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This study proposes a framework for defining ME expressions, in which preprocessing, 

feature extraction with deep learning, feature selection with an optimization algorithm, and 

classification methods are used. CASME-II, SMIC-HS, and SAMM, which are among the 

most used ME datasets in the literature, were combined to overcome the under-sampling 

problem caused by the datasets. In the preprocessing stage, onset, and apex frames in each 

video clip in datasets were detected, and optical flow images were obtained from the frames 

using the FarneBack method. The features of these obtained images were extracted by 

applying AlexNet, VGG16, MobilenetV2, EfficientNet, Squeezenet from CNN models. 

Then, combining the image features obtained from all CNN models. And then, the ones 

which are the most distinctive features were selected with the Particle Swarm Optimization 

(PSO) algorithm. The new feature set obtained was divided into classes positive, negative, 

and surprise using SVM. As a result, its success has been demonstrated with an accuracy 

rate of 0.8784 obtained in our proposed ME framework. 
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1. INTRODUCTION

Recognizing human emotions from facial expressions can 

be misleading and deceptive; emotions can be hidden by 

applying other facial expressions, but MEs are used to 

understand real emotions [1] because MEs occurring 

unconsciously. ME occurs at high risk when people try to 

control and suppress facial expressions. It cannot be controlled 

and occurs with low intensity (thin) and short duration (fast) 

[2-4]. These expressions containing real emotions [5] are 

facial expressions that occur between 1/25 and 1/2 second and 

occur in a few small areas of the face, unlike full expressions 

[6]. 

The formation processes of micro-expressions consist of 3 

parts: start, apex, and offset [7]. Apex formation is known as 

the peak of a ME. Considering the difficulties of developing 

methods that can cope with short-term and low intensity [8], 

this study focuses on the apex framework, where the 

expressions are most intense.  

The remainder of the article is organized as follows: The 

following section details some previous related work. Brief 

information about the publicly available dataset used is given 

in section 3. The existing model, feature selection method, 

data augmentation method, machine learning method, 

optimization method, and the proposed method are briefly 

presented in section 4. Experimental results are given in 

section 5. The discussion is presented in section 6. Finally, 

section 7 includes conclusion statements and future work. 

2. RELATED WORK

The models in the ME studies consist of three parts: 

preprocessing, feature extraction, and classification. The 

preprocessing phase consists of separating the non-face area 

and detecting, aligning, and cropping the face region to 

prevent the effect of head movement [9]. In studies on face 

detect, DRMF method [10, 11] Active Shape Model (ASM) 

68-point method [4, 8, 12] were used. Dlib machine learning

toolkit of the OpenCV library used for both detection and

alignment are used [9, 13, 14].

Methods used as Feature Extraction are divided into 

traditional methods and data-oriented methods; these 

conventional models are Optical Flow, LBP, and its 

derivatives. Optical flow is a technique that detects motion 

variation between two video frames [9, 15-17]. Local binary 

patterns (LBP) are used to extract texture features from gray 

images [4]. The derivative of LBP, which encodes both spatial 

and temporal information, is used LBP-TOP [5, 8, 18, 19]. 

Deep learning methods are another method used in ME 

called data-oriented methods. In addition, using deep learning 

architecture from raw images, both feature extraction and 

classification can be done [20, 21]. Transfer learning methods 

have been used to overcome the problem when data is scarce 

[10, 20, 22]. Another method used in classification is SVM 

and its derivatives which are of great importance for machine 

learning [2, 3, 5, 8]. 

Based on the scarcity of datasets in ME studies and the idea 

that CNN-based studies in this area are limited [23], a hybrid 

model with traditional and data-oriented is proposed as our 

motivation in the study. In addition, CASME-II, SAMM, 

SMIC datasets, which are the most widely used and publicly 

available spontaneous micro-expressions, were used in our 

study. 
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3. DATASET 

 

Publicly available Spontaneous ME datasets are CASME, 

CAME-II, (CAME)^2, SAMM, and SMIC datasets. CASME-

II is a higher version of CAME. The SMIC, SAMM, and 

CASMEII datasets are currently used composite or separate in 

many studies [9, 12, 23, 24] as they are the most 

comprehensive [8], widely used [12, 25], state-of-the-art [6], 

spontaneous ME datasets, and available to the public.  

In addition to the limited number of available data sets and 

sampling [8], which is one of the difficulties related to ME, the 

unbalanced sample distribution in emotion classes also creates 

another problem (CASME-II fear 2, sadness 4, others 99, 

happiness 32). Therefore, many studies were used composite 

data sets that combined the spontaneous ME datasets [22-25]. 

In these studies, the 3 most used datasets regarding 

spontaneous ME's are Casme-II [26], SAMM [27], and SMIC 

[28]. CASME-II has 7 emotion classes. These are disgust, fear, 

happiness, other, repression, sadness, and surprise. SAMM has 

8 classes. These are anger, contempt, disgust, fear, happiness, 

others, sadness, and surprise. SMIC-HS has 3 classes. These 

are negative, positive, and surprise. In order to use the 3 

datasets together, CASME-II and SAMM datasets with the 

highest number of classes are matched to the class number of 

the SMIC dataset, which has the lowest number of classes. The 

"other" class is not used in this pairing to avoid confusion. This 

study was combined the most commonly used 3 datasets and 

created a composite dataset with 3 classes [29]. These classes 

are negative (Repression, anger, contempt, disgust, fear, and 

sadness) 266, positive (happiness) 112, and surprise (surprise) 

88. Table 1 shows the features of these data sets. 

In the studies conducted with ME, two types of frames were 

selected sequence-based (video) and apex-based [23]. This 

study focuses on the most density expression frame, using the 

apex-based used in recent studies. Only two frames are 

considered in the apex-based design. These are onset frame 

and apex frame. 

Data in other classes were increased after optical flow 

processing by taking the negative class with the largest sample 

of data as a reference. At the end of the data increase, each 

class equals 266 optical flow image data. Data in classes with 

low samples are increased by rotating 90°, 180°, 270° degrees. 

 

Table 1. Properties of the spontaneous dataset used 

 
Datasets Casme-II SMIC-HS SAMM 

Subjects 24 16 28 

Samples 152 191 121 

Negative 92 92 80 

Positive 32 54 26 

Surprise 28 45 15 

Frame Rates 200 fps 100 fps 200 fps 

Resolution 640*480 640*480 2040*1088 

Face Resolutions 280*340 190*230 400*400 

 

 

4. PROPOSED FRAMEWORK  

 

The architecture of the proposed model consists of four 

steps: preprocessing, feature extraction, feature selection, and 

classification. The structure of the model is given in Figure 1. 

Normalized ME images were obtained from apex frame 

spot, face detection, face landmark, face alignment, and face 

crop operations in the preprocessing step. In the second step, 

ME motion properties were obtained by applying the 

FarneBack optical flow method to the images. Then these 

images were reproduced by using the rotation augmentation 

method. By applying CNN models to the augmented dataset, 

feature maps of the images were obtained from the fully 

connected layer of each model. 5,000 features were obtained 

by combining 1,000 features obtained from each of five 

different CNN models. With the PSO algorithm, the best 

features of the images for ME recognition were filtered, the 

feature selection step was realized. Finally, ME classification 

was performed using different kernels of the SVM algorithm 

in the classification stage. A detailed explanation of the 

methods we use in our proposed ME recognition classification 

framework and information on their use are below: 

 

 
 

Figure 1. ME classification framework architecture 

 

4.1 Preprocessing 

 

In the proposed study, Apex single frame images were taken 

from ME dataset frames. The Apex frame was chosen because 

it has the highest ME density in a video frame sequence [30]. 

While the index of this frame is provided in Casme-II and 

SAMM datasets, it is not provided in the SMIC dataset, so the 

D&C-RoIs (Divide and Conquer-Region of Interest) [31] 

technique, which automatically finds its approximation 

position, has been developed. Because the D&C-RoIs 

technique provides successful performance in apex detection, 

it has been used in ME studies [6, 25, 32]. The D&C-RoI 

method includes the feature descriptor LBP and 

divide&conquer techniques. LBP calculates the features of the 

face regions of each frame in a video sequence. Then, the 

feature difference of each frame is calculated by taking the 

onset frame as a reference. The divide & conquer algorithm 

determines the position (index) of the apex frame which has 
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the maximum difference. 

The Apex frame was obtained by calculating the RoI 

regions in each frame and calculating the correlation between 

the first frame and other frames with the LBP descriptor [31]. 

The calculation of the correlations of the first frame and the 

remaining frames using LBP is given in Eq. (1) [25]. 

 

𝑑 =
∑ ℎ1𝑖𝑥ℎ2𝑖

𝐵
𝑖=1

√∑ ℎ1𝑖
2𝐵

𝑖=1 𝑥 ∑ ℎ2𝑖
2𝐵

𝑖=1

 (1) 

 

here, h1 is the first frame, h2 is the other frames, and B is the 

number of boxes in the h1 and h2 histograms. The difference 

ratio of LBP features (1-d) between the eyebrow, eye, and 

mouth, the three most effective ROIs in ME recognition, is 

compared. The ROI with the highest difference ratio is 

selected. Finally, a divide-and-conquer strategy is applied [25, 

31] to seek frames that have maximum facial muscle changes. 

According to the divide and conquer strategy, a video clip 

frame sequence is divided into subsequences. The correlation 

coefficients of the frames are summed in each sub-array. The 

index with the largest sum is kept, and the rest is discarded. It 

continues until the frame with the maximum value is found [2]. 

In Figure 2, the positions of the frames in a video sequence in 

the micro-expression and their optical flow data of these 

positions are seen. This example is the happiness sample found 

in the Casme-II dataset. 

 

 
 

Figure 2. Onset, apex and offset in ME video sequence 

 

Since CASME-II and SMIC samples have preprocessed 

formats, they were not required preprocessing. However, since 

SAMM samples did not go through any preprocessing step, 

preprocessing was performed on the SAMM dataset before 

extracting the optical flow properties of the images. Face 

detection, alignment, cropping, and recording processes were 

applied to the samples in the SAMM dataset, respectively. 

Functions in OpenCV and dlib libraries are used. Since the 

micro-expression recognition task focuses on certain parts of 

the face, regions outside the facial areas (hair, neck, 

background, ear, etc.) in the video frame may cause 

performance loss in expression recognition. A preprocessing 

task is performed to dispose of these noises’ areas. Thus, the 

irrelevant data for micro-expression recognition are excluded 

from the process. After detecting the face regions with the 

detector function in the dlib library, the trained model in the 

same library, which predicts the face region with 81 points, is 

used. The outer points are positioned to frame the outer part of 

the front view of the face, and the inner points are positioned 

as the mouth, eyes, eyebrows, and nose. The facial area was 

cropping and recorded after aligning the points on the temples 

of the forehead at the top and slightly above the chin at the 

bottom. After cropping face regions, all images' dimensions 

were resized to 224 x 224 for VGG16, MobileNetV2, 

EfficientNetB0, and 227x227 for AlexNet, and SqueezeNet. 

In Figure 3, Face Detection, Face Mark, Face Alignment 

and Face Cropping operations are shown on an example of the 

SAMM dataset. 

 

 
 

Figure 3. a) Face detection, face mark, b) Face alignment c) 

Face cropping operations 

 

4.2 Optical flow 

 

Optical flow is a method that can capture subtle 

movements between two frames and small changes in pixels 

according to the assumption of constant brightness [21, 33]. 

This method is used in areas such as action recognition, 

action detection, object tracking. Density-based Farneback 

[34] is used to detect the optical flow of each point. This 

method, which is also used in micro-expression studies [9, 

35] was used in this study because of its many advantages. 

In addition to the advantage of fast computation, the 

Farneback optical flow technique, which has a pyramidal 

decomposition approach and produces relatively fewer errors 

in analyzing facial movements, is preferred [36]. Farneback 

optical flow estimates the approximate neighborhoods of 

each pixel using polynomial expansion with a quadratic 

polynomial. Mathematical equations of Farneback optical 

flow are given in Eqns. (2)-(6) [34]. 

 

𝑓1(𝑥) = 𝑥𝑇𝐴1𝑥 + 𝐵1
𝑇𝑥 + 𝑐1 (2) 

 

here, A is a symmetric matrix, b is a vector, and c1 is a scalar. 

A new f2 signal is generated using a global shift d. 

 

𝑓2(𝑥) = 𝑓1(𝑥 − 𝑑) 

= (𝑥 − 𝑑)𝑇𝐴1(𝑥 − 𝑑) + 𝑏1
𝑇(𝑥 − 𝑑) + 𝑐1 

= 𝑥𝑇𝐴1𝑥 + (𝑏1 − 2𝐴𝑑)𝑇𝑥 + 𝑑𝑇𝐴1𝑑 − 𝑏1
𝑇𝑑 + 𝑐1 

= 𝑥𝑇𝐴2𝑥 + 𝑏2
𝑇𝑥 + 𝑐2 

(3) 

 

In Eq. (4), if the coefficients in quadratic polynomials are 

equalized, Eqns. (5) and (6) are obtained. 

 

𝐴1 = 𝐴2 (4) 

 

𝑏2 = 𝑏1 − 2𝐴1𝑑 (5) 

 

𝑑 = −
1

2
𝐴1

−1(𝑏2 − 𝑏1) (6) 

 

 
 

Figure 4. Optic flow processes with the onset and apex frame 
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In Figure 4, it is shown that the motion between the initial 

(onset) frame where the motion starts and the apex frame, 

where the expression is maximum, is obtained by optical flow. 

The figure shown is an example of EP01_01f in Subject 19's 

in the CASME-II dataset, labeled happiness. 
 

4.3 Data augmentation 
 

Table 1 shows that negative emotions have more samples in 

all three data sets when compared to positive and surprise 

emotions. Class imbalance in the datasets makes classification 

in favor of the class with the large sample size of the SVM 

classifier [37]. The data augmentation technique was used due 

to the sampling imbalance in the micro-expression datasets 

used in this study. Thus, by creating a dataset that has balanced 

sampling, results in which the SVM to be used can classify 

more accurately are aimed. The classes in our dataset are 266 

for negative sample, 112 for positive sample, and 88 for 

surprise sample. Data in other classes were increased by taking 

the negative class with the largest sample of data as a reference. 

At the end of the data increase, each class equals 266 optical 

flow image data. Data in classes with low samples are 

increased by rotating 90°, 180°, 270° degrees. 
 

4.4 Convolutional neural network 
 

1,000 deep features are obtained from fully connected 

layers of 5 different CNN models. These are the FC8 layer 

from VGG16, FC8 layer from AlexNet, Pool10 layer from 

SqueezeNet, Logits layer from MobileNetV2, and 

dense|MatMul layer from EfficientNetB0. 1,000 features 

taken from each layer are brought to the same plane using the 

MinMaxScalar method. This data is then combined and fed 

into the input of the PSO algorithm with combined 5,000 

features. In Table 2, the models and the layers of the models 

from which the features are obtained are given. 
 

Table 2. Selected layers of CNNs 
 

CNN model Features extraction layer 

VGG16 FC 8 

AlexNet FC 8 

SqueezeNet Pool10 

MobileNetV2 Logits 

EfficientNetB0 dense|MatMul 
 

4.5 Particle swarm optimization 
 

In this study, the PSO optimization algorithm was used for 

feature selection. The parameters used in the experiment were 

respectively randomly adjusted in the range of Population 

Dimension (D) 1000, which gives the number of extracted 

features, Population Size (N) 10, which gives the number of 

populations, and Population Matrix (X) 0> 𝑥𝑖
𝑡 >1. In cases 

where 𝑥𝑖
𝑡 >0.5, feature selection is made, otherwise feature 

selection is not made. When the Iteration of number 100 is 

taken, the number of function evaluations is N*100=1000, and 

the Number of KNN (k) is 5. PSO parameters are taken as 2 

for Cognitive factor, 2 for Social factor, and 0.9 for Inertia 

weight. The fitness calculation equation is given in Eq. (7). 
 

𝐸𝑟𝑜𝑜𝑟𝑅𝑎𝑡𝑒 = 1 − 𝐴𝐶𝐶 

𝑆𝐹 (𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠) = ∑ 𝑥𝑖 = 1

𝐷

𝑖=0

 

𝐹𝑖𝑡𝑛𝑒𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑎𝑙𝑝ℎ𝑎 ∗ 𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 + 𝑏𝑒𝑡𝑎
∗ (𝑆𝐹/𝐷) 

(7) 

here, SF represents the total selected features, while the 

accuracy rate obtained in the K-NN classification of ACC 

selected features is taken as alpha=0.99, beta=0.01. 

A total of 5,000 deep features obtained from 5 different 

CNNs are given to the selected optimization algorithm to 

choose the best features. According to the algorithm results, 

2,746 different deep features of deep features were selected 

and provided as input data to the SVM classification. 
 

4.6 Support vector machine 
 

SVM has been used in research because it is found to be 

successful in statistical learning, modeling of data 

optimization, object detection as well as micro-expression 

recognition tasks [3, 5, 8]. In this study, linear, quadratic, 

finegaussian, and cubic kernel functions were used with SVM, 

and its superiority in the micro-expression recognition task 

was compared. The mathematical equations of the cores used 

in our study are given in Eqns. (8)-(11) [38]. 
 

Linear SVM 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗 + 𝑐, 𝑐 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (8) 

 

Gaussian 𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝑆2 ) (9) 

 

Cubic 𝑘(𝑥𝑖 , 𝑥𝑗) = (𝑥𝑖
𝑇 𝑥𝑗 + 1)3 (10) 

 

Quadratic 𝑘(𝑥𝑖 , 𝑥𝑗) = 1 −
‖𝑥𝑖−𝑥𝑗‖

2

‖𝑥𝑖−𝑥𝑗‖
2

+𝑐
 (11) 

 

here, Xi and Xj are input vectors, k () is kernel function. S is 

the bandwidth parameter, which determines how quickly the 

similarity metric drops as the samples move away from each 

other. 

 

4.7 Performance metrics 

 

In machine learning, other measures besides accuracy are 

used to evaluate the success of the model on the data set and 

to analyze the data in more detail [39-41]. The accuracy value 

alone gives only how many of the predictions made are correct. 

Therefore, in this study, the confusion matrix is used to 

analyze the classification performance of the models used. The 

parameters used in the complexity matrix are True Positive 

(TP), False Positive (FP), False Negative (FN), and True 

Negative (TN). The mathematical equations of these 

measurements are given in Eqns. (12)-(17) [42]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (12) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑆𝑛) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑆𝑝) =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 (14) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (15) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (16) 

 

𝐹𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (17) 
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In addition, model performance was evaluated with a ten-

fold cross-validation method. In the cross-validation method, 

the data set is divided into ten equal parts that nine parts are 

training data rest one part is test data. This situation continues 

until each part has been test-data once. 

 

 

5. EXPERİMENT RESULT 

 

Experimental test results were obtained using deep learning, 

classification, and optimization algorithms on micro-

expression data sets.  

First, the classification performances of VGG16, 

SqueezeNet, MobileNetV2, EfficientNet, AlexNet models of 

the new integrated and augmented data sets formed by 

combining the three selected data sets are given in Table 3. 

The hyperparameters of the first and second experimental 

studies using CNN models are the same. The Maximum Epoch 

Value at which the whole dataset is trained is set to 32, the 

Mini Batch Size trained in each iteration is set to 16, the Initial 

Learning Rate value is 0.001, the Validation Frequency value 

is 50, Learn Rate Drop Factor value is 0.1, and the Learn Rate 

Drop Period value is 16 has been set. In the integrated data set 

in Table 3, Vgg16 and AlexNet had the highest accuracy rates 

of 0.7143, while Vgg16 showed the highest performance with 

a value of 0.6626 in sensitivity measurement. In precision and 

F1 measurements, AlexNet showed the best performance with 

0.7011 and 0.6739, respectively, while vgg16 was superior in 

specificity and precision measurement. In the results obtained 

using the same hyperparameters in the augmented data set, the 

Vgg16 model increased its performance compared to its values 

in the integrated data set while outperforming other models. 

The VGG16 model in the augmented data set achieved 

accuracy 0.8083, sensitivity 0.8083, specificity 0.9042, 

precision 0.8269, and f1 score of 0.8114, giving it superiority 

over other models in the micro-expression recognition task.  

In the second experimental study, 1000 deep features are 

obtained from fully connected layers of 5 different CNN 

models. These are the FC8 layer from VGG16, FC8 layer 

from AlexNet, Pool10 layer from SqueezeNet, Logits layer 

from MobileNetV2, and dense|MatMul layer from 

EfficientNetB0.  

Next, the combined feature vectors were classified with 

linear, quadratic, finegaussian, cubic kernels of SVM. Thus, 

the performance of SVM kernels and CNN classifiers was 

compared, then the advantages of SVM kernels in the micro 

expression recognition task were compared. In classification 

measurements made with the quadratic core, Squeezenet is 

superior to other models with 0.7866 accuracies, 0.7860 

sensitivity, 0.8932 specificity, 0.8011 precision, and 0.7858 

F1 value. In classification with SVM using linear core, 

EfficientNet were achieved better results than others in all 

performance measurements. Accuracy value of 0.6653, 

sensitivity value of 0.6652, specificity value of 0.8325, 

precision value of 0.6697 and F1 value of 0.6663 were 

obtained. With the classification of the data set using the 

Finegaussian kernel, Squeezenet has the highest accuracy rate 

of 0.6485, and it is the model with the highest value. While it 

was superior to other models in sensitivity, specificity and F1 

values, it was the most successful model with vgg16 0.8235 in 

precision. The Cubic was the core that gave the highest 

accuracy, sensitivity, specificity, and F1 values in classifying 

1000 feature maps. Accuracy 0.8033 ratio, sensitivity 0.8027 

ratio, specificity 0.9016 ratio and F1 0.8012 ratio were 

obtained. Detailed information about all results is shown in 

Table 4. 

In the third experimental study, when the combined 5,000 

features were classified with the SVM classifier and compared 

with the previous values we obtained, the results were 

observed to improve further. In Table 5, the precision value 

obtained with the finegaussian kernel was the most successful 

with 0.8506, while the cubic kernel gave better results in all 

other values. In the classification made with the Cubic core, 

the accuracy ratio was 0.8117, the sensitivity ratio was 0.8120, 

the specificity ratio was 0.906, and the f1 ratio was 0.8114. 

In the fourth experimental study, 2,760 distinctive features 

were selected using PSO analysis on the 5000-feature data set 

obtained by combining these features. When the SVM 

classifier is used with these selected distinctive features, an 

improvement has been observed in the performance of other 

measurements except the precision measurement. Table 6 

shows the performance of each kernel after feature selection. 

Accordingly, from the quadratic kernel that gave the best 

results, the accuracy value was 0.8243, the sensitivity value 

was 0.8245, the specificity value was 0.9121, the precision 

value was 0.8275, and the F1 value was 0.8232. The confusion 

matrix of the Quadratic kernel is given in Figure 5. 

 

 
 

Figure 5. Complexity matrix of our model without cross-

validation 

 

 
 

Figure 6. Complexity matrix of our model with cross-

validation 

 

In our fifth and last experimental study, the data set was 

divided into 10 parts using the cross-validation method, 1 part 

was set as test data, and the remaining 9 part was set as training 

data (k=10). This operation allows all parts to be used 

cyclically as training and test data. Thus, each sample on the 

data set acts as both a test set and a training set. This situation 
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provides a more efficient result [39]. In Table 7, the 

classification performances of SVM kernels with the cross-

validation process of 2760 data obtained after strong feature 

selection are listed. Accordingly, the cubic core has the most 

successful performance and the highest performance values in 

the experiments. Accordingly, cubic was the core with the 

most successful performance, and the highest performance 

values were obtained in the experiments. The results obtained 

are accuracy 0.8784, sensitivity 0.8784, specificity 0.9392, 

precision 0.8765, respectively. The confusion matrix of the 

cubic core is given in Figure 6. 

 

Table 3. CNN results with performance metrics 

 
Model Dataset Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) 

VGG16 

Composed 

0.7143 0.6626 0.8260 0.6820 0.6656 

Squeezenet 0,6857 0,62 0,8027 0,6627 0,6370 

MobilenetV2 0.6143 0.4437 0.7221 0.6159 0.4491 

EfficientNet 0.6000 0.4613 0.7391 0.5138 0.4686 

AlexNet 0.7143 0.6600 0.8150 0.7011 0.6739 

VGG16 

Augmented 

0.8083 0.8083 0.9042 0.8269 0.8114 

Squeezenet 0.7125 0.7125 0.8562 0.7180 0.7137 

MobilenetV2 0.5583 0.5583 0.7792 0.5568 0.5507 

EfficientNet 0.6083 0.6083 0.8042 0.6142 0.6082 

AlexNet 0.7667 0.7667 0.8833 0.7695 0.7651 

 

Table 4. Classification results of 1,000 CNN feature maps used with SVM kernels 

 
Model Kernel Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) 

VGG16 

Q
u

a
tr

ic
 0.6653 0.6659 0.8325 0.6619 0.6633 

Squeezenet 0.7866 0.7860 0.8932 0.8011 0.7858 

MobilenetV2 0.6904 0.6906 0.8452 0.6894 0.6876 

EfficientNet 0.7782 0.7784 0.8890 0.7806 0.7769 

AlexNet 0.6987 0.6989 0.8493 0.6988 0.6988 

VGG16 

L
in

ee
r 

0.5565 0.5570 0.7781 0.5599 0.5568 

Squeezenet 0.6234 0.6230 0.8116 0.6443 0.6256 

MobilenetV2 0.5858 0.5861 0.7929 0.5840 0.5841 

EfficientNet 0.6653 0.6652 0.8325 0.6697 0.6663 

AlexNet 0.5816 0.5820 0.7907 0.5816 0.5817 

VGG16 

F
in

eg
a
u

ss
ia

n
 

0.6234 0.6224 0.8113 0.8235 0.6146 

Squeezenet 0.6485 0.6499 0.8250 0.8058 0.6463 

MobilenetV2 0.4268 0.4292 0.7146 0.7886 0.3360 

EfficientNet 0.6360 0.6348 0.8176 0.8263 0.6257 

AlexNet 0.5816 0.5806 0.7904 0.8045 0.5674 

VGG16 

C
u

b
ic

 

0.7143 0.7146 0.8571 0.7108 0.7118 

Squeezenet 0.8033 0.8027 0.9016 0.8151 0.8012 

MobilenetV2 0.7448 0.7449 0.8724 0.7434 0.7430 

EfficientNet 0.7741 0.7742 0.8869 0.7796 0.7732 

AlexNet 0.7322 0.7324 0.8662 0.7405 0.7327 

 

Table 5. Classification results of CNN feature concatenating with SVM kernels 

 
Kernel Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) 

Quatric 0.7908 0.7911 0.8955 0.7946 0.7897 

Linear 0.7029 0.7029 0.8516 0.7101 0.7053 

Fine gaussian 0.7280 0.7278 0.8637 0.8506 0.7306 

Cubic 0.8117 0.8120 0.9060 0.8159 0.8114 

 

Table 6. Classification results with SVM kernels after PSO analysis 

 
Kernel Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) 

Quatric 0.8243 0.8245 0.9121 0.8275 0.8232 

Linear 0.7322 0.7324 0.8660 0.7445 0.7321 

Fine gaussian 0.6820 0.6813 0.8407 0.8376 0.6833 

Cubic 0.8159 0.8162 0.9079 0.8202 0.8140 

 

Table 7. Classification results with SVM kernels after PSO analysis and cross-validation 

 
Kernel Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) 

Quatric 0.8484 0.8484 0.9242 0.8508 0.8469 

Linear 0.7306 0.7306 0.8653 0.7323 0.7299 

Fine gaussian 0.6729 0.6729 0.8365 0.7526 0.6712 

Cubic 0.8784 0.8784 0.9392 0.8839 0.8765 
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Table 8. Our best performance without cross-validation and with cross-validation 

 
Kernel Acc (%) Sen (%) Spe (%) Pre (%) F1 (%) 

Quadratic without cross-validation 0.8243 0.8245 0.9121 0.8275 0.8232 

Cubic with cross-validation 0.8784 0.8784 0.9392 0.8839 0.8765 

 

Table 9. Comparison of recent successful models 

 
Methods Accuracy F1 Score Dataset 

OFF-ApexNet [6] 0.746 0.710 SMIC+CASME-II +SAMM 

From macro to Micro [20] 0.747 0.64 CASME-II +SAMM 

Residual Network with Micro-Attention [22] 0.763 0.668 CASME-II +SAMM 

STSTNet [25] 0.769 0.739 SMIC+CASME-II +SAMM 

STSTNet+GA [23] 0.859 0.837 SMIC+CASME-II +SAMM 

CNN+PSO+SVM (Proposed) 0.8784 0.8765 SMIC+CASME-II +SAMM 

 

 

6. DISCUSSION 

 

Nowadays, classification of ME images has an important 

place in many fields such as forensic informatics, security, and 

education. In our study, it was observed that the F1 scores of 

accuracy rates could not exceed 72% in the classification made 

using CNN models on the combined data set. To increase the 

success, it has been observed that the success rates increase in 

the classification made by duplicating the data set with the data 

augmentation technique. When the increasing rates are 

examined, While the accuracy rate exceeding 80% and the F1 

measurement rate exceeding 81% were obtained. Table 3 that 

values up to 90% were obtained in other measurements. From 

this, it can be concluded that the data augmentation technique 

will positively affect many CNN models in increasing the ME 

recognition performance. In the classification using four 

different SVM kernels in Table 4, made with feature maps 

taken from the last connected layers of CNN models, the 

experimental results could not exceed the performance when 

Table 3 was taken as the basis. The results obtained by 

combining the feature maps in Table 5, on the other hand, 

partially step up onto the performance. It can be concluded that 

there is a need for more besides different classification 

techniques. It can be concluded that the reason for this is that 

more than different classification techniques are needed. As a 

matter of fact, in the next step, the results obtained from 

quadratic and cubic kernels with the experiment using the PSO 

algorithm for the selection of the best features caused a 

noticeable increase in Table 6. In the accuracy and F1 

measurements, which reached the highest values, the values of 

0.8243 and 0.8232 were obtained, respectively. In this study, 

the highest performance measurements were obtained among 

the experiments carried out so far. Thus, it has been observed 

that the data obtained by feature selection has a positive effect 

on increasing the ME recognition performance. In addition, 

Table 7 shows that the experiment using the PSO algorithm 

and cross-validation technique with SVM kernels there were 

significant improvements in classification performance for all 

measurement values compared to the initial values. More 

concretely, compared to the best measurement values in the 

composite data set in Table 3, the performance increase was 

16.41% for accuracy, 21.58% for sensitivity, 11.32% for 

specificity, 18.28% for precision, and 20.26% for F1. 

Confusion matrices and AUC-ROC graphs of methods and 

techniques are given to analyze ME classification performance 

in depth. The best results obtained in our experiments are 

shown in Table 8.  

In addition, a comparison of our work with the latest 

technology models in the ME field is presented in Table 9. The 

results show that our model is competitive and satisfactory. 

In the study [15], the success of different optical flow 

methods in ME recognition is presented in Table 3. 

Recognition results produced using the Farneback method are 

given as the two best methods that outperform each other in 

different block sizes, together with TVL1. In addition, it has 

been shown as another advantage for the Faneback method, 

which is faster than the others in calculating the analysis of 

facial movements [36]. It should be considered that modified 

Pso derivatives and different SVM kernels can give more 

positive results in increasing ME recognition accuracy. 

 

 

7. CONCLUSIONS 

 

This study presents a new framework for ME recognition 

tasks consisting of traditional and data-driven methods. The 

framework consists of these steps are; preprocessing, feature 

extraction, feature selection, and classification, respectively. 

These multiple steps are applied to image frames containing 

facial expressions. With the preprocessing step, the images are 

normalized. Then, optical flow and CNN techniques were 

applied in the feature extraction stage, and PSO analysis was 

applied in the feature selection stage. Finally, after classifying 

the selected feature data with SVM, the results were compared 

with other studies using SVM for classification. The most 

important advantage of the FarneBack optical flow method is 

its low time cost and its success in analyzing facial movements. 

One of the essential originalities of our work is quadratic, fine 

gaussian, and cubic SVM core functions that we used in micro-

expression recognition classification. Another important 

originality of our work is PSO feature selection in micro-

expression recognition. The advantages of these kernel 

functions in the micro-expression recognition task were 

compared in different experiments. In this study, it has been 

shown that artificially increasing the data set obtained by an 

optical flow can improve classification accuracy. Depending 

on this data augmentation method, it has been observed that it 

can improve the model's performance by 9% to 13%. Feature 

selection and cross-validation processes with the PSO 

algorithm contributed positively to the performance of our 

model. For the future in micro-expression recognition, the task 

showed promising results. As a result, it has been shown that 

16% to 20% better results are obtained compared to the 

experimental test results obtained with the proposed 

framework. Our framework achieved the highest classification 

accuracy, achieving 87.84% accuracy and 87.65% F1 values 
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on the three combined datasets. In addition, the specificity 

value reached 0.9392, the sensitivity 0.8784, and the precision 

0.8839. We will continue to design models with higher real-

time ME recognition accuracy and model performance in the 

future. 
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