 

accuracy of 76.37%. Hassan [24] propose another way to 

extract features from ECG signals by using the Tunable-Q 

Factor Wavelet Transform (TQWT). The ECG signal is 

broken down into segments per minute and then processed 

using TQWT. Furthermore, AdaBoost was used to detect sleep 

apnea and obtained an accuracy of 87.33%. 

For sleep apnea detection, most researchers use public 

datasets such as PhysioNet Apnea-ECG, and after the 

preprocessing stage, there is an imbalance of data between 

classes [2, 20, 25]. For this reason, this study tried to create 

synthetic data using DCGAN [26]. GAN is not widely used for 

data generation in the form of time series but is more often 

used for images or videos. However, several studies 

investigating this approach do exist. [27]. Nikolaidis et al. [5] 

used two GAN architectures to generate synthetic apnea data 

from the PhysioNet Apnea-ECG and MIT-BIH datasets. The 

results show an increase in the performance of the MLP model, 

where the highest increase is seen in sensitivity from 90.83% 

to 92.28%. Zhu et al. [28] also proposed a technique to create 

synthetic Electrodiagram (ECG) data using BiLSTM-CNN 

GAN. The results show that GAN can create data that matches 

the original ECG recording to help reduce data imbalance 

problems. These methods could provide a new way to balance 

data in the health sector. 

 

 

3. MATERIAL AND METHODS 

 

3.1 Dataset 

 

This study used single-lead ECG signals from the 

PhysioNet Apnea-ECG [13] and MIT-BIH Polysomnographic 

[29] databases. The Apnea-EKG database consists of 70 

records with a sampling frequency of 100Hz, 35 of which are 

training records and 35 test records. The duration of each 

recording varies between 7 and 10 hours. Samples were taken 

from 30 male and 5 female subjects aged between 27 and 63. 

The MIT-BIH polysomnography database [29], abbreviated 

MIT-BIH, contains 18 PSG recordings ranging in length from 

2 to 7 hours and obtained from 16 male subjects aged 32 to 56 

years. Single-lead ECG recordings were sampled at 250 Hz 

and 12 bits per sample.  

In addition, MIT-BIH ECG recordings were annotated 

every 30 seconds and 1 minutes for Apnea-ECG by a clinical 

expert who identified episodes of OSA, central apnea, and 

hypopnea with and without arousal. Researchers often and 

commonly use these databases to detect sleep apnea. The data 

used in this study consisted of a01-a20, b01-b05, and c01-c10 

from Apnea-ECG and slp01-slp04, slp14, slp16, slp32, slp37, 

slp41, slp45, slp48, slp59-slp61, slp61, slp66-slp67x from 

MIT-BIH. 

 

3.2 Methodology 

 

This research has three primary stages: preprocessing, data 

generation, and classification. The first stage is preprocessing 

consisting of filtering, feature extraction, and data splitting. 

The second stage is creating and training a DCGAN model to 

create synthetic data. The third stage is to classify and compare 

the results between performance before and after data 

augmentation (see Figure 1). 

In the augmented data, the training data will be combined 

with the apnea data created using DCGAN. At the data 

generation and classification stages, the model's performance 

will be measured using several metrics, such as precision, 

recall, accuracy, F1-Score, and specificity for classification, 
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and Root Mean Square Error (RMSE) and Fréchet Distance 

(FD) for data generation. 

 

 
 

Figure 1. Proposed method 

 

3.2.1 Filtering 

At this stage, the dataset will be filtered. Filtering is done to 

remove the noise in the recording. Some examples of filters 

that can be used for ECG signals are in Table 1 [30]. 

 

Table 1. Types of ECG filters 

 
Filter Name Frequency Description 

Bandpass 5-11 Hz 
Remove noise in the 

raw signal 

Notch 60 Hz 
Remove noise in the 

raw signal 

Bandpass second-order 

Butterworth filter 

5 and 35 

Hz 

Remove noise in the 

raw signal 

Fourth-order low-pass 

zero-phase-shift 

Butterworth filter 

0.7 Hz 
Remove noise on the 

respiratory signal 

 

This study used a second-order Butterworth Bandpass filter 

with a frequency of 5 Hz lowpass and 35 Hz highpass. Here 

are the steps taken: 

•  Filter all records (see Figure 2). 

•  All recorded data is split into segments per minute and 

every 30 seconds following the labels given by the experts. 

•  Each segment contains a maximum of 6000 data (for 

Apnea-ECG) and 7500 (for MIT-BIH) points (see Table 

2). 

•  Find the peak in each segment. 

•  Fix the peaks on each segment. 

 

 
 

Figure 2. Comparison of the raw signal with the filtered one 

Table 2. Example of labeling records data following labels 

from experts 

 

Segments 
Apnea-ECG MIT-BIH 

Label 
Segment Length Segment Length 

Segment-1 0-5999 0-7499 N 

Segment-2 6000-11999 7500-14999 N 

. . . . 

. . . . 

Segment-N xxx-xxx xxx-xxx A or N 

 

After being divided into segments, there were 17062 and 

10197 segments of Apnea-ECG and MIT-BIH. Then the 

segment will be divided into normal and apnea data based on 

the label. After the filtering process is complete, the feature 

extraction process will be done manually. 

 

3.2.2 Feature extraction 

The signal is divided into segments every minute and 30 

seconds, filtered in the previous process, and then continued 

with feature extraction. Feature extraction is a method used to 

retrieve valuable information contained in the ECG signal that 

can represent the characteristics of apnea or not. Seven 

features will be taken from the ECG signal as described in 

Table 3. 

 

Table 3. Extracted features 

 
Feature Description 

Total 

peaks 
Total peaks per minute 

AvgHR Average heart rate per minute 

MeanNN The mean of the RR intervals. 

RMSSD 

The square root of the mean of the sum of 

successive differences between adjacent RR 

intervals. 

pNN50 
The proportion of RR intervals greater than 50ms, 

out of the total number of RR intervals. 

Age Age of each patient 

Gender Gender of each patient 

 

AvgHR = ∑
1

h

h

h=1

 (1) 

 

MeanNN =
∑ 𝑑r+1

  nr

r=1
- dr

nr
 (2) 

 

RMSSD = √ 
(drr)2

nr-1
 (3) 

 

pNN50=(∀(nr) (NN50++) ← ∑ dr+1

  nr

r=1
- dr

> 50ms)×100 

(4) 

 

where, h=Number of heart rate, nr=Number of r peaks, 

NN50= (∀(nr)(NN50++)← ∑ dr+1- dr
nr
r=1 > 50ms) , 

drr=∑ 𝑑𝑟+1
𝑛𝑟
𝑟=1 − 𝑑𝑟. 

The features ‘total peaks’, ‘avgHR’, ‘meanNN’, ‘RMSSD’, 

and ‘pNN50’ are taken from each segment. For ‘age’ and 

‘gender’ are assigned to each segment according to the 

information in the dataset. 
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Table 4. DCGAN architecture 

 
Generator Discriminator 

Layers Size Activation Layers Size Activation 

BiLSTM 16 - Conv1D 7 LeakyReLu 

Conv1D 32 LeakyReLu Dropout 0.25 - 

Conv1D 16 LeakyReLu Conv1D 16 LeakyReLu 

Conv1D 8 LeakyReLu Dropout 0.25 - 

Dense 7 Tanh Conv1D 32 LeakyReLu 

   Dropout 0.25 - 

   MaxPool1D 2 - 

   Dense 1 Sigmoid 

 

3.2.3 Data splitting 

The dataset that has been preprocessed is then divided into 

training data, validation data, and test data. Data distribution 

begins with a ratio of 60:20:20, where 60% are training data, 

20% are validation data and 20% rest used for test data. Then 

this division scheme aims to separate test and validation data, 

so they are not mixed with synthetic data. Test data and 

validation data will be stored, then test data is used to test the 

model before and after augmentation, and validation data is 

used for tuning in the training process. 

 

3.2.4 Data generation 

For synthetic data generation, data from the training set will 

be taken from the unbalanced class (apnea class) and 

augmented to increase the data. And to make synthetic data 

almost resemble the original data from the ECG signal, a 

method that can imitate the original data is needed. The 

method used will be the Deep Convolution Generative 

Adversarial Network (DCGAN). In DCGAN, two deep 

network models (CNN, RNN, LSTM, etc.) will compete to 

find the best one. 

 

3.2.5 Build DCGAN 

DCGAN consists of two neural networks, Generator (G) 

and Discriminator (D), where these two models will compete 

to beat each other. The generator tries to learn from the 

distribution of the original data to create synthetic data like the 

original data. The primary purpose of the generator is to ‘fool’ 

the discriminator with the generated data. In contrast to the 

discriminator, the discriminator tries to detect which data is 

genuine and which is synthetic. The GAN model is said to be 

‘deep’ because it uses three or more hidden layers. In 

constructing a stable GAN model, this study uses the guidance 

from Radford et al. [26], which claims to make training on the 

GAN more stable. Architectural guidelines for a stable Deep 

Convolutional GAN: 

•  Changing the pooling layer by using stride convolution on 

the Generator. 

•  Deleting fully connected hidden layers. 

•  Using LeakyReLu on all layers in the discriminator. 

•  Using Tanh at the generator output. 

As can be seen in Table 4, the generator consists of a 4-layer 

(1 LSTM and 3 Conv1D) which receives 50 random samples 

that match the original data distribution with an output of 7x1 

(7 features). Meanwhile, the discriminator consists of a 4-layer 

(3 Conv1D and 1 MaxPooling1D) with real or fake outputs. 

Then, the Adam optimizer is used to minimize the loss of the 

discriminator (5) and generator (6). 

 

Dloss = -
1

m
∑ log(D(xi))

m

i=1
+ log(1-D (G(zi))) (5) 

Gloss=-
1

m
∑ log(1-D (G(zi)))

m

i=1
 (6) 

 

where, m=number of samples per minibatch, x=real samples, 

z=noise vector / latent space, D=discriminator, G=generator. 

 

3.2.6 Training DCGAN 

After all the DCGAN architectural designs are ready, the 

next step is to train the model. Both models will be trained 

simultaneously using the apnea dataset only taken from the 

training data. The training process on the discriminator uses 

real data and synthetic data. This data is feed-forward, and the 

loss is calculated from the detection results. Next is 

backpropagation to adjust the weight of the discriminator. 

Furthermore, the generator training begins by providing an 

input value as a random value. Then the generator tries to 

match the original data distribution to produce synthetic data 

that resembles the original data. The weights in the generator 

model are updated based on the performance of the 

discriminator model. When the discriminator can detect false 

data, the weights on the generator are updated more. When the 

discriminator model is relatively poor or confused when 

seeing fake data, the generator model is updated less. On 

DCGAN training, this study used the Adam optimizer on the 

second network, and the learning rate was 0.0002 [26]. A 

learning rate of 0.001 is considered too high and can cause 

failure in DCGAN training. The momentum used is 0.5, which 

can help stabilize DCGAN in the training process. 

 

3.2.7 Join dataset (original + synthetic) 

All data generated by DCGAN is then combined with the 

original dataset (see Figure 3). This merging process aims to 

add a minority class (apnea) with scenarios adding 10% and 

50% of the original total apnea data. 

 

 
 

Figure 3. Comparison of the amount of training data 
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3.2.8 Classification 

The training data that has been split previously will be used 

to train the classifier model. The total training and testing data 

for Apnea-ECG were 13649 and 3413, respectively, and 5485 

and 2672 for the MIT-BIH. Models considered suitable for 

sleep apnea data problems will be selected at this stage. 

 

3.2.9 Build model (Classifier) 

The model developed in this study is inspired by previous 

research, namely 1D-CNN from Almutairi et al. [20] and 

Wang et al. [21], by making minor modifications to some 

parameters. However, the results indicate that the model from 

Almutairi et al. is more suitable for preprocessed data in the 

previous stage, and it was decided to use this model. Three 

other classifier models are used for comparison, including 

ANN, LSTM, and 1D-CNN+LSTM. 

(1) 1D-CNN (see Table 5): This 1D-CNN model was 

inspired by Almutairi et al. by increasing the number of layers, 

reducing neurons, and changing the kernel size to 2. This 

model removes the max-pooling layer and only uses the batch 

normalization layer after the convolution layer. Then use 

dropout on the last layer (before flattening). 

(2) ANN (see Table 5): The ANN model was chosen 

because there are only eight input features, and it is considered 

suitable for performing simple tasks such as binary 

classification (normal and apnea). The ANN architecture has 

seven neurons in the input layer and one hidden layer with six 

neurons. 

(3) LSTM (see Table 6): The LSTM model uses 64 

neurons in the dense layer and 100 neurons in the LSTM layer, 

and 20% dropout. 

(4) 1D-CNN+LSTM (see Table 6): The 1D-

CNN+LSTM model uses the architecture of the previous 1D-

CNN and is added to the LSTM layer. 

 

Table 5. ANN and 1D-CNN architecture 

 
ANN 1D-CNN 

Layers Size Activation Layers Size Activation 

Input 7 ReLu Conv1D 16 ReLu 

Hidden 6 ReLu BatchNorm - - 

Dense 1 Sigmoid Conv1D 16 ReLu 

   BatchNorm - - 

   Conv1D 32 ReLu 

   BatchNorm - - 

   Conv1D 32 ReLu 

   BatchNorm - - 

   Conv1D 64 ReLu 

   BatchNorm - - 

   Conv1D 64 ReLu 

   BatchNorm - - 

   Dropout 0.25 - 

   Flatten - - 

   Dense 512 ReLu 

   Dense 256 ReLu 

   Dense 64 ReLu 

   Dense 1 Sigmoid 

 

3.2.10 Training (Before augmentation) 

From Figure 4, it can be seen the amount of data between 

normal and apnea in the training data. There is an imbalance 

in the amount of data, whereas normal data is about 40% more. 

At this training stage, all models that have been built are 

trained using preprocessed data. The preprocessed training 

data is normalized into a range of [-1,1]. This study uses early 

stopping with a patience value of 5 to prevent overfitting for 

all models built using the Adam optimizer with an initial 

learning rate of 0.001 for 150 epochs. 

 

Table 6. LSTM and 1D-CNN+LSTM architecture 

 
LSTM 1D-CNN+LSTM 

Layers Size Activation Layers Size Activation 

Dense 64 Dense Conv1D 16 ReLu 

LSTM 100 LSTM BatchNorm - - 

Dropout 0.2 Dropout Conv1D 16 ReLu 

BatchNorm - BatchNorm BatchNorm - - 

Flatten - Flatten Conv1D 32 ReLu 

Dense 64 Dense BatchNorm - - 

Dense 1 Dense Conv1D 32 ReLu 

   BatchNorm - - 

   Conv1D 64 ReLu 

   BatchNorm - - 

   Conv1D 64 ReLu 

   BatchNorm - - 

   Dropout 0.25 - 

   Flatten - - 

   LSTM 100 Tanh 

   Dropout 0.2 - 

   BatchNorm - - 

   Flatten - - 

   Dense 64 ReLu 

   Dense 1 Sigmoid 

 

 
 

Figure 4. Total training data (normal and apnea) 

 

3.2.11 Training (After augmentation) 

The same models and methods are used at this stage as in 

the stage before augmentation. All classifier models were 

rebuilt from scratch using the same parameters. However, the 

original training data has been combined with the synthetic 

data. The added synthetic data amounted to 10% and 50% of 

the total apnea training data. The effect of adding synthetic 

data will be seen and compared with before adding synthetic 

data. 

 

 

4. EXPERIMENTAL RESULTS AND DISCUSSION 

 

In this experiment, this study uses four measurements—(i) 

precision, (ii) recall, (iii) f1-score, (iv) accuracy, and (v) 

specificity to see the performance of the model before and 

after augmentation. Since this is a binary classification, there 

will be two classes, positive and negative. When the predicted 

class of the sample matches the actual class, it is said to be 

True otherwise False. This study measures the four metrics 

based on True Positive (TP), True Negative (TN), False 

Positive (FP), and False Negative (FN) as follows: 

• Precision: The ratio of true positive predictions 

compared to the overall positive predicted outcome. 
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Precision= 
TP

TP+FP
 (7) 

 

• Recall: The ratio of true positive predictions compared 

to the total number of true positive data. 

 

Recall= 
TP

TP+FN
 (8) 

 

• F1-Score: Combines Precision and Recall into a single 

metric. 

 

F1-Score= 
2∙Precision∙Recall

Precision+Recall
 (9) 

 

• Accuracy: The ratio of Correct predictions (positive 

and negative) to the overall data. 

 

Accuracy= 
TP+TN

TP+FP+TN+FN
 (10) 

 

• Specificity: The truth of predicting negative compared 

to all negative data. 

 

Specificity= 
TN

TN+FP
 (11) 

 

The results in this study are divided into three, namely 

before augmentation, training results from DCGAN, and after 

augmentation. We use binary cross-entropy as the loss 

function for training before and after augmentation. 

Meanwhile, a custom loss function in DCGAN training is used 

in Eqns. (5) and (6) for the loss function. In the training process 

before and after augmentation, we used a batch size of 64 for 

all models; in DCGAN training, we used a batch size of 128. 

The test results before augmentation can be seen in Table 7, 

where 1D-CNN+LSTM and 1D-CNN got the best test 

accuracy, which is 80.49%, with 25 epochs for Apnea-ECG 

and 75.05% for MIT-BIH with 18 epochs. 

 

 
 

Figure 5. Accuracy and loss (1D-CNN+LSTM) 

 
 

Figure 6. Accuracy and loss (1D-CNN) 

 

The 1D-CNN+LSTM and 1D-CNN model at the stage 

before augmentation shows that the model is in the form of a 

‘good fit’ (see Figures 5-6). The model is said to be a ‘good fit’ 

if the model can produce good accuracy on the test and 

validation data. 

For DCGAN results, RMSE reflects the original and 

synthetic data stability. FD is used to measure the quality of 

the data generated by the GAN by looking at the similarity 

between the curves that take into the location and order of the 

points along the curve [31]. The smaller the FD value, the 

better the GAN’s generated data. RMSE and FD calculations 

as in Eqns. (12) and (13). 

 

RMSE = √
1

N
Σn=1

N (x[𝑛]-x̂[n])
2 (12) 

 

FD(P, Q) = min{||d||} (13) 

 

x is a feature of the original data and x̂  is a feature of 

synthetic data. For FD, P is the sequence of data along the 

original data segment and Q is the sequence of data along the 

synthetic data segment. Where σ(P)=(u1,u2,…up) and 

σ(Q)=(v1,v2,…vq), then we will get a sequence consisting of 

several points {(ual,vbl), …(uam,vbm)} . Length ||d||  can be 

seen in Eq. (14). 

 

||d|| =  
𝑚𝑎𝑥

𝑖 = 𝑙, … 𝑚 d (ual
,vbl

) (14) 

 

where, d represents Euclidean distance which basically has 

ai+1=ai or ai+1=ai+1 and bi+1=bi as requirements. From the 

results of our experiments, it was found that to produce a 

synthetic signal with a length of 6000 features (without manual 

feature extraction), the DCGAN often failed during training. 

Discriminators are sometimes too smart to detect which 

samples are real or synthetic. 

 

 

Table 7. Results before augmentation 

 

Model Dataset Pre (%) Rec (%) F1 (%) Spec (%) Epoch 
Acc (%) 

Train Val Test 

1D-CNN 
APNEA-ECG 78.35 78.93 78.59 81.39 14 78.76 78.73 79.49 

MIT-BIH 71.80 68.71 69.67 86.97 18 76.59 74.22 75.05 

ANN 
APNEA-ECG 71.69 72.14 71.87 76.09 32 73.78 74.3 73.04 

MIT-BIH 58.33 50.61 42.15 98.74 66 67.29 69.07 66.37 

LSTM 
APNEA-ECG 72.35 72.21 72.28 79.19 12 74.62 75.36 73.81 

MIT-BIH 63.6 58.09 57.73 89.82 30 69.76 68.63 69.17 

1D-CNN+LSTM 
APNEA-ECG 79.38 79.75 79.55 82.96 25 81.67 80.54 80.49 

MIT-BIH 69.84 68.89 69.29 82.24 13 74.38 72.35 73.38 
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Therefore, to try stabilizing the DCGAN training, this study 

attempts to reduce the sample generated by manual feature 

extraction. The fewer features to be generated, the easier it is 

to stabilize the DCGAN training, as shown in Figures 7-8. 

 

 
 

Figure 7. Loss DCGAN without feature extraction (6000 

features) 

 

 
 

Figure 8. Loss DCGAN with manual feature extraction (7 

features) 

 

It can be seen in Figure 8 that the loss is slightly erratic at 

the beginning of the training process and becomes stable 

around epoch 400. This is an example of normal loss during 

the DCGAN training process, where the two models will 

always compete until they reach a stable point. Using 7 

features takes about 900 seconds to make training results faster 

than using 6000 features takes about 5200 seconds. To see the 

quality of the synthetic data generated, we took a sample of 10 

generator models trained with several epochs. The results can 

be seen in Table 8. 

From Table 8, the best overall DCGAN model was trained 

with 9000 epochs for Apnea-ECG and 7000 for MIT-BIH. 

RMSE and FD values are 0.36, 0.96 and 0.42, 1.21. The 

accuracy of the discriminator is between 48-52%, which 

means that the generator has a nearly 50% chance of fooling 

the discriminator with the data it generates. In Apnea-ECG, 

the DCGAN model reaches its best point at epoch 9000, which 

is longer when compared to MIT-BIH because the amount of 

data on Apnea-ECG is greater, so it requires more training. 

The DCGAN model in the 9000th and 7000th epochs was 

used to create synthetic data to be added to the training data. 

After the synthetic data has been generated, the next step is to 

measure the impact of synthetic data on improving the 

performance of the deep learning model that has been created. 

There are two test scenarios, namely with the addition of 10% 

and 50% synthetic data compared with the previous model 

with training before augmentation. 

 

Table 8. DCGAN evaluation 

 

Epoch 

APNEA-ECG MIT-BIH 

RMSE FD 
ACC (D) 

(%) 
RMSE FD 

Acc (D) 

(%) 

1000 0.46 1.38 0.49 0.55 1.49 0.50 

 2000 0.61 1.74 0.49 0.74 1.93 0.51 

3000 0.53 1.44 0.49 0.55 1.49 0.51 

4000 0.37 1.01 0.49 0.55 1.52 0.52 

5000 0.36 0.99 0.48 0.65 1.86 0.51 

6000 0.63 1.83 0.49 0.40 1.14 0.52 

7000 0.46 1.23 0.49 0.42 1.21 0.48 

8000 0.60 1.85 0.49 0.44 1.23 0.49 

9000 0.36 0.96 0.48 0.61 1.56 0.50 

10000 0.40 1.08 0.49 0.55 1.54 0.50 

 

In Tables 11-12, data augmentation can improve some 

classification model performance. Improved performance can 

be seen in the numbers in bold. Model names in the table are 

represented using M1-M4 labels in the order of 1D-CNN, 

AND, LSTM, and 1D-CNN+LSTM. From the results of 10% 

augmentation, synthetic data only slightly improves the 

performance of the classification model because the dataset is 

still not balanced. Furthermore, the highest increase was 

obtained by the 1D-CNN+LSTM model for the Apnea-ECG 

dataset with an increase of 1.76%, and the LSTM model for 

the MIT-BIH dataset with a 4.80% increase in 10% 

augmentation.  

Then, we found that a balanced or nearly balanced data set 

significantly affects the reliability of the deep learning model. 

Augmentation by 50% can improve the performance of the 

built model. Furthermore, for the test data, there was at least 

an increase of about 1% in all models for the Apnea-ECG 

dataset, with the most significant increase of 1.76% in the 1D-

CNN model, and almost all models in the MIT-BIH dataset, 

with the most significant increase of 3.58% in the model 

LSTM. Then for precision, recall, f1-score, and specificity, 

almost all models can be improved. This proves that adding 

synthetic data to the dataset using DCGAN has increased the 

number of correct predictions for the apnea class.  

We also compared DCGAN with other augmentation 

methods. This aims to prove that augmentation using DCGAN 

is better than augmentation methods such as SMOTE and 

ADASYN. Table 9 shows that the augmentation method with 

DCGAN is better than other augmentation methods. DCGAN 

can consistently improve model performance. 

To see how well the model built in this study performed, we 

will take several references from previous research for 

comparison. Table 10 shows the effect of the unbalanced 

dataset handling technique. Sheta et al. [2], using the 

ADASYN technique to deal with data, proposed a study on 

imbalances. In the research conducted by Sheta et al., the 

proposed method is still unstable and only increases the 

precision. Compared with this study’s suggested results, it 

shows that DCGAN is better at handling data balance. 

DCGAN can improve accuracy, precision, and F1-Score to 

make the classification model more reliable. The classification 

model shown in the table is the best model taken from several 

models that have been tested. 

Furthermore, this study also compares the overall 
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performance of the proposed model with several models from 

previous studies in the classification of sleep apnea using 

manual feature extraction techniques. 

Table 13 shows that the creation of synthetic data using the 

DCGAN model at least succeeded in increasing the 

performance of the classification model and could outperform 

models from several previous studies. The proposed method is 

better than Tripathi [23] and Mukherjee et al. [3] in terms of 

accuracy and recall. Using 7 features and data augmentation 

can perform better than previous studies. 

 

Table 9. Comparison of testing accuracy DCGAN with other augmentation methods 

 
Model Dataset No Aug SMOTE ADASYN DCGAN 50% 

M1 
Apnea 79.49 82.24 79.37 81.25 

MIT-BIH 75.05 71.62 68.73 76.32 

M2 
Apnea 73.04 73.10 72.93 73.37 

MIT-BIH 66.37 61.96 61.03 66.18 

M3 
Apnea 73.81 74.57 74.19 74.25 

MIT-BIH 69.17 62.84 66.96 72.75 

M4 
Apnea 80.49 80.22 80.31 81.95 

MIT-BIH 73.38 70.49 69.12 74.95 

 

Table 10. The effect of the technique handles data imbalance 

 
Proposed Method Acc (%) Prec (%) F1 (%) 

Sheta et al. [2] – ensemble DT 77.26 77.98 84.81 

Sheta et al. [2] – ensemble DT (ADASYN) 74.47 82.16 81.06 

Our Proposed – 1D-CNN+LSTM 80.49 79.38 79.55 

Our Proposed – 1D-CNN+LSTM (DCGAN) 81.95 80.92 81.03 

 

Table 11. Comparison of no augmentation (0%) and with augmentation (10% and 50%) in Apnea-ECG 

 

Model 
Pre (%) Rec (%) F1 (%) Spec (%) Test Acc (%)  

0% 10% 50% 0% 10% 50% 0% 10% 50% 0% 10% 50% 0% 10% 50%  

M1 78.35 79.71 80.29  78.93 79.6 79.94 78.59 79.65 80.10 81.39 84.63 85.68 79.49 80.75 81.25  

M2 71.69 72.96 72.00 72.14 71.42 70.65 71.87 71.92 71.10 76.09 83.54 82.53 73.04 74.19 73.37  

M3 72.35 71.51 72.95 72.21 71.94 73.46 72.28 71.68 73.15 79.19 76.00 76.9 73.81 72.87 74.25  

M4 79.38 81.29 80.92 79.75 81.33 81.16 79.55 81.31 81.03 82.96 85.44 84.63 80.49 82.27 81.95  

 

Table 12. Comparison of no augmentation (0%) and with augmentation (10% and 50%) in MIT-BIH 

 

Model 
Pre (%) Rec (%) F1 (%) Spec (%) Test Acc (%)  

0% 10% 50% 0% 10% 50% 0% 10% 50% 0% 10% 50% 0% 10% 50%  

M1 71.80 71.74 73.06 68.71 71.1 72.52 69.67 71.39 72.77 86.97 82.89 83.47 75.05 75.20 76.32  

M2 58.33 59.09 58.65 50.61 52.69 53.70 42.15 48.52 50.97 98.74 91.21 91.8 66.37 69.12 66.18  

M3 63.60 70.57 68.89 58.09 68.96 64.80 57.73 69.57 65.67 89.82 86.11 87.57 69.17 73.97 72.75  

M4 69.84 72.38 71.69 68.89 71.88 70.70 69.29 72.11 71.12 82.24 82.75 83.34 73.38 75.54 74.95  

 

Table 13. Comparison of model performance using feature extraction with our proposed method (Apnea-ECG)  

 
Proposed Method Features Used Acc (%) Rec (%) Spec (%) Window Size 

Tripathi [23] - KELM EDR and HRV 76.37 78.02 74.64 - 

Feng and Liu [19] — SVM-HMM  RRI 84.70 68.80 94.50 6000x1 

Mukherjee et al. [3]—Base model using 

Almutairi et al.’s CNN-LSTM 

RRI, RAMP 

and EDR 
84.08 82.94 86.15 240x3 

Our Proposed—1D-CNN+LSTM (10% 

Augmentation) Total Peaks, Average Heart Rate, 

MeanNN, RMSSD, pNN50, Age, Gender 

82.27 81.33 85.44 7x1 

Our Proposed—1D-CNN+LSTM (50% 

Augmentation) 
81.95 81.16 84.63 7x1 

 

 

5. CONCLUSION AND FUTURE WORKS 

 

This study examines how data augmentation techniques 

using DCGAN can improve classification performance in deep 

learning and machine learning models. DCGAN can not only 

be implemented on data in the form of images but can also be 

used in the form of time series. This study found that data 

augmentation with DCGAN helps the classification model 

generalize better than other augmentation methods. The test 

results can increase the correct predictive value in the apnea 

class (TP) and decrease the incorrect predictive value in the 

apnea class (FN). Almost all models built and trained with the 

addition of synthetic data provide a performance increase, 

although not very large. Because no more information can 

make the classification model learn new patterns. This 

performance improvement also shows that the DCGAN model 

successfully generates synthetic data and imitates the 

distribution of the original data. This result is indicated by the 

relatively small RMSE and FD values and is close to 0, which 

means that it almost resembles the original data distribution. 
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The highest increase was obtained by the 1D-CNN+LSTM 

model for the Apnea-ECG dataset with an increase of 1.76%, 

and the LSTM model for the MIT-BIH dataset with a 4.80% 

increase in 10% augmentation. Furthermore, for 50% 

augmentation, the highest accuracy increase was obtained by 

the 1D-CNN+LSTM model at 1.76% from the initial value of 

80.49% to 81.95% for Apnea-ECG and almost all models in 

the MIT-BIH dataset, with the most significant increase of 

3.58% in the model LSTM from an initial value of 69.17% to 

72.75%. Future work could combine several public sleep 

apnea datasets for GAN training to provide various new 

information. 
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