

A Hybrid Approach for Web Pages Classification

Ouided Hioual1*, Sofiane Mounine Hemam1, Ouassila Hioual1,2, Lyes Maif3

1 Computer Science Department, Abbes Laghrour University, Khenchela 4000, Algeria
2 Lire Laboratory, Constantine 2 University, Constantine 25000, Algeria
3 Research Center on Semiconductor Technology for Energetic, TESE-CRTSE, 2 BD Frantz Fanon, 7 Merveilles, POB 140,

Algiers, Algeria

Corresponding Author Email: hioual.ouided@univ-khenchela.dz

https://doi.org/10.18280/isi.270507

ABSTRACT

Received: 17 July 2022

Accepted: 6 October 2022

 Currently, the internet is growing at an exponential rate and can cover just some required

data. However, the immense amount of web pages makes the discovery of the target data

more difficult for the user. Therefore, an efficient method to classify this huge amount of

data is essential where web pages can be exploited to their full potential. In this paper, we

propose an approach to classify Web pages based on their textual content. This approach is

based on an unsupervised statistical technique (TF-IDF) for keyword extraction (textual

content) combined with a supervised machine learning approach, namely recurrent neural

networks.

Keywords:

keyword extraction, machine learning,

supervised machine learning approach, TF-

IDF, web page classification

1. INTRODUCTION

In recent years, the World Wide Web became the main

source of data for human due it increased development. Indeed,

the web has become an essential tool allowing easy and quick

access to information for, research, learning, information and

discovering new knowledge. It allows to better respond to the

increasing internet user needs for information and knowledge.

In addition, the internet users are increasingly overwhelmed

by this volume made available to them [1]. Thus, the need to

new methods and advanced tools to facilitate access and meet

the needs of Internet users has prompted researchers to focus

on the classification domain. This latter is used by human in

his daily life when he tries to answer problems and questions

about the category of objects, i.e. the assignment of objects to

their class (by observing their formats, colors, sizes . . .etc.)

[2].

Classification has a vital role in many web-based

information management and retrieval tasks. The content page

classification is essential for crawling targeted, assisted web

directory development, subject-specific web link analysis,

contextual analysis, advertising and analysis of the web's

thematic structure. Classification of web pages can also

improve the quality of web search [3].

The web pages classification is generally done by extracting

the textual content of the page and ignoring HTML tags, CSS

and JS code. So, it extracts the key data from the web page and

then, it performs the classification. There are several web page

classification approaches (supervised and unsupervised) and

several automatic keyword extraction methods (supervised

and unsupervised) [4]. Unsupervised methods are emerging

methods with the particularity of abstracting from the

specificity of the data processed [5], This abstraction is

explained by approaches based on observations about what a

keyword is in the general meaning: semantic importance,

degree of information, syntactic structure [6].

In contrast to unsupervised methods, supervised methods do

not use properties defined from statistical and linguistic

features, but they use decision models learned from these

features, calculated on the keywords of a learning corpus.

The use of a learning corpus implies that the learned models

are specific to the disciplinary domain and language. This

specificity can be advantageous when the domain and the

language that represents the corpus are the same for the

documents that are then analyzed. Otherwise, the results of the

extraction can suffer.

In this paper we propose an approach for web pages

classification based on supervised machine learning approach,

namely recurrent neural networks (RNN)for classification and

unsupervised statistical technique named Term Frequency-

Inverse Document Frequency (TF-IDF) for the extraction of

keywords from pages.

The remainder of this paper is structured as follows: related

works about the problem of the web pages classification are

presented in section 2. Section 3 describes the proposed,

architecture, and its functionality. Then in Section 4, we

present some experimental results. Finally, our conclusion and

direction for future works are summarized at the end of this

paper.

2. RELATED WORKS

Nowadays, the classification of web pages has become a

very important issue. Indeed, many studies have been

developed for this purpose in the literature. A Web page has

different types of features. According to these features,

Hashemi [7] has divided the research works in the web pages

classification field into three kinds: Text-based, image-based,

and combined usage of text-based and image-based features.

However, Aydos et al. [8] divided web pages classification'

related works into four main groups: (1) Textual

classifications: URL address, text content, title, HTML

Ingénierie des Systèmes d’Information
Vol. 27, No. 5, October, 2022, pp. 747-755

Journal homepage: http://iieta.org/journals/isi

747

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270507&domain=pdf

description HTML code, etc. (2) Visual classification: images,

design, videos, etc. (3) Graph-based classifications: hyperlink

structures, neighbor web sites. (4) And other information: user

behaviors, web directories, semantic web, raw data of domain

(IP address, owner, hosting server, hosting country) [8]. Since,

our paper lies in text-based classification category, we will

focus, in this section, on text-based related works.

Among works text-based web pages classification, we can

cite the following ones.

Alamelu and Santhosh [9] suggested a method to classify,

automatically, Web pages without using the entire information

of these latter. Indeed, they used only a minimum number of

representative features that they extracted from a web page. In

addition, the authors had modeled machine learning classifiers

using the selected features. The experimental results proved

that there was good improvement in classification accuracy.

Su et al. [10] have built a prediction system for web page

ranking. Indeed, they proposed a new method of classification

where they researched keyword density and keyword position

in the web page content. They also defined their impacts on

rankings by using the notion of optimal keyword frequencies.

Hashemi [7] presented methods of web page classification

and usage scenarios in which a machine learning algorithm

was used to classify web pages in predefined categories based

on features extracted from text and HTML tags. As results, the

author asserted that HTML tags play an important role in

methods that use keyword frequencies to identify web page

categories.

Li et al. [11], for classifying web spams, used the deep belief

networks (DBN) for the first time. Then, it was combined with

the Synthetic Minority Over-Sampling Technique (SMOTE)

and De-Noising Auto-Encoder (DAE) algorithm after the

multi-aspect research and consideration. According to authors,

the proposed method had improved the classification

performance of web spam, and the results showed that the

classification method proposed in their paper improves the

classification performance to a certain extent, which provides

a good direction for the future classification of web spam.

Duari and Bhatnagar [12] proposed a supervised framework

for automatic keyword extraction from single document. For

this, they had modeled the text as complex network. Then, they

had constructed the feature set by extracting selected node

properties from it. The authors exploited several node

properties, by using unsupervised graph-based keyword

extraction methods, to discriminate keywords from non-

keywords. In addition, they had exploited the complex

interplay of node properties to design a supervised keyword

extraction method. The study of the results has shown that the

proposed method performs better in most cases.

Balim and Özkan [13], a deep learning based model was

proposed for functional classification of web pages, regardless

of language. The authors used Transfer Learning to reduce the

cost during the feature extraction process from recorded web

page images. In addition, they presented results of two

different experiments to show the effectiveness of their

method.

Salminen et al. [14] used machine learning algorithms to

predict web page rank for pages in the e-commerce gift

industry. They researched 30 blogs in the selected industry that

occupied first-page Google ranking. Two machine learning

models (LightGBM and XGBoost) had been tested and

conducted feature analysis. This led to the conclusion that the

features that had most impact are links, domain security, and

H3 headings. However, other keyword-related frequencies

were not shown as significant.

Lee et al. [15] proposed a novel simplified swarm

optimization (SSO) to learn the best weights for every feature

in the training dataset and adopted the best weights to classify

the new web pages in the testing dataset. They had applied a

Taguchi method to determine the parameter settings because

these latter has an important role in the update mechanism of

SSO. In order to demonstrate the effectiveness of their

algorithm, they compared its performance with that of the

genetic algorithm (GA), Bayesian classifier, and K-nearest

neighbor (KNN) classifiers according to four datasets.

According to authors, the experimental results indicate that the

SSO yields better performance than the other three approaches.

El-Hajj and Hajj [16] addressed the selection problem for

classification. They had suggested a one-step method designed

to select the subset of features. The authors formulated,

mathematically, the selection as an optimization problem with

the objective of maximizing classification accuracy while

simultaneously deriving and choosing the most discriminative

features. The authors proposed a statistical-based feature

selection method (MFX) that considers all documents from the

same category as one extended document, and chooses the

most discriminative terms that are frequent and common

across all documents of the same category, but rarely present

in other categories. According to the authors, MFX is language

independent and backed up with a mathematical formulation

that finds the optimal number of features that guarantees

accurate text categorization. The results indicated that MFX

always performed similar to or better than other well-known

feature selection methods.

Yu et al. [17] used, at first, the keyword-weight calculation

method to reduce the impact of a small number of high-

frequency words in the web page document on the weight

calculation. It also allowed reducing the value of the low-

frequency word weights so that the WPCA (Web Page

Classification Algorithms) is more accurate in the calculation

process. Secondly, they used Chinese web pages, calculated

the similarity between the text to be classified and all the class

templates, and then determines the category of all texts

according to the similarity and certain classification rules.

Finally, in order to improve the learning rate of DL (Deep

Learning), the authors considered the use of adaptive

parameters. The authors proved through this study that WPCA

based on DL are more efficient, consume less system memory

and faster than traditional algorithms.

3. PROPOSED APPROACH

With the increase of the Internet users number, the growth

of websites is proportional. As a result, the ranking of web

pages has become a huge topic of research in recent years. This

has made an ever-increasing demand for automated

classification techniques with high classification accuracy. In

this context fails our contribution. This latter consists to

develop a web page classification approach based on keyword

extraction method and machine learning.

To reach this goal, we present in the first subsection the

proposed architecture details. However, the second is devoted

to the functionalities of this architecture.

3.1 The architecture components

In this subsection, we present the main components of our

748

architecture. As illustrated in the Figure 1, the proposed

architecture is composed of two essential parts which are: (1)

the extraction part: to extract keywords from a web page and,

(2) the classification part: to classify web pages using a

supervised machine learning approach, more precisely the

recurrent neural networks. Between these two parts, there is a

hidden component. Its role is to extract the first word from the

obtained result (an ordered list of key words) of the first part,

and it sends it to the second part (RNN) as an input.

3.2 Functionality of the proposed approach

In this subsection, we present the functionality of our

approach to meet the target objectives. This is illustrated

through a sequence diagram as shown in Figure 2.

As mentioned above, we use a TF-IDF keyword extraction

technique, and a supervised learning approach which is

recurrent neural networks (RNN). We used TF-IDF technique

to extract keywords from web pages. This technique allows to

give as results keywords ordered, in an ascending way,

according to their TF*IDF. Compared with other methods, the

TF-IDF technique is easy to implement and very powerful, it

can be applied in multiple languages using statistical

translation and it provides the closest keywords; this is

possibly because this method uses all the documents making

up the corpus. In this paper, we applied this technique as it is

defined in the literature.

In the next sub-sections, we will explain, in detail, each part.

3.2.1 Extraction part

In the literature, there are several automatic keyword

extraction methods. In our work, we choose to use an

unsupervised statistical technique which is TF-IDF. This latter

provides keywords closest to those formulated by the web

pages designers on one hand, and it uses all the documents

making up the corpus on the second hand. Bellow, the TF-IDF

is explained in details.

(a) TF-IDF technique

TF-IDF (Term Frequency - Inverse Document

Frequency): is a statistical measure that evaluates the

relevance of a word for a document in a collection of

documents [18].

Figure 1. General architecture

Figure 2. Sequence diagram of the proposed approach

749

TF (Term Frequency): The frequency of a term is the

number of occurrences of this term in the considered document;

IDF (Inverse Document Frequency): The inverse

document frequency is a measure of the importance of the term

in the whole corpus;

TF*IDF (Term Frequency - Inverse Document

Frequency): Concerns the weight of a term T in a document

D. It is calculated as follow:

TF*IDF (Ti, Dj)=TF (Ti, Dj)*IDF (Ti) (1)

where, TF (Ti, Dj): is the frequency of the term Ti in the

document Dj; IDF (Ti) = log (N/ DF(Ti)); N: the total number

of documents in the documentary base; DF(Ti): the number of

documents containing the term Ti.

(b) Extraction phases

As shown in the Figure 2, the extraction part is composed

of six phases, which are:

Pretreatment phase: In this phase the inputs are a set of

web pages, each of them contains a main content and a noisy

content. Pretreatment is very important phase in the

classification process because the construction of the model is

based on the prepared data. Indeed, web pages that are not

prepared correctly can result in a non-performing model. In

this phase, the web page input is an html file. Thus, this latter

contains tags, CSS code, Java scripts, etc., which are

considered, in our context, as the noisy content. Therefore, the

pretreatment phase consists to remove all HTML tags, CSS

code, java script, as well as the special character strings

(example @ h12-D*65), punctuations and digits. In addition,

it transforms all upper case characters into lower case. (see

Figure 3).

Tokenization phase: This phase splits the content into

words followed by space [19].

Filtration phase: This phase consists to eliminate all stop

words. A stop word is a common word (example: I, me, my,

myself, we, our, ours, ourselves, you, your, yours, yourself,

yourselves, he, him, his, himself,…etc.) that there is no need

to index it or to use it in a search. The stop word elimination

consists of removing all the standard words (common words)

in the content of the extracted web page. These words are very

common and they are used in practically all texts. Their

presence can degrade the performance of the classification

algorithm in terms of cost and classification accuracy. To

eliminate all stop words, we, first, store these latter in a list,

and then we can remove them easily. NLTK (Natural

Language Toolkit) [20] in python has a list of stop words

stored in 16 different languages. We can find them in the

nltk_data directory.

Stemming phase: Stemming is a process of transforming

words into their stem or root. The root of a word corresponds

to the part of the remaining word after removing its prefix and

suffix. Since the TF-IDF technique cannot check the semantic

of words, we must use the stremming process to group

different forms of a particular word such as "play" and "plays"

or "played" into a single word which is "play". The Stemming

brings together under the same term (stem) words that have the

same root. There are two main families of stemmers:

algorithmic stemmers [21] and dictionary-based stemmers

[22]. In this work, we used the first family that is often faster

and allows to extract roots of unknown words.

At the end of this phase, we obtain as result a stemmer.

TF-IDF calculation phase: This phase consists to calculate

the TF of each word of the stremmer, the DF and its inverse

(IDF) according to their mathematical formulas. Finally, the

TF-IDF is obtained according to the formula (1), and it is the

product between TF and IDF.

The results display phase: In this phase, the words are

displayed in ascending order according to their TF-IDF values.

Figure 3. Extraction phases

3.2.2 Classification part

Neural networks are, generally, optimized by statistical-

type learning methods thanks to their capacity for paradigms

allowing the generation of large functional, flexible and

partially structured spaces. They also belong to the artificial

intelligence methods family which they allow to take decisions

relying more on the perception than on the logical reasoning.

The neural network is a calculation model where the design is

very schematically inspired by the operation of real

classification and generalization [23].

A neural network is, generally, made up of a succession of

layers. Each layer (i) is composed of Ni neurons, taking their

inputs from the Ni-1 neurons of the previous layer. Each

synapse is associated with a synaptic weight. So, the Ni-1 are

multiplied by this weight and then added to the level i neurons,

which is equivalent to multiplying the input vector by a

transformation matrix. Putting one behind the other, the

different layers of a neural network would amount to

cascading several transformation matrices, and could be

reduced to a single matrix. The product of the others, if there

were not at each layer the output function which introduces

nonlinearity at each step. This shows the importance of the

judicious choice of a good output function, a neural network

whose outputs would be linear would have no interest. There

are several types of neural networks, including recurrent

(looped) neural networks that are used in our work [24].

750

(a) Recurrent neural networks

A looped (recurrent) network, governed by one or more

differential equations, results from the composition of the

functions carried out by each neuron and the delays associated

with these connections.

Figure 4 represents the mathematical structure of the

recurrent neural network. Thus, the below mathematical

formulas (2) and (3) allow to calculate ht and yt in a recurrent

way [25, 26].

ℎ𝑡=𝑔h(𝑊𝑖∗𝑥𝑡+𝑊𝑅∗ℎ𝑡−1+𝑏ℎ) (2)

𝑦𝑡=𝑔𝑦(𝑊𝑦∗ℎ𝑡+𝑏𝑦) (3)

where, 𝑤𝑖 is the input weight matrix, 𝑤𝑦 is the output weight

matrix, 𝑤𝑅 is the hidden layer weight matrix, 𝑔ℎ 𝑎𝑛𝑑 𝑔𝑦 is the

activation function, and 𝑏ℎ 𝑎𝑛𝑑 𝑏𝑦 is the bias. Eqns. (2) and (3)

is useful for recursively calculating the values, ℎ1, ℎ2, … and

𝑦1, 𝑦2, ….

Formulas (4) and (5) make it possible to calculate h0 and y0

respectively at time t=0.

ℎ0=𝑔ℎ(𝑊𝑖∗𝑥0+𝑏ℎ) (4)

𝑦0=𝑔𝑦(𝑊𝑦∗ℎ0+𝑏𝑦) (5)

Figure 4. Mathematical Representation of Recurrent Neural

Network [27]

Whether detailed or simplified, the representation of a

recurring network is not easy, because it is difficult to show

the temporal dimension on the diagram. This is particularly the

case for recurring connections, which use information from the

previous time. To solve this problem, we often use a

representation of the network "unfolded in time", in order to

make it appear explicitly. The following Figure 5 shows an

example of an unfolded network [28].

Figure 5. RNN: recurring version and unfolded version

This time-unfolded version, clearly, shows the input

variables over time: xt−1, xt, xt+1, etc. (same for the output), and

the impact of previous outputs on the current network output.

In its unfolded version, the matrices WW, RR and VV are

duplicated and thus appear on the diagram as many times as

the number of unfoldings of the network in the time.

By explicitly showing the temporal dimension, the unfolded

version suggests three possible uses of a recurrent network:

sequence labeling, sequence classification or sequence

generation [29]. In our work, we are interested in the sequence

classification.

- Sequence classification

In this mode of operation, the network traverses the input

sequence of size T according to the direction of reading, and

produces an output only once the input sequence is finished,

as illustrated in the following Figure 6:

Figure 6. Sequence classification: the network "reads" the

sequence in its entirety, and produces its output at the last

time step

In this case, the output is not a sequence, but only a label.

This approach also works in regression; in this case, the output

is a value or a vector of values.

4. EXPERIMENTAL RESULTS

The experiments run on an Intel® Core™ i7-8700k CPU

3.7GHZ processor with a memory capacity of 32768 MB,

under Windows 10, 64 bits with an NVIDIA graphics card. we

used Anaconda browser and Spyder as development

environment developed with Python.

Our model is divided into two parts. The first part is the

extraction of keywords and the second part the classification

of web pages based on the results of the first part.

4.1 Keywords extraction

The principle of the first part consists of:

-Read the number of web pages to be classified as well as

their links

- Removal of HTML, CSS and JS tags.

- Pretreatment which is the separation of words with spaces

- Remove stop-words (empty words).

- Find the root of words (Stemmer)

- Finally the calculation of TF IDF.

In our work we will take two web pages their links are:

1: C:\Users\pc\web pages\page1.html

2: C:\Users\pc\web pages\page2.html

As a result of this first part is: The keywords of the web page

displayed in ascending order according to their frequency of

appearance on the page (Cf. Figure 7).in our work we take the

first 15 keywords.

751

Figure 7. The result of TF IDF (page1 and page2)

4.2 Classification

In this subsection we will describe in detail the

classification part. Let's start with our dataset first.

4.2.1 The creation of the dataset

To create the dataset, we start by finding all words of the

domain that we chose. To do this, we use an online word

generator called Related Words. Since the result words of the

TF-IDF will be in stemmer form, so the form of the dataset

words will be the same.

The part below shows the different steps to build our dataset.

Step 1: Generate the words for each domain using the

previously mentioned word generator (See Figure 8).

Figure 8. The results of words from the computer field found

by the Related Words generator

Step 2: In this step we remove the stop words and find the

root (Stemmer) of each word, classify them, put the first letter

in capitals finally save them in a text file. The Figure 9 bellow

shows the words of the computer science class.

Figure 9.Text file contains the words of our computer

science class

We repeat this process for all the class of our dataset.

In this study we have chosen 10 class (Cf. Figure 10).

Figure 10. The domain (class) of our dataset

4.2.2 Classification with recurrent neural network

Once our Dataset is prepared, we aim to classify the target

web pages. To do this, we calculate their keyword frequencies

by using the TF-IDF technique. Then we classify these web

pages according to the keyword that has the highest frequency

using recurrent neural networks.

We will build and train a basic RNN to rank web pages

according to keywords. A character-level of RNN reads words

as a series of characters, produces a "hidden state" prediction

at each step and, feeding its previous hidden state into each

next step. We consider the final prediction to be the output, i.e.

which class the word belongs to. Specifically, we train our

RNN on a few thousand words from 10 domains and predict

which domain a word is from based on spelling.

The data/names directory includes 10 text files named

“[Domain].txt”. Each file contains a set of words, one word

per line. As result, a dictionary of lists of words per domain,

{domain: [word ...]}. The generic variables "category" and

"line" are used for further extensibility.

752

At this stage, we obtain a category_lines, a dictionary

mapping each category (domain) to a list of lines (words). We

also kept track of all_categories (just alist of domains) and

n_categories for future reference.

Transformation words into tensors

Once all the words areobtained, we need to represent them

into tensors to use them as an input for the RNN. So, to

represent a single letter, we use a “single vector” of size <1 x

n_letters>. This vector is composed of a set of 0, exceptat the

index of the current letter which is equal to 1, e.g. "b" = <0 1

0 0 0 ...>. Thus the word is represented by a matrix

<word_length x n_letters>.

Creation of the network

The input and the output of RNN are a fixed length tensors.

The output length is equal to the classes number. The input is

a word, and it is represented by the above cited matrix,

We divide the structure of the proposed RNN into three

layers: the input layer, the hidden layer and the output layer.

- The input layer creates an input for the hidden layer. At

each execution, the RNN considers as the input the word and

the hidden state. The word is represented by the above-cited

matrix; and the hidden state is a tensor of size <1 x n>. The

maximum value of n is 128. Since the RNN takes a single

tensor as input, we simply combine between the matrix and the

hidden state to form the combined tensor.

- The hidden layer performs a linear Input-Hidden

transformation on the combined tensor to create an input for

the output layer. So, the result of this layer is the prediction

and the next hidden state.

- The result of the output layer is the class prediction. To do

this, we perform the softmax on the prediction to normalize

the Input-Output values between [0..1] to obtain the multi-

class probabilities. For example, the value 0.01 indicates that

there is a 1% probability that the word belongs to the

Computer class. This output is directly compared to our target

tensor, which its value is between [1..0]. This allows us to

calculate the loss for each prediction.

To release the RNN, we inherit from nn.Module which is

the base class for all neural networks in PyTorch. We initialize

an instance specifying the input/output/hidden state sizes

which help us to create the line layers and the softmax function.

RNN Training

To train the RNN we convert at first the training pairs to

tensors and feed them into the RNN. Then, we use the

optimizer, loss function and learning rate to train our RNN.

Based on our input tensors and our target tensors we update

the network weights at each step (i.e. backpropagation). For

this, we use the loss function to calculate the gradients based

on the difference between a prediction and the true value. Next,

we need to specify an optimizer and a learning rate to update

the network.

We train our neural network until we get the right

classification result. This process takes several hours of

training. below, we present the main functions and parameters

used to build and train our RNN.

- Loss function: NLLLoss(x): The Negative Log Likelihood

Loss function, generally named NLLLoss(x) function, allows

training a classification problem with C classes. The parameter

x is an optional argument, if it must be provided, it should be

an 1D Tensor assigning weight to each of the classes. This is

particularly useful in the case of an unbalanced training set. In

our case, this argument is null.

- Optimizer function: torch.optim.SGD (rnn.par(), lr). The

SGD() (SGD: Stochastic Gradient Descent) optimizer function

belong to torch.optim package. This latter groups several

optimizer methods. In this study, we have choose to use the

SGD() function because it is most adapted to optimize the

RNN. The parameters of this function are: rnn.par() and lr. The

first one concerns RNN parameters to be optimized (in our

case, these parameters are null). However, the second

parameter concerns the learning rate, which is equal to 0.0002

(lr= 0.0002).

A learning step uses an input word and its corresponding

label. Each step:

- Set model in training mode.

- Create the input tensor from the title and the target tensor

from the label

- Create an initial hidden state (full of zeros)

- Feed the word across the network, passing hidden states at

runtime

- Calculate the loss by comparing it to the true value using

the loss function

- Update network settings with optimizer

- Returns output and loss to show how the network is

learning

According to obtained TF-IDF values from the extraction

part (Cf. Figure 7), the RNN classify the first and the second

pages using respectively the words “inform” and “software”

(Cf. Figure 11), since they have the highest TF-IDF value, to

the computer science class (Cf. Figure 10).

Figure 11. RNN training

753

5. CONCLUSIONS

The web pages classification is generally based on the

textual content extraction and then, to classify the needed web

page from the extracted words. In this context fails our

proposed work. Thus, this paper is mainly based on the

combination of two methods based on the supervised and

unsupervised techniques. In the first part of our contribution,

the automatic word extraction task is proposed. It consists to

analyze a web page to extract the most representative word

from this target web page using an unsupervised statistical

technique, which is TF-IDF.

However, in the second part we have proposed supervised

recurrent neural networks, which allows classifying web pages

according to words obtained the first part. The obtained results

show that the proposed approach give a good performance by

classifying effectively the target web pages.

As future work, we propose to add other languages to make

the system multi-language, to integrate other techniques and

methods of supervised classification. In addition, TF-IDF

cannot check words’ semantic in documents. Therefore, it is

only useful at the lexical level. It is also unable to detect words

having the same root, i.e., having the same semantics. To deal

with this problem, we aim to improve TF-IDF technique by a

semantic verification step based on the stemming technique

principle.

REFERENCES

[1] Qi, X., Davison, B.D. (2009). Web page classification:

Features and algorithms. ACM Computing Surveys

(CSUR), 41(2): 1-31.

https://doi.org/10.1145/1459352.1459357

[2] Chen, R.C., Hsieh, C.H. (2006). Web page classification

based on a support vector machine using a weighted vote

schema. Expert Systems with Applications, 31(2): 427-

435. https://doi.org/10.1016/j.eswa.2005.09.079

[3] Buber, E., Diri, B. (2019). Web page classification using

RNN. Procedia Computer Science, 154: 62-72.

https://doi.org/10.1016/j.procs.2019.06.011

[4] Selamat, A., Omatu, S. (2004). Web page feature

selection and classification using neural networks.

Information Sciences, 158: 69-88.

https://doi.org/10.1016/j.ins.2003.03.003

[5] Zhang, K., Xu, H., Tang, J., Li, J. (2006). Keyword

extraction using support vector machine. In International

Conference on Web-Age Information Management, pp.

85-96. https://doi.org/10.1007/11775300_8

[6] Jiang, X., Hu, Y., Li, H. (2009). A ranking approach to

keyphrase extraction. In Proceedings of the 32nd

international ACM SIGIR conference on Research and

development in information retrieval, pp. 756-757.

https://doi.org/10.1145/1571941.1572113

[7] Hashemi, M. (2020). Web page classification: a survey

of perspectives, gaps, and future directions. Multimedia

Tools and Applications, 79(17): 11921-11945.

https://doi.org/10.1007/s11042-019-08373-8

[8] Aydos, F., Özbayoğlu, A.M., Şirin, Y., Demirci, M.F.

(2020). Web page classification with Google Image

Search results. arXiv preprint arXiv:2006.00226.

https://doi.org/10.48550/arXiv.2006.00226

[9] Alamelu, M., Santhosh, K. (2011). A novel approach for

web page classification using optimum features.

International Journal of Computer Science and Network

Security, 11(5): 252-257.

[10] Su, A.J., Hu, Y.C., Kuzmanovic, A., Koh, C.K. (2014).

How to improve your search engine ranking: Myths and

reality. ACM Transactions on the Web (TWEB), 8(2): 1-

25. https://doi.org/10.1145/2579990

[11] Li, Y., Nie, X., Huang, R. (2018). Web spam

classification method based on deep belief networks.

Expert Systems with Applications, 96: 261-270.

https://doi.org/10.1016/j.eswa.2017.12.016

[12] Duari, S., Bhatnagar, V. (2020). Complex network based

supervised keyword extractor. Expert Systems with

Applications, 140: 112876.

https://doi.org/10.1016/j.eswa.2019.112876

[13] Balim, C., Özkan, K. (2019). Functional classification of

web pages with deep learning. In 2019 27th Signal

Processing and Communications Applications

Conference (SIU), Sivas, Turkey, pp. 1-4.

https://doi.org/10.1109/SIU.2019.8806240

[14] Salminen, J., Corporan, J., Marttila, R., Salenius, T.,

Jansen, B.J. (2019). Using machine learning to predict

ranking of webpages in the gift industry: Factors for

search-engine optimization. In Proceedings of the 9th

International Conference on Information Systems and

Technologies, pp. 1-8.

https://doi.org/10.1145/3361570.3361578

[15] Lee, J.H., Yeh, W.C., Chuang, M.C. (2015). Web page

classification based on a simplified swarm optimization.

Applied Mathematics and Computation, 270: 13-24.

https://doi.org/10.1016/j.amc.2015.07.120

[16] El-Hajj, W., Hajj, H. (2022). An optimal approach for

text feature selection. Computer Speech & Language, 74:

101364. https://doi.org/10.1016/j.csl.2022.101364

[17] Yu, Y. (2022). Web page classification algorithm based

on deep learning. Computational Intelligence and

Neuroscience, 2022: 9534918.

https://doi.org/10.1155/2022/9534918

[18] Ding, Z., Zhang, Q., Huang, X.J. (2011). Keyphrase

extraction from online news using binary integer

programming. In Proceedings of 5th International Joint

Conference on Natural Language Processing, pp. 165-

173.

[19] Schütze, H., Manning, C.D., Raghavan, P. (2008).

Introduction to Information Retrieval. Cambridge:

Cambridge University Press.

[20] Bird, S. (2006). NLTK: the natural language toolkit. In

Proceedings of the COLING/ACL 2006 Interactive

Presentation Sessions, pp. 69-72.

[21] Patel, D., Patel, M., Dangar, Y. (2015). A survey of

different stemming algorithm. Int. J. Adv. Eng. Res. Dev.,

2(6): 50-53.

[22] Larkey, L.S., Ballesteros, L., Connell, M.E. (2002).

Improving stemming for Arabic information retrieval:

light stemming and co-occurrence analysis. In

Proceedings of the 25th Annual International ACM

SIGIR Conference on Research and Development in

Information Retrieval, pp. 275-282.

https://doi.org/10.1145/564376.564425

[23] Prabhu, S., Vēṅkaṭēcan̲, N. (2007). Data Mining and

Warehousing. New Age International.

[24] Sutskever, I. (2013). Training Recurrent Neural

Networks. University of Toronto Toronto, ON, Canada.

[25] Tang, D., Li, C., Ji, X., Chen, Z., Di, F. (2019). Power

load forecasting using a refined LSTM. In Proceedings

754

of the 2019 11th International Conference on Machine

Learning and Computing, pp. 104-108.

https://doi.org/10.1145/3318299.3318353

[26] Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A. (2018).

Optimal deep learning LSTM model for electric load

forecasting using feature selection and genetic algorithm:

Comparison with machine learning approaches. Energies,

11(7): 1636. https://doi.org/10.3390/en11071636

[27] Patel, R.B., Patel, M.R., Patel, N.A. (2020). Electrical

load forecasting using machine learning methods, RNN

and LSTM. Journal of Xidian University, 14(4): 1376-

1386.

[28] Sutskever, I., Martens, J., Hinton, G. E. (2011).

Generating text with recurrent neural networks. in ICML.

[29] Zaremba, W., Sutskever, I., Vinyals, O. (2014).

Recurrent neural network regularization. arXiv Prepr.

arXiv1409.2329.

https://doi.org/10.48550/arXiv.1409.2329

NOMENCLATURE

RNN recurrent neural networks

TF-IDF Term Frequency - Inverse Document Frequency

755

