
Prevention and Detection Mechanisms for Re-Entrancy Attack and King of Ether Throne

Attack for Ethereum Smart Contracts

Baddepaka Prasad*, Sirandas Ramachandram

Computer Science and Engineering, Osmania University, Hyderabad, Telangana 500007, India

Corresponding Author Email: prasad.baddepaka@gmail.com

https://doi.org/10.18280/isi.270505 ABSTRACT

Received: 18 July 2022

Accepted: 13 October 2022

The second revolution in blockchain technology is smart contracts. Smart contracts are used

in most of the blockchain applications like cryptocurrency, Health care, banking sectors,

supply chain and IOT with different platforms like Fabric, Ethereum, Corda etc. In

Ethereum blockchain, due to lack of inefficiency of the knowledge of technical developers

and insecure programming languages for smart contracts, the attackers have exploited the

smart contracts and the end users have lost millions of dollars like re-entrancy, king of ether

throne attack, DoS, forcefully send ethers, multisig wallet, unexpected ether and poly

network attack etc. In the year 2016, the attackers have exploited approximately $289

million US dollars with the help of re-entrancy vulnerability. The attackers have also

attacked the smart contracts and broke the execution of that particular contracts through

king of ether throne attack. In this paper, we propose a novel prevention and detection

mechanisms for re-entrancy and king of ether throne attacks using time mechanisms and

also implementing the same with proof of concepts for these vulnerabilities.

Keywords:

blockchain technology, smart contracts, re-

entrancy vulnerability, king of ether throne

vulnerability

1. INTRODUCTION

Smart contracts are being used in blockchain technology

since 2015 in Ethereum environments. Vitalik Buterin has

introduced these contracts to avoid the intermediates for any

system and now a days most of the blockchain platforms are

using these contracts to improve the transparency of particular

system [1]. Once the contracts are developed, they are to be

deployed on EVM machine before execution. Once the code

execution is done the compiler will produce the Byte code and

ABI code to run on EVM machine. Before the year of 2016,

most of the people are very much interested to use these smart

contract applications without knowing their security measures.

These contracts are adopted by many of the applications due

to the excellent features which are available in these contracts.

But the problems have a raised when the users choose these

contracts to implement the asset applications. The intruders

have attacked and theft the crypto and other valuable assets [2].

Due to the inefficiency of the developers, the contracts which

are developed by them have many loop holes and once they

are deployed on the Blockchain, they cannot do anything

further and these vulnerabilities causes various attacks [3].

Since the year 2016 till date many attacks have happened on

Ethereum contracts like The DAO, Rubixi, King of ether

throne, Etherpot, parity mutlisig wallet and govern mental due

to Reentrancy attack, Constructors with care, Denial Of

Service attack, tx.origin, Integer overflow, mishandled

exception, Unchecked call attack and External contract

referencing attack. According [4, 5], in Aug 2021, the Poly

network has been hacked by Mr. WhiteHat and a huge loss of

610 million dollars occurred in digital assets. Poly network is

an interoperable frame work for crypto assets using blockchain.

By using poly network interchange the crypto asset from one

to another like bitcoin to Ethers and ether to other crypto assets.

Finally, Mr. WhiteHat Given all the crypto assets to

polynetwork and he has joined in Cyber security wing in same

company. While developing the Smart contracts, developers

have to imagine future vulnerabilities of contracts and have to

develop the smart contracts, because once they are attacked by

attacker the loss is irrecoverable.

This paper is organized in the following manner; Related

work and the summary of Detection and prevention methods

for vulnerabilities of Smart contracts before and after the

deployment into blockchain are discussed in section II and

Section III describes the proposed solutions for Re-entrancy

and king of ether throne attack. Section IV explains the proof

of concepts with testing environment based on Remix and

explains the testing scenario for these attacks.

2. RELATED WORK

In 2016, Major attack happened in Ethereum due to the

DAO attack (Re-entrancy attack) [6] and in the same year one

more attack happened that is KoET (King of ether throne

attack) [7, 8], at this time accountant holders lost millions of

dollars. Whenever investigate these vulnerabilities, contracts

have some challenges based on contract features and loopholes.

Those are, a) Once the contracts deployed into blockchain they

are immutable (code is law). b) before deploying the contracts

into blockchain, developers are using some static analysis tools

for vulnerabilities of contracts which is depending on

individual patterns. These patterns may not find vulnerabilities

if the attackers follow other scenario to attack the contracts. c)

Once attacker attack on any contract then we are unable to find

immediately to solve that situation due to these attacks may

not take more than one transaction. We are differentiated the

related work from above attacks based on prevention &

Ingénierie des Systèmes d’Information
Vol. 27, No. 5, October, 2022, pp. 725-735

Journal homepage: http://iieta.org/journals/isi

725

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270505&domain=pdf

detection mechanisms for before deploy the contracts into

blockchain and prevention & detection mechanisms for after

deployment smart contracts.

2.1 Prevention and Detection methods for vulnerabilities of

Smart contracts before deploy into blockchain

Oyente [3, 9] is a one of the analysis tool based on symbolic

representation and which depends on execution path with

mathematical formula. Oyente tool detects the bugs which are

including re-entrancy, transaction ordering dependency,

timestamp, exception handling and also detect the bugs also

finds the execution path of contracts. Remix [10, 11] is a web

based IDE analysis tool based on formal verification to detect

bugs for solidity and Vyper languages which are gas costly

patterns, tx.origin, re-entrancy, block hash usage and TOD.

Remix can find security analysis for contracts vulnerabilities.

Mythril [12, 13] is an analysis tool released from ConsenSys

based on symbolic representation it means analysis of contract

depending EVM byte code. This tool finds few bugs like

unexpected functions, tx.origin, integer underflow/overflow,

and re-entrancy. F* frames [9] released by Microsoft based on

formal verification with functional programming language.

Smart contract code or EVM byte code converted into F*

language for detecting vulnerabilities like exception handling

and re-entrancy. Smart Check [14, 15] is an analysis tool to

detect the miner vulnerabilities of contracts. Smart check was

unable to find serious vulnerabilities like re-entrancy and

destroy the contracts. which are covers only redundant fallback

functions, mismatch compiler version and style guide

violations. Slither [16] tool analysis the process similar to

Smart Check and is unable to find lower level vulnerabilities.

Contract code converted to Abstract Syntax Tree to give input

for the Slither tool to detect bugs. VANDAL [17] is an analysis

tool which takes solidity code as an input and converted into

semantic relations to detect bugs in code. Vandal is fastest

analysis tool for vulnerabilities detection when compared with

others tools. ZEUS [18, 19], one of the static analysis tool and

solidity contract code converted into authentic version of

XACML styled format. It Enhance the behavior of smart

contract, solidity code converted to LLVM bit code.

Security [20] is a static analysis tool which is taken as input

to analyze either solidity code or EVM byte code. This tool

covers few of vulnerabilities of contracts like transaction re-

entrancy, unexpected calls, insecure coding patterns, untrusted

input and recursive calls. Liu et al. [21] addressed the issue of

re-entrnacy attack, Author has introduced the new solution for

re-entrancy which is called Reguard. In this model before

deploying the contract into blockchain, contract analyzed by

the Reguard with few steps like given contract modified as

Intermediate Representation and this IR transform to C++

Smart contract. By using this C++ contract code the code

detector detects the re-entrancy vulnerability. According to

Chinen et al. [22] address the issue of re-entrancy attacks,

Author has suggested Re-entrancy Analyzer (RA) tool to find

the bugs. RA uses symbolic execution and vulnerability

verification to detect the smart contract attacks. First step is to

do Symbolic emulation find the execution path and the second

one, by using execution path vulnerability verification verify

the re-entrancy vulnerability based on SMT solver. Samreen et

al. [23] addressed the identification of re-entrancy

vulnerability with external call function and persistent state

variable. To parse the solidity programming language author

uses TXL paradigm which indicates parse the input

information to AST and this intermediate Abstract Syntax Tree

transformed to the target AST (Figure 1).

Figure 1. TXL paradigm

According to Rodler et al. [24] protecting the smart

contracts from re-entrancy attack without the knowledge of

semantic analysis and modifications. Sereum uses taint engine

to avoid attacks either static or dynamic.

2.2 Prevention and Detection methods for vulnerabilities of

Smart contracts after deployed into blockchain

According to Alkhalifah et al. [25] addressed the issue of re-

entrancy attack, and has developed the prevention and

detection mechanisms based on new pattern. To break the

attack, the authors have suggested differentiate mechanisms

between before transaction of contract and after transaction of

contract must be same. Which means if a-b=X and aI-bI=XI

then X=XI Here ‘a’ is a contract balance, ‘b’ is a participant

balance and the difference of these balances equal to ‘X’ for

resolve re-entrancy attack situation. This mechanism was

implemented on the Bank application. For example, initially

a=10 and b=5 then X=5, if we want add one more ether as new

transaction aI=11, bI=6 then XI=5 for T1 transaction. Attacker

trying to execute T2 transaction with the use of recursive call,

now before start the T2 transaction of 1st operation a=11, b=6

and X=5. After completion of 1st operation aI=10, bI=6 and

XI=4 now checks X and XI before starts second operation if

both are equal then second operation will be executed

otherwise it will become an attack. We have executed the

given code in remix tool and have found few issues like,

whenever the account holder withdraws the ethers from

contract and if any account holder deposits the ether to the

contract, there is a mismatch between the contract balance and

participant balance. If there is a mismatch, then we are unable

to withdraw and transfer these ethers which are available in the

contract.

2.3 Limitations from the existing work

(1) Some of the patterns have identified for vulnerabilities

like re-entrancy, DoS and king of ether throne but attackers are

finding new ways to overcome those patterns day by day.

(2) The contracts which are being exploited by the attackers

are unable to find the address of corresponding attacker.

(3) Though the attackers are using various ways to attack,

the contracts are unable to recounter the attacks done by the

attackers.

726

3. PROPOSED SOLUTIONS FOR THE ATTACKS

3.1 Re-entrancy attack

We have analyzed the re-entrancy vulnerability caused by

depending on some of the factors like fallback function

(fallback()), Smart contract balance (address(this).balance)

and user individual balance (clientAmount[msg.sender]).

Attacker uses the above three functions to attack the DAO.

After that some patterns have identified to detect re-entrancy

but intruders are finding new ways to get the re-entrancy attack.

The solution for the above mentioned problem is to describe

the re-entrancy, to solve this vulnerability we are using the

Time Based Mechanisms for identifying the attacker address

with notifying to the sender contract address and block the

attacker address and ethers. Whenever attacker deposit the

ethers into the contract then attacker immediately call the

withdraw function to steel the ether from contract, but the

proposed mechanism prevents the attack and notify the same

to the original sender and block the attacker ethers into that

particular contract. In the proposed mechanism, every sender

has to add the time to withdraw the ethers before sending the

ethers into contract. The account holder cannot withdraw the

ethers from the contract well in advance before the mentioned

time at the time of the deposits. If any one trying to access their

ethers before time interval, then the contract should notify to

the sender and block his ethers in the contract only.

In the Figure 2, ‘A’ is the Contract Balance which the

insurance company deploy the contract into blockchain with

their company own ethers, and ‘B’ is the participants balance

which are the insurance account holders. The individual

participant balance (an) and time interval (tx=10sec) of every

account address after the deposit of ethers into contract.

Whenever noted any transaction ‘T’ then the time interval gets

started for that particular contract. Here, sender deploy the

smart contract into blockchain with the initial balance

A=10,number of participants deposit the ethers into contract

B=(a1=5, a2=3) then add the time for these deposits of

addresses to withdraw the ethers from contract(a1
I=10sec,

a2
I=10sec).Indeed, participant balance B=5+3=8 and total

balance of contract X=(A+B)=10+5+3=18;now the intruder ‘b’

comes into picture ‘b’ can deposit the 1 ether to contract(total

balance(M)=X+b=18+1=19) and call the withdraw function

immediately to steel the his own balance and other account

holder balance but this contract unable to hack by the attacker

because whenever attacker deposit the 1 ether to contract then

contract add the time to bI=10sec and attacker must be wait

10sec to withdraw the function but which is not possible to call

deposit function and withdraw function with in the single

transaction(T).Finally, once attacker trying attack the contract

with his ethers then contract notify attacker address to sender

and never reveal his amount to withdraw even though time

interval completed and now available total balance (M)=19.

We have given withdraw solution as following:

∀Z∈T: (Z is valid)<=>(MI>=tx=’n’secs), where T=Transaction,

Z=Operation of the transaction that be changes the contract

state, A=Contract Balance, B=Participant Balance, X=A+B;

total balance of before transaction of Z, M=X+b; total balance

of after transaction to deposit the ethers of Z, MI=M–b; total

balance of after transaction to withdraw the ethers of Z,

Tx=Assign time to every deposit function, n=No. of Seconds.

Figure 2. Re-entrancy attack scenario

Figure 3. King of ether throne attack scenario

727

Figure 4. Solution data flow for re-entrancy attack

3.2 King of ether throne attack

Multiple account holders can participate online bidding to

government contracts and any other private contracts through

online mode who will bid highest ethers, that account holder

will get the contract to develop projects. Now, attacker comes

into picture to attack on contract for become a king or win the

online bidding and the attacker cannot give chance to others to

win online bidding. We are analyzed king of ether throne

attack which causes due to onlineactions.openBidding{value:

msg.value}(); and doesn’t fallback function to receive crypto

from other master contract. To avoid this vulnerability based

on the function openBidding() external payable and function

withdrawBidding () public with respect to time mechanisms

and without having the fallback function to the attacker.

In Figure 3. Original sender will deploy the contract into

blockchain with initial amount of 10 ethers and starts for online

bidding to win the bid. At that time various addresses are trying

to win the contract. First user sends 5 ethers to the contract

(total amount=15 ethers) to become crowned head and the

malicious user will try to win the game with 7 ethers within the

time interval (tx=3Min) and the first user will withdraw his

amount within the time interval (tx=3Min) then available balance

is 17 ethers. Next account holder will spend 10 ethers for

bidding to become a crowned head (total balance=27) then the

malicious user actually has to withdraw his amount from the

contract but he doesn’t withdraw his balance to disrupt the

contract, when his time interval (tx=3Min) is reached then we

consider that user is the attacker.

We have given withdraw solution as following:

∀𝑍 ∈ 𝑇 : (Z is valid)<=>(MI<=tx=’n’mins), where

T=Transaction, Z=Operation of the transaction that be changes

the contract state, A=Contract Balance, X=A+a; Now ‘a ’ will

become a Crowned head, M=X+b:(a<b); total balance of after

transaction to deposit the ethers of Z for next Crowned head

and withdraw ‘a’ balance within given time, MI=M–a; total

balance of after transaction to withdraw the ethers of Z,

Tx=Assign time to every deposit function, n=No. of Seconds.

4. PROOF OF CONCEPTS

4.1 The testing environment for re-entrancy attack

In Figure 4, for testing this attack, we choose Remix tool for

implementing the new patterns which is related to re-entrancy

and king of ether throne attacks. Remix tool is used to develop

new contracts with respect to debug, compile and execute by

using java script virtual machines but not only that, which

provides injected W3 and W3 provider virtual machines. We

investigate with solidity programming language, those are

InsuranceContractProblemWithReentrancy{}, Attack{},

InsuranceCompany{} for the solution of re-entrancy attack.

4.2 The testing scenario for re-entrancy attack

In this scenario totally four contracts are available to check

re-entrancy possibility with insurance application. An owner

of the contract can deploy into blockchain initially with 10

ethers and account holders may store the ethers in this

contracts for application operations. These application

contracts are InsuranceContractProblemWithReentrancy

{},Attacker{} and InsuranceCompany{},Attacker{}. Here, each

case study consist of two test scenarios, first scenario is re-

entrancy problem case study and the second scenario is

solution for the re-entrancy problem.

Smart Contract 1. Insurance with re-entrancy problem

1 pragma solidity ^0.6.10;

2 contract InsuranceContractProblemWithReentrancy {

3 address private owner;

4 mapping(address => uint) private clientAmount;

5 constructor() public payable {

6 owner = msg.sender;

7 clientAmount[msg.sender] += msg.value;

8 }

9 /** deposit function for client*/

10 function depositInsuranceFunds() external payable

 returns(bool){

11 require(msg.value > 0, 'client amount not

728

 greater than zero');

12 clientAmount[msg.sender] += msg.value;

13 return true;

14 }

15

16 /** withdraw function for client*/

17 function withdrawInsuranceFunds(uint _value) public

 payable {

18 require(_value <=clientAmount[msg.sender],

 'client account balance has no amount');

19 msg.sender.call.value(_value)(" ");

20 clientAmount[msg.sender] -= _value;

21 }

22

23 /**Transfer ethers to account holders with in the

contract*/

24 function transfer(address to, uint amount) public {

25 require(amount <= clientAmount[msg.sender],

 'client account balance has no amount');

26 clientAmount[to] += amount;

27 clientAmount[msg.sender] -= amount;

28 }

29 /**fetch Insurance company liquidity*/

30 function getInsuranceCompanyLiquidity() external

 view returns(uint) {

31 return address(this).balance;

32 }

33 /**Fetch client balance*/

34 function getClientBalance() public view

 returns(uint){

35 return clientAmount[msg.sender];

36 }

37 }

38 contract Attack{

39 InsuranceContractProblemWithReentrancy public

 insurance;

40 constructor(address _insuranceAddress) public {

41 insurance =InsuranceContractProblemWithReentrancy

 (_insuranceAddress);

42 }

43 fallback() external payable{

44 if (address(insurance).balance >= 1 ether){

45 insurance.withdrawInsuranceFunds(1 ether);

46 }

47 }

48 /**Attack function for above contract */

49 function attack() external payable{

50 require(msg.value >= 1 ether);

51 insurance.depositInsuranceFunds{value: 1 ether}();

52 insurance.withdrawInsuranceFunds(1 ether);

53 }

54 /**Fetch Attacker balance*/

55 function getBalance() public view returns (uint){

56 return address (this). balance;

57 }

58 }

4.3 Reentrancy attack case study

Smart Contract 1 and Smart Contract 2 shows two contracts,

they are InsuranceContractProblemWithReentrancy {}
consists lines from 1 to 37, contract Attack{} consist lines from

38 to 58 and InsuranceCompany{} consists lines from 1 to 82,

contract Attack{} consist lines from 83 to 102.

4.3.1 First test scenario: Re-entrancy attack (Without the

solution)

From Figure 5, The first scenario steps were as following:

1. Owner of the

InsuranceContractProblemWithReentrancy{} contract deploy

into blockchain with initial amount is 10 ethers and start the

contract functions

2. Individual addresses may deposit ether by using

depositInsuranceFunds() and store balance in contract.

3. Calling the getClientBalance() function to display the

individual balances of individual addresses.

4. Calling the getInsuranceCompanyLiquidity() function to

display the participants amount along with initial amount and

this is the way to store ethers into contract.

5. Now Attacker comes into picture to attack above contract

with help of that particular contract address by using

constructor() function of Attack{} contract.

6. After accessing the address of

InsuranceContractProblemWithReentrancy{} contract by the

attacker then trying to create re-entrancy situation.

Figure 5. UML diagram for re-entrancy problem

729

7. Attacker can call the attack() function to deposit 1ether to

InsuranceContractProblemWithReentrancy{} contract to steel

ethers.

8. The Attack{} contract can uses the fallback() function to

receive ethers from any other contracts.

9. Calling the getBalance() function to know the howmany

ethers are available in this contract.

10. Finally, Attacker successfully attack on this
InsuranceContractProblemWithReentrancy{} contract and

theft ethers from this contract.

Smart Contract 2. Insurance with solution of re-entrancy

1./** solidity program*/

1. pragma solidity ^0.6.10;

2. contract InsuranceCompany{

3. address private maliciousUser;

4. address private owner;

5. uint private beforeOperation;

6. uint private afterOperation;

7. uint private clientsLiquidity;

8. mapping(address => uint) private clientAmount;

9. mapping(address => uint) public lockTime;

10. constructor () public payable {

11. owner = msg.sender;

12. clientAmount[msg.sender] += msg.value;

13. clientsLiquidity = address(this).balance;

14. beforeOperation = address(this).balance;

15. afterOperation = 0;

16. }

17. modifier ownerOnly() {

18. require(msg.sender == owner, 'message.sender is

 not the insurance company owner');

19. _;

20. }

21.
22. /** deposit function for client insurance balance*/

23. function depositInsuranceFunds() external payable

 returns(bool){

24. require(msg.value > 0, 'client insurance amount

 not greater than zero');

25. clientAmount[msg.sender] += msg.value;

26. lockTime[msg.sender] = now + 10 seconds;

27. afterOperation=

this.getInsuranceCompanyLiquidity()-

 beforeOperation;

28. clientsLiquidity += afterOperation;

29. beforeOperation=

 this.getInsuranceCompanyLiquidity();

30. afterOperation = 0;

31. return true;

32. }

33.
34. /** withdraw function for client insurance

balance*/

35. function withdrawInsuranceFunds(uint _amount)

 public payable {

36. require(_amount<=

clientAmount[msg.sender], 'client account balance has

 no amount');

37. if(now > lockTime[msg.sender])

38. {

39. msg.sender.call.value(_amount)("");

40. clientAmount[msg.sender]-= _amount;

41. clientsLiquidity -= _amount;

42. beforeOperation=

this.getInsuranceCompanyLiquidity();

43. }

44. else

45. {

46. beforeOperation=

this.getInsuranceCompanyLiquidity();

47. maliciousUser = msg.sender;

48. }

49. }

50. /**Transfer ethers to account holders with in the

contract*/

51. function transfer(address to, uint quantity) public {

52. if (now > lockTime[msg.sender])

53. {

54. require(quantity<= clientAmount[msg.sender],

 'client account balance has no amount');

55. clientAmount[to] += quantity;

56. clientAmount[msg.sender]-= quantity;

57.
58. }

59. else

60. {

61. beforeOperation=

this.getInsuranceCompanyLiquidity();

62. maliciousUser = msg.sender;

63. }

64. }

65. /**collect individual client insurance balance*/

66. function getClientAmount() public view

returns(uint){

67. return clientAmount[msg.sender];

68. }

69. /**collect clients insurance liquidity along with

Attacker balance*/

70. function getClientsLiquidity() external view

 returns(uint) {

71. return clientsLiquidity;

72. }

73. /**collect clients total Lquidity along with initial

balance*/

74. function getInsuranceCompanyLiquidity() external

view

 returns(uint) {

75. return address(this).balance;

76. }

77. /** Store the attacker address which is only

accessable

 by the owner*/

78. function getMaliciousUserAddress() external view

 ownerOnly returns(address){

79. return maliciousUser;

80. }

81. }

82. contract Attack{

83. InsuranceCompany public insuranceCompany;

84. constructor(address _insuranceCompanyAddress)

public

 {

85. insuranceCompany=

InsuranceCompany(_insuranceCompanyAddress);

86. }

87. fallback() external payable{

88. if (address(insuranceCompany).balance >= 1 ether){

730

89. insuranceCompany.withdrawInsuranceFunds(1

ether);

90. }

91. }

92. /**Attack function for above contract */

93. function attack() external payable{

94. require(msg.value >= 1 ether);

95.
 insuranceCompany.depositInsuranceFunds

 {value: 1 ether}();

96. insuranceCompany.withdrawInsuranceFunds(1

ether);

97. }

98. /**Fetch Attacker balance*/

99. function getBalance() public view returns (uint){

100. return address (this).balance;

101. }

102. }

4.3.2 Second test scenario: Re-entrancy attack (With solution)

From Figure 6, The Second scenario steps were as following:

1. Owner of the InsuranceCompany{} contract can deploy

into blockchain with initial amount is 10 ethers and start the

contract functions.

2. Individual addresses may deposit ether by using

depositInsuranceFunds() and set time to withdraw individual

amounts in contract.

3. Calling the getClientBalance() function to display the

individual balances of individual addresses.

4. Calling the getClientsLiquidity() function to display the

participants.

5. Now calling the getInsuranceCompanyLiquidity()

function to display the total amount along with initial balance.

6. Now Attacker comes into picture to attack above contract

with help of that particular contract address by using

constructor() function of Attack{} contract.

7. After accessing the address of InsuranceCompany{}

contract by the attacker then trying to create re-entrancy

situation.

8. Attacker can call the attack() function to deposit 1ether to

InsuranceCompany{} contract to steel ethers.

9. Contract InsuranceCompany{} can store 1ether and set

the time to withdraw but attacker trying to with same

transaction of another operation.

10. The Attack{} contract ready to use the fallback()

function to receive ethers from any other contracts.

11. Calling the withdrawInsuranceFunds() function to

withdraw amount lessthan given time then Contract identify

the Intruder by the Contract and notify to Owner.

12. Calling the getClientsLiquidity() function to display the

participants along with Attacker balance.

13. Calling the getBalance() function to know the howmany

ethers are available in this InsuranceCompany{} contract.

14. Calling the getMaliciousUserAddress() function to

know who is Attacker.

15. Finally, Attacker unable attack on this

InsuranceCompany{} contract, block his ethers by this

contract and notify the address to owner of the contract.

4.4 The testing environment for king of ether throne

attack

We have done the investigation with help of

OnlineAuctions{}, Intruder{} and solution explain with this

contract i.e OnlineAuctionsWithSolutions{}. Here,

OnlineAuctions{} and Intruder{} contracts explains how the

attacker interrupts the execution of the contract. In figure 7,

The contract OnlineAuctionsWithSolutions{} gives a solution

for the execution of contract.

4.5 The testing scenario for king of ether throne attack

In this scenario totally four contracts available to check king

of ether throne possibility with insurance application. A owner

of the contract can deploy into blockchain with initial amount

is 10 ethers and account holders may store the ethers in this

contracts for application operations to become crowned head.

These application contracts are OnlineAuctions{},Intruder{}

and OnlineAuctionsWithSolutions{},Intruder{}.Here, each

case study consist two test scenarios those are first scenario is

king of ether throne problem case study and second scenario is

solution for king of ether throne.

Figure 6. UML diagram for re-entrancy solution

731

Figure 7. Solution data flow for king of ether throne attack

Smart Contract 3. Online actions with out solution of king

of ether throne attack

1.pragma solidity ^0.6.10;

2.contract OnlineAuctions{

3.address public crownedHead;

4.uint public participantBalance;

5. /** openBidding function for clients for online bidding

*/

6. function openBidding() external payable{

7. require(msg.value>participantBalance, "if you want

to become a king,then pay more money");

8. (bool sent,) = crownedHead.call{value:

participantBalance}("");

9. require(sent, "failed to send Ether account holder");

10. participantBalance=msg.value;

11. crownedHead= msg.sender;

12. }

13. }

14. contract Intruder{

15. function attack(OnlineAuctions onlineauctions)

 public payable{

16. onlineauctions.openBidding{value: msg.value}();

17. }

18. }

19.

4.6 King of ether throne attack case study

Smart Contract 3 and Smart Contract 4 shows two contracts,

they are OnlineAuctions{} consists lines from 1 to 14, contract

Intruder{} consist lines from 15 to 19 and

OnlineAuctionsWithSolutions{} consists lines from 1 to 54,

contract Intruder{} consist lines from 55 to 59.

4.6.1 First test scenario: king of ether throne attack (Without

the solution)

From Figure 8, The first scenario steps were as following:

1. Owner of the OnlineAuctions{} contract deploy into

blockchain with initial amount is 10 ethers and start the

contract functions.

2. Individual addresses may deposit ether by using

openBidding() to become Crowned head and store balance in

contract.

3. 1st Account holder Calling the openBidding() function to

deposit ethers and he will become Crowned head.

4. 2nd Account holder Calling the openBidding() function to

deposit ethers compared to 1st Account holder then

immediately contract can transfer 1st Account address and 2nd

address will become Crowned head.

5. Now Attacker comes into picture to attack

OnlineAuctions{} contract with help of Intruder{} contract.

6. After accessing the address of OnlineAuctions{} contract

by the attacker then trying to create king of ether throne

situation.

7. Attacker can call the attack() function to deposit more

ethers compare to 2nd address then Attacker will become

Crowned head.

8. Calling the openBidding() to deposit ethers to compare

attacker s amount but Intruder{} contract unable to receive

ethers due to this contract doesn’t have fallback function to

receive ethers.

9. Calling the getBalance() function to know the howmany

ethers are available in this contract.

10. Finally, Attacker successfully attack on this

OnlineAuctions{} contract and perform king of ether throne

attack.

732

Smart Contract 4. Online actions with solution of king of

ether throne attack

1. pragma solidity ^0.6.10;

2. contract OnlineAuctionsWithSolutions{

3. address public crownedHead;

4. address private maliciousUser;

5. address private owner;

6. uint public participantBalance;

7. mapping (address =>uint) public

participantBalances;

8. mapping(address => uint) private lockTime;

9. constructor () public payable {

10. owner = msg.sender;

11. }

12. modifier ownerOnly() {

13. require(msg.sender == owner, 'message.sender is

 not a owner');

14. _;

15. }

16. /** openBidding function for clients for online

bidding */

17. function openBidding() external payable{

18. require(msg.value>participantBalance, "if you

wantto become a king,then pay more money");

19. participantBalances[crownedHead] +=

 participantBalance;

20. lockTime[msg.sender] = now + 100 seconds;

21. participantBalance=msg.value;

22. crownedHead= msg.sender;

23. }

24. /** withdraw function for clients online bidding

balance*/

25. function withdrawBidding () public {

26. if(now < lockTime[msg.sender])

27. {

28. require(msg.sender != crownedHead,"unable to

withdraw Current king");

29. uint amount = participantBalances[msg.sender];

30. participantBalances[msg.sender] =0;

31. (bool sent,) = crownedHead.call{value:

amount}("");

32. require(sent, "failed to send Ether account holder");

33. }

34. else{

35. maliciousUser = msg.sender;

36. }

37. }

38. /**Transfer ethers to account holders with in the

contract*/

39. function transfer(address payable _to, uint

_amount) public{

40. if(now > lockTime[msg.sender]){

41. require(msg.sender == owner,"not owner");

42. participantBalances[msg.sender] -= _amount;

43. (bool sent,) = _to.call{value: _amount} ("");

44. require(sent, "Failed to send ether");

45. }

46. else{

47. maliciousUser = msg.sender;

48. }

49. }

50. /** Store the attacker address which is only

accessable by the owner*/

51. function getMaliciousUserAddress() external view

 ownerOnly returns(address){

52. return maliciousUser;

53. }

54. }

55. contract Intruder{

56. function attack(OnlineAuctions onlineauctions)

public payable{

57. onlineauctions.openBidding{value: msg.value}();

58. }

59. }

4.6.2 Second test scenario: king of ether throne attack (With

the solution)

From Figure 9, The first scenario steps were as following:

1. Owner of the OnlineAuctionsWithSolutions{} contract

deploy into blockchain with initial amount is 10 ethers and

start the contract functions.

2. Individual addresses may deposit ether by using

openBidding() to become Crowned head and set the time to

withdraw ethers from this contract .

3. 1st Account holder Calling the openBidding() function to

deposit ethers and he will become Crowned head.

4. 2nd Account holder Calling the openBidding() function to

deposit ethers compared to 1st Account holder then

immediately 2nd address will become Crowned head.

5. Calling the withdrawBidding () function for 1st account

holder to withdraw his amount in given time.

6. Now Attacker comes into picture to attack

OnlineAuctions{} contract with help of Intruder{} contract.

7. After accessing the address of OnlineAuctions{} contract

by the attacker then trying to create king of ether throne

situation.

8. Attacker can call the attack() function to deposit more

ethers compare to 2nd address then Attacker will become

Crowned head.

9. 3rd Account holder Calling the openBidding() function to

deposit more ethers compare to attackers amount then he will

become a crowned head but Intruder{} contract unable to

receive ethers due to this contract doesn’t have fallback

function to receive ethers.

10. whenever reach time to withdraw amount then

OnlineAuctionsWithSolutions{} identify the attaker address

and block his ethers.

11. Calling the getBalance() function to know the howmany

ethers are available in this contract.

12. Calling the getMaliciousUserAddress() function to

know who is Attacker.

13. Finally, Attacker unable attack on this

OnlineAuctionsWithSolutions{} contract, block his ethers by

this contract and notify the address to owner of the contract.

733

Figure 8. UML Diagram for king of Ether Throne problem

Figure 9. UML diagram for king of ether throne attack solution

5. CONCLUSIONS

Smart contracts play the crucial role in crypto currency

applications and decentralized applications but attackers are

concentrating on Ethereum contracts to exploit contracts due

to vulnerabilities. To find these vulnerabilities, most of the

static analysis tools which are available based on various

patterns to recognize these bugs but attackers are finding new

pattern to re-entrancy attack, king of ether throne attack and

DoS etc. on smart contract. We propose new solutions for these

attack which are being caused by new patterns to attack on

smart contracts. Every time before deploying the smart

contract, the developers are analyzing that particular contract

depending on given patterns. We suggest that the new patterns

are to be implemented in smart contract programming after

deploying the contract into blockchain. In this paper, we

propose the best prevention and detection mechanisms to re-

entrancy attack and king of ether throne attacks with respect to

time, proof of concept, case study implementation and notify

the attacker address to the original sender. Finally, that

particular smart contract never reveals the ethers of

corresponding addresses who were malicious user.

Here, the paper address single function re-entrancy attack

and there is scope of addressing the cross function re-entrancy

attack using time based mechanisms.

ACKNOWLEDGMENT

The first author received financial assistance from Senior

research fellowship of University Grand Commission in Delhi,

India.

734

REFERENCES

[1] ethereum.org. https://ethereum.org, accessed on 27 May

2022.

[2] Samreen, N.F., Alalfi, M.H. (2021). A survey of security

vulnerabilities in Ethereum smart contracts. arXiv

preprint arXiv:2105.06974.

https://doi.org/10.48550/arXiv.2105.06974

[3] Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.

(2016). Making smart contracts smarter. In Proceedings

of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, pp. 254-269.

https://doi.org/10.1145/2976749.2978309

[4] PolyNetwork: An Interoperability Protocol for

Heterogeneous Blockchains.

https://poly.network/PolyNetwork-whitepaper.pdf.

[5] Poly Network Commences Full Asset Restoration.

https://medium.com/poly-network/poly-network-

commences-full-asset-restoration-7f5c548423b9.

[6] Santos, F., Kostakis, V. (2018). The DAO: A million

dollar lesson in blockchain governance. School of

Business and Governance, Ragnar Nurkse Department of

Innovation and Governance.

[7] King of the Ether Throne: Post mortem investigation.

https://www.kingoftheether.com/postmortem.html.

[8] Atzei, N., Bartoletti, M., Cimoli, T. (2017). A survey of

attacks on Ethereum smart contracts. In International

Conference on Principles of Security and Trust, pp. 164-

186. https://doi.org/10.1007/978-3-662-54455-6_8

[9] Praitheeshan, P., Pan, L., Yu, J., Liu, J., Doss, R. (2019).

Security analysis methods on Ethereum smart contract

vulnerabilities: A survey. arXiv preprint

arXiv:1908.08605.

https://doi.org/10.48550/arXiv.1908.08605

[10] Mense, A., Flatscher, M. (2018). Security vulnerabilities

in ethereum smart contracts. In Proceedings of the 20th

International Conference on Information Integration and

Web-Based Applications & Services, pp. 375-380.

https://doi.org/10.1145/3282373.3282419

[11] Bhargavan, K., Delignat-Lavaud, A., Fournet, C., et al.

(2016). Formal verification of smart contracts: Short

paper. In Proceedings of the 2016 ACM workshop on

programming languages and analysis for security, pp. 91-

96. https://doi.org/10.1145/2993600.2993611

[12] Prechtel, D., Groß, T., Müller, T. (2019). Evaluating

spread of ‘gasless send’ in Ethereum smart contracts. in

2019 10th IFIP International Conference on New

Technologies, Mobility and Security (NTMS), pp. 1-6.

https://doi.org/10.1109/NTMS.2019.8763848

[13] He, D., Deng, Z., Zhang, Y., Chan, S., Cheng, Y.,

Guizani, N. (2020). Smart contract vulnerability analysis

and security audit. IEEE Network, 34(5): 276-282.

https://doi.org/10.1109/MNET.001.1900656

[14] Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I.,

Takhaviev, R., Marchenko, E., Alexandrov, Y. (2018).

Smartcheck: Static analysis of Ethereum smart contracts.

In Proceedings of the 1st International Workshop on

Emerging Trends in Software Engineering for

Blockchain, pp. 9-16.

https://doi.org/10.1145/3194113.3194115

[15] Durieux, T., Ferreira, J.F., Abreu, R., Cruz, P. (2020).

Empirical review of automated analysis tools on 47,587

Ethereum smart contracts. In Proceedings of the

ACM/IEEE 42nd International Conference on Software

Engineering, pp. 530-541.

https://doi.org/10.1145/3377811.3380364

[16] Feist, J., Grieco, G., Groce, A. (2019). Slither: a static

analysis framework for smart contracts. In 2019

IEEE/ACM 2nd International Workshop on Emerging

Trends in Software Engineering for Blockchain

(WETSEB), pp. 8-15.

https://doi.org/10.48550/arXiv.1908.09878

[17] Brent, L., Jurisevic, A., Kong, M., Liu, E., Gauthier, F.,

Gramoli, V., Holz, R., Scholz, B. (2018). Vandal: A

scalable security analysis framework for smart contracts.

arXiv preprint arXiv:1809.03981.

https://doi.org/10.48550/arXiv.1809.03981

[18] Kalra, S., Goel, S., Dhawan, M., Sharma, S. (2018). Zeus:

Analyzing safety of smart contracts. Network and

Distributed Systems Security (NDSS) Symposium 2018.

http://dx.doi.org/10.14722/ndss.2018.23082

[19] Sayeed, S., Marco-Gisbert, H., Caira, T. (2020). Smart

contract: Attacks and protections. IEEE Access, 8:

24416-24427.

https://doi.org/10.1109/ACCESS.2020.2970495

[20] Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A.,

Buenzli, F., Vechev, M. (2018). Securify: Practical

security analysis of smart contracts. In Proceedings of the

2018 ACM SIGSAC Conference on Computer and

Communications Security, pp. 67-82.

https://doi.org/10.1145/3243734.3243780

[21] Liu, C., Liu, H., Cao, Z., Chen, Z., Chen, B., Roscoe, B.

(2018). Reguard: Finding reentrancy bugs in smart

contracts. In 2018 IEEE/ACM 40th International

Conference on Software Engineering: Companion

(ICSE-Companion), pp. 65-68.

[22] Chinen, Y., Yanai, N., Cruz, J.P., Okamura, S. (2020).

RA: Hunting for re-entrancy attacks in ethereum smart

contracts via static analysis. In 2020 IEEE International

Conference on Blockchain (Blockchain), pp. 327-336.

https://doi.org/10.1109/Blockchain50366.2020.00048

[23] Samreen, N.F., Alalfi, M.H. (2020). Reentrancy

vulnerability identification in Ethereum smart contracts.

In 2020 IEEE International Workshop on Blockchain

Oriented Software Engineering (IWBOSE), pp. 22-29.

https://doi.org/10.1109/IWBOSE50093.2020.9050260

[24] Rodler, M., Li, W., Karame, G.O., Davi, L. (2018).

Sereum: Protecting existing smart contracts against re-

entrancy attacks. arXiv preprint arXiv:1812.05934.

https://doi.org/10.48550/arXiv.1812.05934

[25] Alkhalifah, A., Ng, A., Watters, P.A., Kayes, A.S.M.

(2021). A mechanism to detect and prevent ethereum

blockchain smart contract reentrancy attacks. Frontiers in

Computer Science, 3: 598780.

https://doi.org/10.3389/fcomp.2021.598780

735

https://ethereum.org/
https://www.kingoftheether.com/postmortem.html

