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In this paper, we use structural deformations to classify dementia patients. Firstly, surface 

meshes are recovered from MRI segmented hippocampal, and node-to-node interactions 

between all the surface meshes are constructed using a spectral matching approach. Then, 

to learn the low-dimensional feature representation, an enhanced version of the variational 

auto-encoder (VAE) is given to the vertex coordinates of the surface meshes. We describe 

a new strategy for increasing variational autoencoder performance (VAE). We designed a 

generative adversarial training (GAN) technique to train the VAE to generate realistic 

medical images and apply the deep feature consistency principle, ensuring that the VAE 

output and its related input images have identical features. A discriminator with a SoftMax 

layer is concurrently trained to distinguish people with Alzheimer's from healthy people. 

Studies on the ADNI dataset show that the proposed method can distinguish normal people 

from early AD/NC and AD/EMCI classes with low computational time and higher accuracy 

that outperforms the support vector machine (SVM) baseline approach. All the simulation 

results are carried out with the Anaconda tool. 
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1. INTRODUCTION

In recent days, Alzheimer’s disease (AD) is the most well-

known degenerative disease, and it proceeds slowly. The age-

specific mortality rate has grown, as has a global interest in 

dementia-related studies. AD is among the most well-known 

diseases among the elderly, and it causes dementia symptoms 

such as sensory impairments (such as reasoning, memorizing, 

organizing, and judgment) [1]. It is observed that the AD 

occurrence rate is 3% for people aged over 60 years and 58% 

for people aged over 80 years globally. As people live longer, 

the percentage of people with Alzheimer's disease rises 

considerably. It is noted that approximately 30 million people 

were affected by AD in 2006. This figure is expected to reach 

0.1 billion by 2050 [2]. It causes the hippocampal to shrink 

while interconnected cavities expand. The stage of the disease 

determines these severity levels of interruption. Brain scans 

(MRI images) revealed considerable expansion in the brain 

cortex, as well as expansion of the ventricles, throughout the 

later AD cycle [3, 4].  

Mild Cognitive Impairment (MCI) is a term used to describe 

early-stage Alzheimer's disease patients. Not all MCI patients 

will develop AD. MCI is a stage between being healthy and 

having AD. During this stage, a person's mental abilities 

slowly change in ways that only they and their families can see. 

Furthermore, hippocampus segmentation and identification 

are not only subjective to the operator's perspective but also 

time-consuming. On the other hand, due to neuronal death, 

ventricular enlargement is a prominent feature of AD [5]. 

Ventricles are located in the brain's center. These are loaded 

with cerebrospinal fluid (CSF), which regulates brain 

metabolism, and are bordered by grey and white matter (WM). 

Dementia illnesses frequently impair the covering of GM and 

WM structures. As a result, hemisphere shrinkage rates on 

cognitive tests show a stronger link than medial temporal lobe 

atrophy rates [6], and there is a big difference between normal 

people and people with moderate cognitive impairment or AD. 

A recent investigation into identifying region-specific 

biomarkers for Alzheimer's disease and amnestic MCI 

identification shows that the heterogeneity of MCI types may 

make categorization even more difficult [7]. 

Recent research on surface representation has demonstrated 

that spectral shape description outperforms Euclidean surface 

modeling [8-10]. Associations are described as graphs in the 

spectral-based shape-matching technique, and an Eigen 

decomposition on such graphs allows us to match comparable 

features. After matching surfaces are created, vertex 

coordinates serve as shape descriptors. A variational 

autoencoder achieves non-linear low-dimensional shape 

embedding (VAE). The Variational Autoencoder (VAE) [11, 

12] is a prominent generative model that allows us to

formulate picture creation tasks in probabilistic graphical

models containing latent constructs. The potential to regulate

the distribution of the latent vector, which is an independent

unit Gaussian random variable, is the key attribute of VAE.

Numerous strategies for improving VAE performance have

been suggested. For example, Gordon et al. [13], Hua and

Chen [14] suggested conditioning variational autoencoders on

either class labels or a range of visual qualities. Their studies

show that they can generate realistic images with various looks.

Furthermore, two models can be trained concurrently in the

GAN framework: a generator network used to map a noise

variable to data space and a discriminator network meant to

discriminate between samples from actual training data and

generated samples provided by the generator. Simultaneously,

an MLP model was trained to mimic a non-linear class
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imbalance. Deep convolutional techniques are a popular 

unsupervised machine learning method. Many customs may 

benefit from a trained generative classic. This simple method 

is for understanding the dataset core and using random inputs 

to produce realistic dataset visuals. These are available in 

compressed form for the model's training purposes. 

Another alternative is to develop reused local features 

obtained from unlabeled data, which can be used for 

classification purposes. In this study, we provide a strategy for 

training the variational autoencoder (VAE) to increase the 

system's effectiveness. However, the particular interest of this 

work is improving the quality of the resulting images to make 

them look natural and less blurred. Rather than the 

unsatisfactory per-pixel loss functions, we use objective 

functions explicitly on deep feature consistency principles. 

With learning convolutional operations, deep feature 

consistency can assist in capturing essential perceptual 

properties like spatial correlation. Our specific contributions 

are as follows: 

· Using a shared latent embedding space, our model 

smoothly links with two modes: variational autoencoder (VAE) 

and generative adversarial network (GAN). They are also 

tested for performance gains. 

·We confirm that trained latent models get theoretical and 

valuable data from MRI images, which can then be used to 

change the properties of medical images. 

·Finally, we provide an efficient feature extraction method 

for AD disease classification studies that outperform 

traditional techniques. 

 

 

2. RELATED WORKS 

 

Significant innovations in medical image analysis and 

classification models have improved the ability to distinguish 

between a normal class and an AD class in people. However, 

since medical images have high dimensionality, different 

feature reduction algorithms are needed to improve the 

classification accuracy further with minimal effort. 

An et al. [15] proposed a deep ensemble learning approach 

that integrates multisource data and accesses the "knowledge 

of experts." Two sparse autoencoders are trained for feature 

learning at the voting layer to minimize feature correlations 

and differentiate the basic classifiers. A nonlinear feature-

weighted technique based on a deep belief network is 

presented to score the base classifiers at the stacking layer, 

which may violate conditional independence. The neural 

network is utilized as a meta-classifier, and oversampling and 

threshold-moving are employed at the optimization layer to 

deal with the cost-sensitive challenge. Using similarity 

calculation, optimized predictions are created based on an 

ensemble of probabilistic predictions to classify Alzheimer's 

disease. This study describes a new way to use ML to improve 

primary care services for people with Alzheimer's. 

Jia et al. [16] suggested a novel AD framework mainly 

focused on two separate fMRI transformation images and 

enhanced the 3DPCANet framework and canonical correlation 

analysis (CCA). The fundamental principles are that fMRI 

images were first normalized, then mean regional 

homogeneity (mReHo) and mean amplitude of low-frequency 

amplitude (mALFF) transformations were done on the 

preprocessed images. Subsequently, using the upgraded 

3DPCANet, mReHo and mALFF images were retrieved as 

features merged using CCA. Furthermore, the SVM was 

employed to classify Alzheimer's disease patients. As a result, 

the classification accuracy for four classes (MCI-NC-SMC-

AD) is maintained above 90%. 

So et al. [17] presented a classification technique that only 

concentrates on texture features of the tissue primarily 

damaged by the start of AD. The data comes from the ADNI 

dataset, which includes image information of three classes (i.e., 

NC-AD-MCI) by cognitive status. Image analysis, texture 

analysis, and deep learning were used as research 

methodologies. Images were first captured for texture analysis, 

which underwent cropping and registration operations with 

filters. For this analysis, they used gray-level co-occurrence 

matrix operation for assessing image texture properties. Next, 

they used the feature selection method by adopting Fisher's 

coefficient. The obtained features from them are given to the 

classifier. Finally, they used MLP for multi-class classification. 

The suggested model outperformed the SVM and KNN 

classifiers by at least 6-19%, respectively. 

Shanmugam et al. [18] concentrated on the early diagnosis 

of various stages of cognitive impairment and Alzheimer's 

disease using neuroimaging and transfer learning (TL). MRI 

images from the ADNI collection with multiple classifications 

of Cognitively Normal (CN), Early Mild Cognitive 

Impairment (EMCI), Mild Cognitive Impairment (MCI), and 

Late Mild Cognitive Impairment (LMCI) are classified using 

a transfer learning technique. This classification employs three 

pre-trained networks: GoogLeNet, AlexNet, and ResNet-18, 

which were trained and evaluated using 6,000 images from the 

ADNI database. GoogleNet, AlexNet, and ResNet-18 are all 

96.39%, 94.08%, and 97.51% accurate at detecting AD, 

respectively. 

Liang et al. [19] suggested PCANet and the Broad Learning 

System (BLS) to detect Alzheimer's patients based on the 

clinical symptom of hippocampus shrinkage. This is the 

essential indication of Alzheimer's disease. T1-weighted MRIs 

were employed in this investigation, which included 207 AD 

patients, 209 MCI patients, and 109 CN people from the ADNI 

dataset. The left and right hippocampal are segmented from 

MRI images in the first stage, then the PCANet is used to 

extract features from these images, and the BLS is used to 

differentiate between patient types. Compared to machine 

learning algorithms, PCANet is better at detecting the most 

important parts of an image. BLS, on the other hand, can get 

over 95% accuracy in less time. Also, the proposed strategy 

enhances the accuracy and speed of classification work in 

computer-aided diagnosis of Alzheimer's disease. 

 

 

3. MATERIALS AND METHODS 

 

Considering MR images as input to the proposed model as 

depicted in Figure 1, which contains VAE as a major unit and 

their equivalent hippocampus segmentation is done at this 

stage. 

We then extract features from the MRI and then use an 

improved version of the VAE for latent feature representation 

learning with the low-level features which are later used to 

train for classification tasks.
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Figure 1. Simplified model for Alzheimer’s Disease 

classification 

 

3.1 Extraction of shape features 

 

Considering a baseline surface mesh Sr and a population of 

n surfaces{Si}i=1..n, spectral matching for every surface mesh 

as Si and Sr is accomplished as. Firstly, the initial map 

generation for the two surfaces is computed [20]. Then, 

according to Lombaert et al. [21], this initial map is utilized to 

create a smooth map for two surface meshes in the second 

stage. Vertices and nearby spots within every surface mesh are 

treated as vertices and edges of a graph in this case. Later, this 

group is then used to generate a graph Laplacian of each 

surface mesh. Finally, the Laplacian operator Li, in general, on 

each surface is demarcated as follows: 

 

𝐿𝑖 = 𝐺𝑖
−1(𝐷𝑖 − 𝑊𝑖) (1) 

 

here, Wi is the weight matrix calculated from the measured 

distance of nodes that are connected. Here, Direfers to a 

diagonal matrix whose members are determined. Finally, Gi 

denotes the weighting matrix according to Shakeri et al. [22]. 

The spectral components are provided via the eigen 

decomposition of the Laplacian matrix Li. The final smooth 

map between two surfaces, Si and Sr, is created in the following 

phase, given an initial map c. The association graph is then 

given a Laplacian matrix, which generates an eigenvectors 

group to obtain two surface meshes. 

In this VAE, the encoder E(x) job is to turn the image data 

into the same amount of latent vector data. Decoder D(z) task 

is to generate an output image. Finally, the pretrained 

VGGNetΦ(x) task extracts the relevant features needed for 

classification. In this current study, we use discriminator Dis(x) 

as a classifier for generating real and generated images. To 

increase classification accuracy, we applied VAE, which 

requires KL divergence loss ℒ𝑘𝑙 ← 𝐷𝐾𝐿(𝑞(𝑍|𝑋)||𝑝(𝑍))[23]. 

The other is a feature reconstruction loss. Explicitly, for a pre-

trained network, Φ using input and output images and 

measuring the reconstruction loss of the lth hidden layer is 

expressed as ℒ𝑟𝑒𝑐 = ℒ1 + ℒ2 + ⋯ + ℒ𝑙 , where denotes the 

feature reconstruction loss. 

Rather than providing information to the discriminator, 

using the VGGNet as the discriminator's input is the better idea. 

The goal is to allow for more steady training while utilizing 

less information as feasible and employing a GAN model with 

pre-trained VGGNet architecture. 

 

3.2 Neural network architecture 

 

Both the autoencoder and discriminator networks, as 

illustrated in Figure 2, are deep residual CNNs based on 

Radford et al. [24]. By instead employing deterministic spatial 

functions like max-pooling, we build four convolutional layers 

in the encoder network with a 4×4 kernel and a 2×2 stride to 

accomplish spatial downsampling. Following each 

convolutional layer comes a batch normalizing and, for a 

gradient allowing, using LeakyReLU successively. After each 

convolutional layer, a residual block is added, and all of them 

comprise two 3×3 kernels of identical layers. Finally, the 

encoder includes two fully-connected layers (FCL) that will be 

utilized to compute the KL divergence loss and sample latent 

variable z. We employ 4 CLs with 3×3 kernels and 1×1 stride 

for the decoder. We also recommend that replicated padding 

be used instead of traditional zero-padding, such that the input 

map fill-out with the input edge replica. Every convolutional 

layer except the last one is covered by a residual layer, just like 

the encoder. 

 

 
(a) Encoder 

 
(b) Decoder 
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(c) Residual block    (d)Discriminator network 

 

Figure 2. Simplified block diagram of encoder, decoder and 

discriminator network 

 

We employ the nearest neighbor approach on a scale of 2 

for upsampling rather than the partial stride convolution 

operation used by prior publications [25]. In addition, batch 

normalization is used to assist in stabilizing the entire training, 

and LeakyReLU is used as the activation function. DCGAN's 

architectural advancements inspire the discriminator's design. 

To accomplish spatial downsampling, we use convolutional 

layers with a 4×4 kernel and a 2×2 stride and append at the end 

of CL with a residual block. Later, discarding the sigmoid at 

last and stride CL of size 4×4 is employed for output 

incorporating a gradient of -0.01 and discriminator of 0.01. 

 

3.3 Feature reconstruction loss 

 

This is expressed as the mean squared error between feature 

representations in a DCNN as Φ. As in [26], we use VGGNet 

[27] as the loss network in our experiment. The primary idea 

of feature reconstructive loss is to search for evenness in the 

learnt feature space between real and generated images. 

Consider that Φl(x) represents the lth hidden layer. Φl(x) also 

signifies a block array of [Cl×Wl×Hl] dimensions. Clindicates 

the filter count, Wl means the width, and Hl denotes the height 

of the lth layer feature map. The squared Euclidean distance is 

a simple way to express the feature reconstruction loss (Ll) 

between two images (x and �̈�). 

 

ℒ𝑙 =
1

2𝐶𝑙𝑊𝑙𝐻𝑙

∑ ∑ ∑(Φ𝑙(𝑥)𝑐,𝑤,ℎ

𝐻𝑙

ℎ=1

𝑊𝑙

𝑤=1

𝐶𝑙

𝑐=1

− Φ𝑙(�̈�)𝑐,𝑤,ℎ)
2
 

(2) 

 

Instead of merely using features from a single layer, we use 

visual information from many levels and integrate the 

VGGNet'soutputs. For example, the expression for the last 

reconstruction loss (RL) is calculated as follows: 

 

ℒ𝑟𝑒𝑐 = ∑
100

𝐶𝑙
2

𝐿

𝑙=1

ℒ𝑙 (3) 

 

where, ℒ𝑙 and Cl are the loss of features and filter count, and L 

is the total number of CLs of the model. In addition, to regulate 

the spread of the latent variable z, we use the KL divergence 

loss ℒ𝑘𝑙 to regularize the encoder network. For training VAE 

accurately, we have to reduce KL divergence loss and 

reconstruction loss at every layer. 

 

ℒ𝑣𝑎𝑒 = 𝛼ℒ𝑘𝑙 + 𝛽ℒ𝑟𝑒𝑐 (4) 

 

where, α and β denote weighting values, respectively. It should 

be noted that VGGNet is solely utilized for feature extraction 

throughout the training process. In our current work, the MRI 

latent representation is the latent variable of the autoencoder. 

 

3.4 Adversarial loss 

 

In this, we added a VAE context to the GAN to generate the 

required outputs distributed throughout real images. WGAN is 

the basis of our adversarial training. To increase training 

stability even further, rather than directly feeding original 

images, we extracted features from the first layer of pretrained 

VGGNet and provided them to the discriminator. With the 

help of deep networks, to achieve a reconstructed image that 

is the same as the original. Later, the sigmoid is discarded, and 

1 and -1 should be used as labels for real and generated images. 

We discovered that GAN can fail and that VAE is likely to 

take precedence when using too small labels, such as 1 and -1, 

during testing. Finally, as per Equation 5, our model may be 

trained end-to-end by adding three losses, and Algorithm 1 is 

used for the training approach. 

 

ℒ𝑣𝑎𝑒 = 𝛼ℒ𝑘𝑙 + 𝛽ℒ𝑟𝑒𝑐 + ℒ𝐺𝐴𝑁 (5) 

 

where, ℒ𝑘𝑙  denotes KL divergence loss, ℒ𝑟𝑒𝑐  denotes 

reconstruction loss and ℒ𝐺𝐴𝑁 denotes adversarial loss. 

________________________________________________ 

Algorithm 1: Pseudo code for VAE-WGAN training model 

________________________________________________ 

Input: feature parameter; Φ, pretrained model 

WEncoder; WDecoder; WDiscriminator← Initialize parameters 

repeat 

X ←mini-batch dataset images 

𝑍 ← 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑋) 

ℒ𝑘𝑙 ← 𝐷𝐾𝐿(𝑞(𝑍|𝑋)||𝑝(𝑍)) 

X̂ ← 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑍) 

ℒ𝑟𝑒𝑐 ← ||Φ(X) − Φ(X̂)||
2

 

ℒ𝐺𝐴𝑁 ← 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(𝑋) − 𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟(X̂) 

𝑊𝐸𝑛𝑐𝑜𝑑𝑒𝑟 −∇𝑊𝐸𝑛𝑐𝑜𝑑𝑒𝑟
(ℒ𝑘𝑙 + ℒ𝑟𝑒𝑐 − ℒ𝐺𝐴𝑁)←

+  

𝑊𝐷𝑒𝑐𝑜𝑑𝑒𝑟 −∇𝑊𝐷𝑒𝑐𝑜𝑑𝑒𝑟
(ℒ𝑟𝑒𝑐 − ℒ𝐺𝐴𝑁)←

+  

𝑊𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 −∇𝑊𝐷𝑖𝑠𝑖𝑚𝑖𝑛𝑎𝑛𝑐𝑒
ℒ𝐺𝐴𝑁←

+  

𝑊𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 ← 𝑐𝑙𝑖𝑝(𝑊𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 , −𝑐, 𝑐) 

until convergence of parameters 

_______________________________________________ 

 

 

4. RESULTS AND DISCUSSION 

 

All the images are tested using the Anaconda tool. The 

proposed technique is evaluated using the Alzheimer's Disease 

Neuroimaging Initiative, a popular brain imaging dataset in 

Alzheimer's disease (ADNI: adni.loni.usc.edu). A subset of 

the most recent 1.5 T MR scans was used for this investigation. 

The left (label number 17) and right (label number 53) 

hippocampi were separated, and an automated segmentation 
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process was used using commercial tools. Certain subjects are 

removed due to errors in the preprocessing stages. As a result, 

our study comprised 142 normal controls (NC), 83 

Alzheimer's disease (AD) patients, 154 people with early MCI 

(EMCI), and 150 people with MCI (LMCI). There are four 

subfolders in the folder data (NC, AD, EMCI, LMCI). Every 

directory is divided into two sub-directories (17 and 53). All 

spectral meshes are stored in vtk format here. 

"data/NC/17/NC_1_17.vtk" represents the left hippocampus 

mesh of healthy subject 1, and "data/NC/53/NC 1_53.vtk" 

represents the right hippocampus mesh of the same subject. 

 

4.1 Analysis of baseline and proposed work 

 

Proposed work:The basic VAE uses per-pixel analysis, 

resulting in blurry outcomes since it sees images as 

"unstructured" input and each pixel is independent. The 

proposed study improves VAE performance by evaluating 

irregularity in deep feature space. Convolutional procedures 

allow pre-trained deep CNN to capture visual quality elements 

like spatial correlation. The adversarial loss is a "structured" 

measurement since GAN training involves high-level image 

classification, and no pixel is addressed separately. 

Baseline: We train linear Support Vector Machines (SVM) 

with the same dataset after dimensionality reduction using 

principal components analysis (PCA) as a baseline. The 

features are extracted from surface meshes using spectral 

matching in the same manner as we recommended. In addition, 

SVM employs an optimal linear separating hyperplane to 

divide two data sets in a feature space. The ideal hyperplane is 

formed by increasing the minimal margin between the two sets. 

Consequently, the final hyperplane will rely only on boundary 

training patterns known as support vectors. 

Six binary classification issues are considered here. Table 1 

shows the results of all classes. We use 20% of the data for 

testing and the remaining 80% for training. For a fair review, 

the entire process is performed in five iterations. 

 

Table 1. Performance comparison 3 metrics with a baseline 

and proposed method 

 

Class 
Baseline (SVM) Proposed 

Acc Sen Spe Acc Sen Spe 

NC/AD 80 70 86 84 73 89 

NC/EMCI 55 52 58 56 52 60 

NC/LMCI 63 56 75 59 52 64 

AD/EMCI 76 65 71 81 70 82 

AD/LMCI 63 58 66 67 58 73 

EMCI/LMCI 51 50 52 63 62 66 

 

Based on the trial findings, the regularization factor is 0.05. 

The classifier's performance is quantified in the analysis of the 

results by three metrics. 

 

Accuracy (Acc) =
TP + TN

TP + TN + FP + FN
 (6) 

 

Sensitivity(Sen) =
TP

TP + FN
 (7) 

 

Specificity (Spe) =
TN

FP + TN
 (8) 

 

Figure 3 indicates that our proposed model is more accurate 

in most cases. As predicted, the highest classification accuracy 

is found for diagnostically highly differentiated groups. For 

example, 84% and 81% for the classification of NC versus AD 

and EMCI versus AD, respectively. 

 

 
 

Figure 3. Performance comparison of accuracy for six 

classes for baseline and proposed work 

 

Figure 4 indicates that our proposed model generates greater 

sensitivity in most situations. As predicted, the highest 

sensitivity is achieved for diagnostically highly differentiated 

groups. For example, 73% and 70% of people agreed that NC 

was different from AD and that EMCI was different from AD. 

 

 
 

Figure 4. Performance comparison of sensitivity for six 

classes for baseline and proposed work 

 

In particular, Figure 5 indicates that our proposed model 

generates higher specificity in most circumstances. As 

predicted, the highest specificity is achieved for diagnostically 

highly separated groups. For NC/AD, it is 89%, and AD/EMCI 

is 82%, respectively. 
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Figure 5. Performance comparison of specificity for six 

classes for baseline and proposed work 

 

Table 2. Evaluation results of training data and test data with 

a baseline and proposed method 

 

Evaluation 

metric 

Baseline Proposed 

Training 

Data (msec) 

Test 

Data 

Training 

Data 

Test 

Data 

ROC AUC 0.8909 0.9175 0.9211 0.9322 

Time (msec) 250.109 167.68 189.21 145.71 

 

According to Table 2, the proposed model area under the 

receiver operating characteristic curve (ROC) curve for test 

data is 93.22%, and the testing time is 145.71 msec. The 

statistics table and ROC curve visualization summarize how 

the model generally works. For example, Figure 6 shows that 

baseline (SVM) performs poorly with a ROC AUC value of 

91.75% and reconstructs very blurry images because of the 

shortcomings of per-pixel loss and consumes more time 

training time of 250.1 msec and a testing time of 167.68 msec. 

On the other hand, our proposed model incorporates VAE in 

the framework of GAN to produce outputs that exist on many 

natural images. This consumes less training time, 189.21 msec, 

and a testing time of 145.71 msec. 

 

 
 

Figure 6. Comparison of the training and testing time using 

baseline and proposed model 

5. CONCLUSIONS 

 

This study presents a feature-learning technique for 

Alzheimer's disease classification based on a spectral feature 

representation and hippocampal morphology. Thus, extracted 

features from MRI are 3D surface meshes for node-to-node 

vertices using a spectral matching process. First, VAE is 

trained in hippocampal changes to generate the latent feature 

map. Then, for classification purposes, the SoftMax layer is 

used, and the dataset considered for this is the ADNI dataset. 

In addition, the proposed work mainly concentrated on 

AD/NC and EMCI/AD classes for the detection of various 

stages of dementia. The significance of VAE is shown by 

having less training and testing time compared to the baseline 

method for enhancing the diagnostic process. Other useful 

elements, including cognitive data and incorporating PET 

multimodal data, might be included in the future to improve 

classification accuracy. 

 

 

REFERENCES 

 

[1] Jain, R., Jain, N., Aggarwal, A., Hemanth, D.J. (2019). 

Convolutional neural network based Alzheimer’s disease 

classification from magnetic resonance brain images. 

Cognitive Systems Research, 57: 147-

159.https://doi.org/10.1016/j.cogsys.2018.12.015 

[2] Gunawardena, K.A.N.N.P., Rajapakse, R.N., Kodikara, 

N.D. (2017). Applying convolutional neural networks for 

pre-detection of Alzheimer's disease from structural MRI 

data. In 2017 24th International Conference on 

Mechatronics and Machine Vision in Practice (M2VIP), 

Auckland, New Zealand, pp. 1-7. 

https://doi.org/10.1109/M2VIP.2017.8211486 

[3] Sarraf, S., DeSouza, D.D., Anderson, J., Tofighi, G. 

(2017). DeepAD: Alzheimer’s disease classification via 

deep convolutional neural networks using MRI and fMRI. 

BioRxiv, 070441. https://doi.org/10.1101/070441 

[4] McCrackin, L. (2018). Early detection of Alzheimer’s 

disease using deep learning. In Canadian Conference on 

Artificial Intelligence, pp. 355-

359.https://doi.org/10.1007/978-3-319-89656-4_40 

[5] Harris, P., Suarez, M.F., Surace, E.I., Méndez, P.C., 

Martín, M.E., Clarens, M.F., Tapajóz, F., Russo, M.J., 

Campos, J., Guinjoan, S.M., Sevlever, G., Allegri, R.F. 

(2015). Cognitive reserve and Aβ1-42 in mild cognitive 

impairment (Argentina-Alzheimer’s Disease 

Neuroimaging Initiative). Neuropsychiatric Disease and 

Treatment, 11: 2599. 

https://doi.org/10.2147/NDT.S84292 

[6] Jack, C.R., Shiung, M.M., Gunter, J.L., O’brien, P.C., 

Weigand, S.D., Knopman, D.S., Boeve, B.F., Ivnik, R.J., 

Smith, G.E., Cha, R.H., Tangalos, E.G., Petersen, R.C. 

(2004). Comparison of different MRI brain atrophy rate 

measures with clinical disease progression in AD. 

Neurology, 62(4): 591-600. 

https://doi.org/10.1212/01.WNL.0000110315.26026.EF 

[7] Fang, C., Li, C., Cabrerizo, M., Barreto, A., Andrian, J., 

Rishe, N., Loewenstein, D., Duara, R., Adjouadi, M. 

(2018). Gaussian discriminant analysis for optimal 

delineation of mild cognitive impairment in Alzheimer’s 

disease. International Journal of Neural Systems, 28(8): 

1850017. https://doi.org/10.1142/S012906571850017X 

[8] Lombaert, H., Criminisi, A., Ayache, N. (2015). Spectral 

0
10
20
30
40
50
60
70
80
90

100
S

p
ec

fi
ci

ty
 i

n
 %

Class

Baseline Proposed

250.1

167.68
189.21

145.71

0

50

100

150

200

250

300

Training data Test data

T
im

e 
in

 m
se

c

Data

Baseline Proposed

796



 

forests: Learning of surface data, application to cortical 

parcellation. In International Conference on Medical 

Image Computing and Computer-Assisted Intervention, 

pp. 547-555. https://doi.org/10.1007/978-3-319-24553-

9_67 

[9] Eschenburg, K.M., Grabowski, T.J., Haynor, D.R. 

(2021). Learning cortical parcellations using graph 

neural networks. Frontiers in Neuroscience, 15. 

https://doi.org/10.3389/fnins.2021.797500 

[10] Lombaert, H., Sporring, J., Siddiqi, K. (2013). 

Diffeomorphic spectral matching of cortical surfaces. In 

International Conference on Information Processing in 

Medical Imaging, pp. 376-389. 

https://doi.org/10.1007/978-3-642-38868-2_32 

[11] Lopez, R., Boyeau, P., Yosef, N., Jordan, M., Regier, J. 

(2020). Decision-making with auto-encoding variational 

Bayes. Advances in Neural Information Processing 

Systems, 33: 5081-5092. 

[12] Hu, M.F., Zuo, X., Liu, J.W. (2022). Survey on deep 

generative model. Acta Automatica Sinica, 48: 40-74. 

https://doi.org/10.16383/j.aas.c190866 

[13] Gordon, J., Hernández-Lobato, J.M. (2020). Combining 

deep generative and discriminative models for Bayesian 

semi-supervised learning. Pattern Recognition, 100: 

107156. https://doi.org/10.1016/j.patcog.2019.107156 

[14] Hua, G., Chen, D.D. (2022). Chapter 5 - Deep 

conditional image generation: Towards controllable 

visual pattern modeling. Advanced Methods and Deep 

Learning in Computer Vision, 191-219. 

https://doi.org/10.1016/B978-0-12-822109-9.00014-X 

[15] An, N., Ding, H., Yang, J., Au, R., Ang, T.F. (2020). 

Deep ensemble learning for Alzheimer's disease 

classification. Journal of Biomedical Informatics, 105: 

103411. https://doi.org/10.1016/j.jbi.2020.103411 

[16] Jia, H., Wang, Y., Duan, Y., Xiao, H. (2021). 

Alzheimer’s disease classification based on image 

transformation and features fusion. Computational and 

Mathematical Methods in Medicine, 1-11. 

https://doi.org/10.1155/2021/9624269 

[17] So, J.H., Madusanka, N., Choi, H.K., Choi, B.K., Park, 

H.G. (2019). Deep learning for Alzheimer’s disease 

classification using texture features. Current Medical 

Imaging, 15(7): 689-698. 

https://doi.org/10.2174/1573405615666190404163233 

[18] Shanmugam, J.V., Duraisamy, B., Simon, B.C., 

Bhaskaran, P. (2022). Alzheimer’s disease classification 

using pre-trained deep networks. Biomedical Signal 

Processing and Control, 71: 103217. 

https://doi.org/10.1016/j.bspc.2021.103217 

[19] Liang, C., Lao, H., Wei, T., Zhang, X. (2022). 

Alzheimer’s disease classification from hippocampal 

atrophy based on PCANet-BLS. Multimedia Tools and 

Applications, 81(8): 11187-11203. 

https://doi.org/10.1007/s11042-022-12228-0 

[20] Lombaert, H., Grady, L., Polimeni, J.R., Cheriet, F. 

(2012). FOCUSR: Feature oriented correspondence 

using spectral regularization--a method for precise 

surface matching. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 35(9): 2143-2160. 

https://doi.org/10.1109/TPAMI.2012.276 

[21] Lombaert, H., Sporring, J., Siddiqi, K. (2013). 

Diffeomorphic spectral matching of cortical surfaces. In 

International Conference on Information Processing in 

Medical Imaging, pp. 376-389. 

https://doi.org/10.1007/978-3-642-38868-2_32 

[22] Shakeri, M., Lombaert, H., Datta, A.N., et al. (2016). 

Statistical shape analysis of subcortical structures using 

spectral matching. Computerized Medical Imaging and 

Graphics, 52: 58-71. 

https://doi.org/10.1016/j.compmedimag.2016.03.00 

[23] Lopez, R., Regier, J., Jordan, M.I., Yosef, N. (2018). 

Information constraints on auto-encoding variational 

bayes. Advances in Neural Information Processing 

Systems, 31. 

[24] Radford, A., Metz, L., Chintala, S. (2015). Unsupervised 

representation learning with deep convolutional 

generative adversarial networks. arXiv preprint 

arXiv:1511.06434. 

[25] Shelhamer, E., Long, J., Darrell, T. (2016). Fully 

Convolutional Networks for Semantic Segmentation. 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, 39: 1-1. 

https://doi.org/10.1109/TPAMI.2016.2572683 

[26] Gatys, L.A., Ecker, A.S., Bethge, M. (2015). A neural 

algorithm of artistic style. arXiv preprint 

arXiv:1508.06576. https://doi.org/10.1167/16.12.326 

[27] Simonyan, K., Zisserman, A. (2014). Very deep 

convolutional networks for large-scale image recognition. 

arXiv preprint arXiv:1409.1556. 

https://doi.org/10.48550/arXiv.1409.1556  

797




