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Induction machine health monitoring is considered a developing technology for the online 

detection of faults that occur even at the initial stage. The objective of this study is to 

present an artificial intelligence (AI) technique for the detection and localization of 

adjacent and distant broken bar faults in the induction machine, through a multi-winding 

model for the simulation of these cases. In this work, it was found that the application of 

Artificial Neural Networks (ANN) based on Mean Squared Error (MSE) and Random 

Forest (decision tree) plays an important role in detecting and locating defaults. The stator 

current signal Ias of a motor in the dynamic state was acquired from a healthy and faulty 

motor with a broken rotor bar fault. 9 statistical features and 8 wavelet packet parameters 

are extracted from the stator current signal. These features were employed as an input 

vector to train and test the ANN and random fores29t and determine whether the motor 

was running under normal conditions or defective. For optimizing the rotor bar defect 

classification procedure, feature selection algorithms are adopted, such as BBAT and 

BPSO. For feature reduction, we used the principal component analysis (PCA) algorithm, 

to reduce the number of features. The results showed that the random forest classifier based 

on statistical parameters and wavelet packet parameters followed by PCA can detect the 

defective with high accuracy (98.3333%) compared to other methods. 
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1. INTRODUCTION

Fault diagnostic induction motors are a component of many 

industrial process applications, due to their robustness, cost 

and performance. They are used in various applications as a 

means of energy conversion, pumps, electric vehicles, and 

asynchronous generators. Significant defects in electrical 

machinery (Figure 1); Bhasme and Chavhan [1] can be broadly 

classified as follows: stator defects, broken rotor bar, and 

bearing defects are the most common [2]. 

Figure 1. Fault classification of induction motor 

In this context, over the past two decades, the diagnosis of 

induction machine failures has aroused great interest on the 

part of researchers. Major research has been carried out for the 

development of various techniques and methods for detecting 

and diagnosing defects. He proposed an algorithm for the 

online detection of rotor bar rupture in induction machines 

based on the use of wavelet packet decomposition and neural 

networks [3]. A new set of characteristic coefficients is 

obtained by the WPD of the stator current, to build a neural 

network for defect detection, thus accurately differentiating 

healthy and defective conditions. The algorithm analyzes rotor 

bar defects by WPD of the stator current of the induction motor. 

In the study [4], a defect diagnosis technique for induction 

machines under rotor and stator failures is carried out, taking 

into account the harmonic components in the current signal. 

This diagnostic method is carried out using the MCSA method. 

The sideband components of the current spectrum are 

extracted and analyzed to prove rotor defects. The article [5] 

focuses on improving a new fault classification technique 

using support vector machines (SVMs) for induction motors. 

Several defects of the induction machine, such as a BRB, an 

unbalanced phase defect, and an unbalanced rotor, are 

examined. Based on a three-phase model of the time domain, 

the BRB with various conditions was simulated to examine the 

resulting torque-velocity characteristic in each condition. The 

advanced defect diagnosis system can recognize the type of 

BRB defects in the squirrel cage induction motor [6-8]. 

In this work, a multi-winding model is presented to simulate 

the behavior of the machine is healthy and defective cases 

when the rotor bar is broken, defect diagnosis is based on an 

intelligent artificial technique (AI) very important for the 
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detection of a rotor defect in the induction machine. The 

identification process shows a sequence of simulation 

configuration, data acquisition, data processing, classification 

algorithm, model evaluation, and last prediction. In the fifth 

section, the application of the ANN and RF configuration 

based on the learning machine is proposed to take the data set 

for machine training purposes. The training dataset is taken for 

five failure conditions and one health condition. The defect 

condition is adjacent and distant broken rotor bars. This drive 

dataset is used to train the machine using three algorithms 

BAT, BPSO, PCA, and without optimization. Each algorithm 

shows a different accuracy for the defect identification method 

proposed in the sixth section (Table 4). The highest test 

accuracy classification of healthy or broken rotor bars of the 

induction machine is obtained by random forest (RF) with the 

hybrid parameter used by PCA (statistical and wavelet packet 

parameters) is (98.3333%). 

2. MULTI-WINDING MODEL OF INDUCTION 

MACHINE

To be able to focus on the study of the simulation of bar 

break defects, a model of the rotor is established in the form of 

electrically connected and magnetically coupled meshes, 

where a mesh consists of two bars and the two portions of rings 

that connect them. Each bar and ring segment is characterized 

by resistance and inductance (Figure 2). The model 

assumptions are: 

• Negligible saturation and skin effect;

• Uniform air-gap;

• Sinusoidal mmf of stator windings in air-gap;

• Rotor bars are insulated from the rotor, thus no inter-

bar current flows through the laminations;

• Relative permeability of machine armatures is assumed

infinite.

Although a sinusoidal mmf of the stator winding is assumed, 

other winding distributions could also be analyzed by simply 

using superposition. This is justified by the fact that different 

space harmonic components do not interact [9, 10]. 

Figure 2. Rotor cage equivalent circuit 

2.1 Equation model 

By using the Clark transformation to go from three-phase 

stator quantities (a, b, c) to two-phase quantities (α, β). The 

simulation can be performed with two separate frames for the 

stator and the rotor. To reduce the calculation time, we 

eliminate the angle "ɵ" of the coupling matrix by choosing the 

most appropriate reference and which is that of the rotor. 

In this frame, all the quantities have a pulsation "gωs" in 

steady-state. This characteristic can be used for the analysis of 

the rupture of rotor bars in the machine by observing the 

current "Ias" [2].  

We are therefore looking for the set of independent 

differential equations defining the model of the induction 

machine. 

2.1.1 Stator voltage equation 

All the stator phases voltages in matrix form and flux 

equations are deduced [11]: 

[𝑉𝑎𝑏𝑐𝑠] = [𝑅𝑠][𝐼𝑎𝑏𝑐𝑠] +
𝑑

𝑑𝑡
[∅𝑎𝑏𝑐𝑠] (1) 

[∅𝑎𝑏𝑐𝑠] = [𝐿𝑠][𝐼𝑎𝑏𝑐𝑠] + [𝑀𝑠𝑟][𝐼𝑟𝑘] (2) 

where, [Vabcs]=[Vas Vbs Vcs]T is the stator voltage vector, 

[Iabcs]=[Ias Ibs Ics]T is the stator current vector, [Irk]=[Ir0 Ir1 … 

Irk… Ir(Nr-1)]T is the vector of the currents in the rotor mesh 

and [∅𝑎𝑏𝑐𝑠] = [∅𝑎𝑠  ∅𝑏𝑠 ∅𝑐𝑠]
𝑇 is the stator flux vector.

We, therefore, write the matrices of the resistances, the 

inductances, and the stator mutuals respectively: 

[𝑅𝑠] = [

𝑅𝑠 0 0
0 𝑅𝑠 0
0 0 𝑅𝑠

];     [𝐿𝑠] = [

𝐿𝑠 𝑀𝑠 𝑀𝑠

𝑀𝑠 𝐿𝑠 𝑀𝑠

𝑀𝑠 𝑀𝑠 𝐿𝑠

]; 

[𝑀𝑠𝑟] =

[

… −𝑀𝑠𝑟cos(𝜃 + 𝑘𝛼)  …

… −𝑀𝑠𝑟cos (𝜃 + 𝑘𝛼 −
2𝜋

3
) …

… −𝑀𝑠𝑟cos (𝜃 + 𝑘𝛼 −
4𝜋

3
) …]

With: 

𝐾 = 0, 1, 2, … , (𝑁𝑟 − 1).

𝑀𝑠𝑟 =
4𝜇0𝑁𝑠𝑅𝑙

𝑒𝑝2𝜋
sin (

𝛼

2
) ; [𝐻]. 

𝛼 =
2𝜋

𝑁𝑟
; [𝑟𝑎𝑑]. 

where, Nr is the number of rotor bars, Msr is the mutual 

inductance between stator phase and rotor mesh and α is the 

angle between the rotor bars. 

The transition to two-phase components of the stator 

components is carried out using the Park transformation 

matrix, knowing that the homopolar component is zero. 

[𝑋𝛼𝛽𝑠] = [𝑃(𝜃)][𝑋𝑑𝑞𝑠] (3) 

where, 𝑃(𝜃) = [
cos (𝜃) −sin (𝜃)
sin (𝜃) cos (𝜃)

] , P(θ): Park's rotation 

matrix is as follows. 

∅𝛼𝛽𝑠 = [
𝐿𝑠𝑐 0
0 𝐿𝑠𝑐

] . [𝐼𝛼𝛽𝑠]

− 𝑀𝑠𝑟 . [
…  cos(𝜃 + 𝑘𝛼)…

…  sin(𝜃 + 𝑘𝛼)…
] . [𝐼𝑟𝑘]

(4) 

With: Lsc=Lsp-Ms+Lsf; [H]; 𝐿𝑠𝑝 =
4𝜇0𝑁𝑠

2𝑅𝑙

𝑒𝜋𝑝2
; [𝐻] ; 𝑀𝑠 =

−
𝐿𝑠𝑝

2
; [𝐻]; 𝜇0 = 4𝜋10

−7;  [𝐻.𝑚−1].
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where, Lsc is the inductance cyclique statorique, Lsp is the main 

inductance of a stator phase, Ms is the mutual between two 

stator windings and μ0 is the magnetic air permeability. 

So, the flux and the stator voltage in the Park reference (d, 

q) are written respectively:

∅𝑑𝑞𝑠 = [
𝐿𝑠𝑐 0
0 𝐿𝑠𝑐

] . [𝐼𝑑𝑞𝑠]

− 𝑀𝑠𝑟 . [
…  cos(𝑘𝛼)…

…  sin(𝑘𝛼)…
] . [𝐼𝑟𝑘]

(5) 

𝑉𝑑𝑞𝑠 = 𝑅𝑠. 𝐼𝑑𝑞𝑠 + 𝜔. 𝑃 (
𝜋

2
) . ∅𝑑𝑞𝑠 +

𝑑

𝑑𝑡
∅𝑑𝑞𝑠 (6) 

After transformation and rotation, the electric equations in 

the rotor reference are written: 

{
𝑉𝑑𝑠 = 𝑅𝑠. 𝐼𝑑𝑠 −𝜔. ∅𝑞𝑠 +

𝑑

𝑑𝑡
∅𝑑𝑠

𝑉𝑞𝑠 = 𝑅𝑠. 𝐼𝑞𝑠 + 𝜔. ∅𝑑𝑠 +
𝑑

𝑑𝑡
∅𝑞𝑠

(7) 

Finally, the electrical equation of the stator in the rotor 

frame is written in matrix form: 

[
𝑉𝑑𝑠
𝑉𝑞𝑠
]

= [
𝑅𝑠 −𝜔. 𝐿𝑠𝑐

𝜔. 𝐿𝑠𝑐 𝑅𝑠

⋮ ⋯+ 𝜔.𝑀𝑠𝑟 . sin(𝑘𝛼)…

⋮ ⋯− 𝜔.𝑀𝑠𝑟 . cos(𝑘𝛼)…
] . [
𝐼𝑑𝑞𝑠
𝐼𝑟𝑘

]

+ [
𝐿𝑠𝑐 0
0 𝐿𝑠𝑐

⋮ ⋯− 𝑀𝑠𝑟 . cos(𝑘𝛼)…

⋮ ⋯−𝑀𝑠𝑟 . sin(𝑘𝛼)…
] .
𝑑

𝑑𝑡
[
𝐼𝑑𝑞𝑠
𝐼𝑟𝑘

] 

(8) 

2.1.2 Rotor voltage equation 

Figure 3 represents the equivalent electric circuit of a mesh 

of the rotor cage, where the rotor bars and the portions of short-

circuit rings are represented by their resistances and 

corresponding leakage inductances [12]. 

Figure 3. Electric diagram equivalent of a rotor mesh 

Knowing that: 

{
𝐼𝑒𝑘 = 𝐼𝑟𝑘 − 𝐼𝑒

𝐼𝑏𝑘 = 𝐼𝑟𝑘 − 𝐼𝑟(𝑘+1)
(9) 

The voltage equation for a mesh "k" of the rotor cage is 

given by: 

−𝑅𝑏(𝑘−1)𝐼𝑟(𝑘−1) + 𝑅𝑏𝑘𝐼𝑏𝑘 +
𝑅𝑒
𝑁𝑟
𝐼𝑒𝑘 +

𝑅𝑒
𝑁𝑟
𝐼𝑟𝑘

+
𝑑

𝑑𝑡
∅𝑟𝑘 = 0

(10) 

The total flux "∅𝑟𝑘" for an elementary circuit of index "k"

is composed of the sum of the following terms: 

Main flux: Lrp.Irk; 

Mutual flux with the other circuits of the rotor: 

𝑀𝑟𝑟 . ∑ 𝐼𝑟𝑗

𝑁𝑟−1

𝑗=0
𝑗≠𝑘

Mutual flux with the stator, given after transformation: 

−
3

2
𝑀𝑠𝑟 . [

⋮ ⋮ ⋮
cos (𝑘𝛼) ⋮ sin (𝑘𝛼)

⋮ ⋮ ⋮
] . [𝐼𝑑𝑞𝑠]

The flux induced in the rotor mesh is given by: 

∅𝑟𝑘 = (𝐿𝑟𝑝 + 2𝐿𝑏 + 2
𝐿𝑒
𝑁𝑟
) 𝐼𝑟𝑘 +𝑀𝑟𝑟 . ∑ 𝐼𝑟𝑗

𝑁𝑟−1

𝑗=0
𝑗≠𝑘

− 𝐿𝑏(𝐼𝑟(𝑘−1) + 𝐼𝑟(𝑘+1))

−
3

2
𝑀𝑠𝑟(𝐼𝑑𝑠 cos(𝑘𝛼)

+ 𝐼𝑞𝑠 sin(𝑘𝛼)) −
𝐿𝑒
𝑁𝑟
𝐼𝑒

(11) 

It is finally necessary to complete the system of the equation 

of the circuits of the rotor by that of the ring of short-circuits; 

we then have: 

𝑅𝑒
𝑁𝑟

∑ 𝐼𝑟𝑘 +
𝐿𝑒
𝑁𝑟

∑
𝑑𝐼𝑟𝑘
𝑑𝑡

− 𝑅𝑒𝐼𝑒 − 𝐿𝑒
𝑑𝐼𝑒
𝑑𝑡

= 0

𝑁𝑟−1

𝑘=0

𝑁𝑟−1

𝑘=0

 (12) 

with: 𝐿𝑟𝑝 =
2𝜋(𝑁𝑟−1)𝜇0𝑅𝑙

𝑒𝑁𝑟
2 ;  [𝐻]; 𝑀𝑟𝑟 = −

2𝜋𝜇0𝑅𝑙

𝑒𝑁𝑟
2 ;  [𝐻]. 

where, Lrp is the main inductance of a rotor mesh, Mrr is the 

mutual inductance between adjacent, Irk is the mesh current "k” 

and Ie is the short-circuit ring current. 

The complete system is: 

[

𝑉𝑑𝑠
𝑉𝑞𝑠
0
⋮
0 ]

= [𝐿].
𝑑

𝑑𝑡

[

𝐼𝑑𝑠
𝐼𝑞𝑠
⋮
𝐼𝑟𝑘
⋮ ]

+ [𝑅]

[

𝐼𝑑𝑠
𝐼𝑞𝑠
⋮
𝐼𝑟𝑘
⋮ ]

(13) 

So, becomes: 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐿𝑠𝑐 0 ⋮ ⋯ ⋯ ⋯ −𝑀𝑠𝑟cos (𝑗𝛼) ⋯ ⋯ ⋮ 0

0 𝐿𝑠𝑐 ⋮ ⋯ ⋯ ⋯ −𝑀𝑠𝑟sin (𝑗𝛼) ⋯ ⋯ ⋮ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯

⋮ ⋮ ⋮ 𝐿𝑟𝑝 +
2𝐿𝑒
𝑁𝑟

+ 2𝐿𝑏 𝑀𝑟𝑟 − 𝐿𝑏 𝑀𝑟𝑟 ⋯ 𝑀𝑟𝑟 𝑀𝑟𝑟 − 𝐿𝑏 ⋮ −
𝐿𝑒
𝑁𝑟

⋮ ⋮ ⋮ 𝑀𝑟𝑟 − 𝐿𝑏 𝐿𝑟𝑝 +
2𝐿𝑒
𝑁𝑟

+ 2𝐿𝑏 𝑀𝑟𝑟 − 𝐿𝑏 𝑀𝑟𝑟 ⋯ 𝑀𝑟𝑟 ⋮ ⋮

−
3

2
𝑀𝑠𝑟 cos(𝑘𝛼) −

3

2
𝑀𝑠𝑟 sin(𝑘𝛼) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋮ ⋮ ⋮ 𝑀𝑟𝑟 − 𝐿𝑏 𝑀𝑟𝑟 ⋯ 𝑀𝑟𝑟 𝑀𝑟𝑟 − 𝐿𝑏 𝐿𝑟𝑝 +
2𝐿𝑒
𝑁𝑟

+ 2𝐿𝑏 ⋮ −
𝐿𝑒
𝑁𝑟

⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯

0 0 ⋮ −
𝐿𝑒
𝑁𝑟

⋯ ⋯ ⋯ ⋯ −
𝐿𝑒
𝑁𝑟

⋮ 𝐿𝑒 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
 
 
 
𝐼𝑑𝑠
𝐼𝑞𝑠
⋯
𝐼𝑟0
⋮
𝐼𝑟𝑗
⋮

𝐼𝑟(𝑁𝑟−1)
⋯
𝐼𝑒 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
𝑉𝑑𝑠
𝑉𝑞𝑠
⋯
0
⋮
⋮
⋮
0
⋯
0 ]
 
 
 
 
 
 
 
 
 

 −

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑅𝑠 −𝜔𝐿𝑠𝑐 ⋮ ⋯ ⋯ 𝑀𝑠𝑟ωcos (𝑗𝛼) ⋯ ⋯ ⋮ 0

𝜔𝐿𝑠𝑐 𝑅𝑠 ⋮ ⋯ ⋯ −𝑀𝑠𝑟ωsin (𝑗𝛼) ⋯ ⋯ ⋮ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯

0 0 ⋮ 2
𝑅𝑒
𝑁𝑟
+ 𝑅𝑏0 + 𝑅𝑏(𝑁𝑟−1) −𝑅𝑏0 0 0 −𝑅𝑏(𝑁𝑟−1) ⋮ −

𝑅𝑒
𝑁𝑟

⋮ ⋮ ⋮ −𝑅𝑏0 ⋯ ⋯ ⋯ 0 ⋮ ⋮

⋮ ⋮ ⋮ 0 −𝑅𝑏(𝑘−1) 2
𝑅𝑒
𝑁𝑟
+ 𝑅𝑏𝑘 + 𝑅𝑏(𝑘−1) −𝑅𝑏𝑘 ⋯ ⋮ ⋮

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ −𝑅𝑏(𝑁𝑟−2) ⋮ ⋮

0 0 ⋮ −𝑅𝑏(𝑁𝑟−1) 0 0 −𝑅𝑏(𝑁𝑟−2) 2
𝑅𝑒
𝑁𝑟
+ 𝑅𝑏(𝑁𝑟−2) + 𝑅𝑏(𝑁𝑟−1) ⋮ −

𝑅𝑒
𝑁𝑟

⋯ ⋯ ⋮ ⋯ ⋯ ⋯ ⋯ ⋯ ⋮ ⋯

0 0 ⋮ −
𝑅𝑒
𝑁𝑟

⋯ ⋯ ⋯ −
𝑅𝑒
𝑁𝑟

⋮ 𝑅𝑒 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝐼𝑑𝑠
𝐼𝑞𝑠
⋯
𝐼𝑟0
⋮
𝐼𝑟𝑗
⋮

𝐼𝑟(𝑁𝑟−1)
⋯
𝐼𝑒 ]

 
 
 
 
 
 
 
 
 

 

(14) 

2.2 Equivalent reduced model of the induction machine 

 

The representation of the state shows a very high order 

system because it consists of the number of phases of the stator, 

the number of phases of the rotor, and the electromechanical 

equations. The rank of the system is, therefore "Nr+3". It is 

therefore necessary to reduce the size of the matrices to reduce 

the simulation time [13]. 

To do this, we use the generalized Clarke matrix extended 

to the rotor system. This makes it possible to move from "𝑛 −
𝑝ℎ𝑎𝑠𝑒𝑠" modeling to equivalent two-phase modeling written 

as follows [14]: 

The electromagnetic torque is obtained by derivation of the 

co-energy: 

 

𝐶𝑒𝑚

=
3

2
𝑝[𝐼𝑑𝑞𝑠]

𝑇 𝛿

𝛿𝜃
[
⋯ −𝑀𝑠𝑟cos (𝜃 + 𝑘𝛼) ⋯
⋯ −𝑀𝑠𝑟sin (𝜃 + 𝑘𝛼) ⋯

] [
⋮
𝐼𝑟𝑘
⋮
] 

(15) 

 

𝐶𝑒𝑚 =
3

2
𝑝𝑀𝑠𝑟 {𝐼𝑑𝑠 ∑ 𝐼𝑟𝑘 sin(𝑘𝛼)

𝑁𝑟−1

𝑘=0

− 𝐼𝑞𝑠 ∑ 𝐼𝑟𝑘 cos(𝑘𝛼)

𝑁𝑟−1

𝑘=0

} 

(16) 

 

We add the mechanical equation to have the mechanical 

speed "Ω=ω/P”. 

 
𝑑Ω

𝑑𝑡
=
1

𝐽
𝑝(𝐶𝑒𝑚 − 𝐶𝑟 −

𝑓

𝑝
𝜔) (17) 

 

with: 
𝑑𝜃

𝑑𝑡
= 𝜔. 

 

[𝑇3𝑛(𝜃𝑟)] =
2

𝑛
 

.

[
 
 
 
 
 

1

2
⋯ ⋯       ⋯                     

1

2

cos (𝜃𝑟) ⋯ cos (𝜃𝑟 − 𝑘𝑝
2𝜋

𝑛
) ⋯ cos(𝜃𝑟 − (𝑛 − 1)𝑝

2𝜋

𝑛
)

−sin (𝜃𝑟) ⋯ −sin(𝜃𝑟 − 𝑘𝑝
2𝜋

𝑛
) ⋯ −sin(𝜃𝑟 − (𝑛 − 1)𝑝

2𝜋

𝑛
)]
 
 
 
 
 

 
(18) 

The inverse matrix is given by: 

 
[𝑇3𝑛(𝜃𝑟)]

−1 = [𝑇𝑛3(𝜃𝑟)] = 

[
 
 
 
 
 
 
1 cos (𝜃𝑟) −sin (𝜃𝑟)
⋮ ⋮ ⋮

⋮
⋮
1

cos (𝜃𝑟 − 𝑘𝑝
2𝜋

𝑛
)

⋮

cos(𝜃𝑟 − (𝑛 − 1)𝑝
2𝜋

𝑛
)

−sin(𝜃𝑟 − 𝑘𝑝
2𝜋

𝑛
)

⋮

−sin(𝜃𝑟 − (𝑛 − 1)𝑝
2𝜋

𝑛
)]
 
 
 
 
 
 

 
(19) 

 

After applying this transformation matrix, a state vector [X] 

is defined, will give: 

 

{
 
 

 
 
[𝑋0𝑑𝑞𝑠] = [𝑇(𝜃𝑠)]. [𝑋𝑎𝑏𝑐𝑠] ⟺

[𝑋𝑎𝑏𝑐𝑠] = [𝑇(𝜃𝑠)]
−1. [𝑋0𝑑𝑞𝑠]

[𝑋0𝑑𝑞𝑟] = [𝑇3𝑁𝑟(𝜃𝑟)]. [𝑋𝑟𝑘]  ⟺

[𝑋𝑟𝑘] = [𝑇3𝑁𝑟(𝜃𝑟)]
−1
. [𝑋0𝑑𝑞𝑟]

 (20) 

 

• For the following part of the stator voltages: 

 

[𝑉𝑎𝑏𝑐𝑠] = [𝑅𝑠][𝐼𝑎𝑏𝑐𝑠] +
𝑑

𝑑𝑡
{[𝐿𝑠]. [𝐼𝑎𝑏𝑐𝑠]}

+
𝑑

𝑑𝑡
{[𝑀𝑠𝑟]. [𝐼𝑟𝑘]} 

(21) 

 

Applying the generalized equation to equation (21) gives: 

 

[𝑉0𝑑𝑞𝑠] = {[𝑇(𝜃𝑠)]. [𝑅𝑠]. [𝑇(𝜃𝑠)]
−1}. [𝐼0𝑑𝑞𝑠] + 

{[𝑇(𝜃𝑠)]. [𝐿𝑠]. [𝑇(𝜃𝑠)]
−1}.

𝑑

𝑑𝑡
[𝐼0𝑑𝑞𝑠] + 

{[𝑇(𝜃𝑠)]. [𝑀𝑠𝑟]. [𝑇3𝑁𝑟(𝜃𝑟)]
−1
} .
𝑑

𝑑𝑡
[𝐼0𝑑𝑞𝑟] 

(22) 

 

• For the rotor part: 

 

[𝑉𝑎𝑏𝑐𝑟] = [𝑅𝑟][𝐼𝑟𝑘] +
𝑑

𝑑𝑡
{[𝐿𝑟]. [𝐼𝑟𝑘]}

+
𝑑

𝑑𝑡
{[𝑀𝑠𝑟]. [𝐼𝑎𝑏𝑐𝑠]} 

(23) 
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[𝑉0𝑑𝑞𝑟] = {[𝑇(𝜃𝑟)]. [𝑅𝑟]. [𝑇3𝑁𝑟(𝜃𝑟)]
−1
} . [𝐼0𝑑𝑞𝑟] + 

{[𝑇(𝜃𝑟)]. [𝐿𝑟]. [𝑇3𝑁𝑟(𝜃𝑟)]
−1
} .
𝑑

𝑑𝑡
[𝐼0𝑑𝑞𝑟] + 

{[𝑇(𝜃𝑟)]. [𝑀𝑠𝑟]. [𝑇(𝜃𝑟)]
−1}.

𝑑

𝑑𝑡
[𝐼0𝑑𝑞𝑠] 

(24) 

 

By choosing a referential linked to the rotor such that "θs=θ 

et θr=0". This change of landmark makes it possible to obtain, 

after simplification, a reduced-size model of the asynchronous 

machine [15]: 

 

[
 
 
 
 
 
 
 
 𝐿𝑠𝑐 0 −

𝑁𝑟
2
𝑀𝑠𝑟 0 0

0 𝐿𝑠𝑐 0 −
𝑁𝑟
2
𝑀𝑠𝑟 0

−
3

2
𝑀𝑠𝑟 0 𝐿𝑟𝑐 0 0

0 −
3

2
𝑀𝑠𝑟 0 𝐿𝑟𝑐 0

0 0 0 0 𝐿𝑒]
 
 
 
 
 
 
 
 

.
𝑑

𝑑𝑡

[
 
 
 
 
𝐼𝑑𝑠
𝐼𝑞𝑠
𝐼𝑑𝑟
𝐼𝑞𝑟
𝐼𝑒 ]
 
 
 
 

=

[
 
 
 
 
𝑉𝑑𝑠
𝑉𝑞𝑠
𝑉𝑑𝑟
𝑉𝑞𝑟
𝑉𝑒 ]
 
 
 
 

−

[
 
 
 
 
 
 𝑅𝑠 −𝐿𝑠𝑐𝜔 0

𝑁𝑟
2
𝑀𝑠𝑟𝜔 0

𝐿𝑠𝑐𝜔 𝑅𝑠 −
𝑁𝑟
2
𝑀𝑠𝑟𝜔 0 0

0 0 𝑅𝑟 0 0
0 0 0 𝑅𝑟 0
0 0 0 0 𝑅𝑒]

 
 
 
 
 
 

.

[
 
 
 
 
𝐼𝑑𝑠
𝐼𝑞𝑠
𝐼𝑑𝑟
𝐼𝑞𝑟
𝐼𝑒 ]
 
 
 
 

 

(25) 

 

with: {
𝐿𝑟𝑐 = 𝐿𝑟𝑝 −𝑀𝑟𝑟 +

2.𝐿𝑒

𝑁𝑟
+ 2. 𝐿𝑏(1 − cos(𝛼))

𝑅𝑟 = 2
𝑅𝑒

𝑁𝑟
+ 2.𝑅𝑏(1 − 𝑐𝑜𝑠(𝛼))

. 

After establishing the model of the squirrel-cage 

asynchronous machine (Table 1) considering the structure of 

the rotor without fault, we now proceed to the modeling of the 

machine taking into account the rotor fault of the bar break 

type. 

Modeling this type of failure can be done using two 

different methods to cancel the current passing through the 

faulty bar. The first modeling method is to completely 

reconstruct the electrical circuit of the rotor. In this type of 

approach, the failed rotor bar is removed from the electrical 

circuit, which requires recalculation of the [Rr] resistance and 

inductance [Lr] matrices of the machine. Indeed, removing a 

bar from the cage gives us a matrix [Rr] and [Lr] of lower rank 

than that developed for the healthy machine. The change in the 

order of the rotor matrices forces the electrical and magnetic 

laws of the 'k' loop to be recalculated [13, 16]. 

The second possible approach is to artificially increase the 

value of the resistance of the failed bar by a factor sufficient 

for the current that passes through it to be as close as possible 

to zero in a steady-state. Compared to the first method, the 

structure of the rotor electrical circuit is not modified because 

it is considered, in this type of modeling, that a bar break does 

not modify the own and mutual inductances of the rotor cage. 

Therefore, modeling the partial break of the bars is possible 

in the latter approach, as the matrix [Rr] needs to be modified. 

The rotor defect matrix is therefore written as follows: 

 

[𝑅𝑟𝑓] = [𝑅𝑟] +

[
 
 
 
 
 
 
 
 
0 ⋯ ⋯ 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 0 ⋯
0 ⋯ 0 𝑅𝑏𝑘 −𝑅𝑏𝑘 0 ⋯
0 ⋯ 0 −𝑅𝑏𝑘 𝑅𝑏𝑘 0 ⋯
0 ⋯ 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ]

 
 
 
 
 
 
 
 

 (26) 

 

The new rotor resistance matrix, after transformations, 

becomes: 
 

[𝑅𝑟𝑓𝑑𝑞] = [𝑇(𝜃𝑟)]. [𝑅𝑟𝑓]. [𝑇(𝜃𝑟)]
−1 (27) 

 

So, the reduced-size model (5X5) of the induction machine 

with rotor bar breakage defects becomes: 

 

[
 
 
 
 
 
 
 
 𝐿𝑠𝑐 0 −

𝑁𝑟
2
𝑀𝑠𝑟 0 0

0 𝐿𝑠𝑐 0 −
𝑁𝑟
2
𝑀𝑠𝑟 0

−
3

2
𝑀𝑠𝑟 0 𝐿𝑟𝑐 0 0

0 −
3

2
𝑀𝑠𝑟 0 𝐿𝑟𝑐 0

0 0 0 0 𝐿𝑒]
 
 
 
 
 
 
 
 

.
𝑑

𝑑𝑡

[
 
 
 
 
𝐼𝑑𝑠
𝐼𝑞𝑠
𝐼𝑑𝑟
𝐼𝑞𝑟
𝐼𝑒 ]
 
 
 
 

= 

[
 
 
 
 
𝑉𝑑𝑠
𝑉𝑞𝑠
𝑉𝑑𝑟
𝑉𝑞𝑟
𝑉𝑒 ]
 
 
 
 

−

[
 
 
 
 
 
 
 𝑅𝑠 −𝐿𝑠𝑐𝜔 0

𝑁𝑟
2
𝑀𝑠𝑟𝜔 0

𝐿𝑠𝑐𝜔 𝑅𝑠 −
𝑁𝑟
2
𝑀𝑠𝑟𝜔 0 0

0 0 𝑅𝑟𝑑𝑑 𝑅𝑟𝑑𝑞 0

0 0 𝑅𝑟𝑞𝑑 𝑅𝑟𝑞𝑞 0

0 0 0 0 𝑅𝑒]
 
 
 
 
 
 
 

.

[
 
 
 
 
𝐼𝑑𝑠
𝐼𝑞𝑠
𝐼𝑑𝑟
𝐼𝑞𝑟
𝐼𝑒 ]
 
 
 
 

 

(28) 

 

with: 

 

𝑅𝑟𝑑𝑑 = 2.𝑅𝑏(1 − cos(𝛼)) +
𝑅𝑒
𝑁𝑟
+
2

𝑁𝑟
(1 − cos(𝛼)). 

∑𝑅𝑏𝑓𝑘(1 − cos(2𝑘 − 1) . 𝛼)

𝑘

 

𝑅𝑟𝑑𝑞 = −
2

𝑁𝑟
(1 − cos (𝛼))∑𝑅𝑏𝑓𝑘 sin(2𝑘 − 1) . 𝛼

𝑘

 

𝑅𝑟𝑞𝑑 = −
2

𝑁𝑟
(1 − cos (𝛼))∑𝑅𝑏𝑓𝑘 sin(2𝑘 − 1) . 𝛼

𝑘

 

𝑅𝑟𝑞𝑞 = 2.𝑅𝑏(1 − cos(𝛼)) + 2.
𝑅𝑒
𝑁𝑟
+
2

𝑁𝑟
(1 − cosα) 

.∑𝑅𝑏𝑓𝑘(1 + cos(2𝑘 − 1) . 𝛼)

𝑘

 

(29) 

 

The index "k" indicates the broken bar. 

For the mechanical part, after application of the generalized 

transformation on the expression of the torque (16) is obtained: 

 

𝐶𝑒𝑚 =
3

2
. 𝑝.
𝑁𝑟
2
.𝑀𝑠𝑟 . (𝐼𝑑𝑠. 𝐼𝑞𝑟 − 𝐼𝑞𝑠. 𝐼𝑑𝑟) (30) 

 

Table 1. Induction machine parameters 

 
Parameter Meaning parameter Value 

P Nominal power 1.1 KW 

V Rated line voltage 220 V 

fs Feeding frequency 50 Hz 

p Number of pole pairs 1 

R average rotor diameter 35.76 mm 

Ns Number of turns per stator phase 160 

l Rotor active length 65 mm 

Re 
Resistance of a portion of a short-

circuit ring 
150 μΩ 

Rb Resistance of a rotor bar 150 μΩ 

Le 
Short circuit ring leakage 

inductance 
0.1 μH 

Lb Rotor bar leakage inductance 0.1 μH 

e Air gap thickness 0.2 mm 

Rs Resistance of a stator phase 7.58 Ω 

Nr Number of rotor bars 16 

Lsf Stator leakage inductance 26.5 mH  

f Coefficient of friction 0 

J Moment of inertia 
0.00541 

Kgm2 
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2.3 Simulation results and discussion 

 

Once the model of the induction machine is established. The 

simulation aspect can be addressed in the MATLAB/Simulink 

environment, which provides the ability to observe and 

interpret visualized phenomena and quantities in real-time. We 

will represent the induction machine in different states (Figure 

4), healthy and defective. The results of the simulation in these 

cases are as follows: 

 

 
 

Figure 4. Simulation model of an induction machine with healthy and all cases of broken bars state 

 

 
 

Figure 5. Three-phase supply voltage Vabcs 

 

 
 

Figure 6. Park’s two-phase stator voltages Vdqs 

 

 

 
(a) Healthy state 

 
(b) One broken rotor bar 

 
(c) Two adjacent rotor broken bars 

 
(d) Two distant rotor broken bars  

  

 
(e) Three adjacent rotor broken bars 
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(f) Three distant rotor broken bars 

 

Figure 7. Three-phase stator currents Iabcs of an induction 

machine with the zoom of healthy and all cases of broken 

rotor bars state 

 

 
 

Figure 8. FFT analysis of stator current Ias spectrum for the 

healthy state of the induction machine 

 

 
 

Figure 9. FFT analysis of stator current Ias spectrum for rotor 

broken bars of the induction machine 

 

 
 

Figure 10. Mechanical speed of induction machine with 

healthy and all cases of broken rotor bars state 

 

 
 

Figure 11. Electromagnetic torque of induction machine with 

healthy an all cases of broken rotor bars state 

 

Observe and simulate the multi-winding model of the 

induction machine with three supply voltages Vabcs and Vdqs 

(Figure 5, 6). At the time 0.5 s, apply a load torque of 3.5; 

[Nm]. Before 1 s the dynamic regime of the asynchronous 

machine in the healthy state, the time t=1 s, simulates the 

rupture of the first bar, the time t=2 s, breaking two adjacent 

bars, and the time t=3 s, breaking two distant bars, and at time 

t=4 s, breaking three adjacent bars, and at time t=5 s, by 

breaking three distant bars, it is observed in Figure 10 that the 

rotational speed decreases during the break of the bar and 

creates oscillations of rupture. Figure 11 electromagnetic 

torque increases in amplitude after the rupture of two bars, and 

Figure 7 is illustrated the modulation of the envelope of the 

stator currents Iabcs increases in amplitude with the number of 

broken bars. 

Figure 8 shows the spectral analysis of the stator current Ias 

through the FFT in the healthy state, we do not observe any 

increase in frequency. Figure 9 shows the appearance of a 

raised frequency for the adjacent broken bar. These increases 

have an amplitude that increases according to the bars of the 

number of breaks, two frequencies appear around the 

fundamental f=50 Hz, one on the left and the other on the right 

according to the relationship 𝑓𝑏𝑏 = (1 ∓ 2𝑠𝑘)𝑓𝑠. 
 

 

3. EXTRACTION OF FEATURES 

 

3.1 Statistical features 

 

At the final stage of signal processing, the statistical 

characteristics of the current signal are extracted (Table 2). and 

used as input for ANN and RF for training to classify various 

signals according to the degree of similarity or manifestation 

of these characteristics. Each type of defect produces a signal 

from the stator current Ias with a signature pattern that is 

reflected in signal characteristics such as mean, standard 

deviation, etc. [17]. 

 

Table 2. Statistical features 

 
statistical 

features 
Equation 

minimum 𝑀𝑖𝑛(𝑥) 
maximum 𝑀𝑎𝑥(𝑥) 
Standard 

deviation 

1

𝑁
∑ �̅�𝑖

2 − �̅�2𝑁
𝑖=0   

Root mean 

square 

1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=0   

Kurtosis 

1

𝑁
∑ �̅�𝑖

4 −
3

𝑁2
(∑ 𝑥𝑖

2𝑁
𝑖=0 )

2
−

4

𝑁
�̅�(∑ 𝑥𝑖

2𝑁
𝑖=0 ) +𝑁

𝑖=0
12

𝑁
�̅�2(∑ 𝑥𝑖

2𝑁
𝑖=0 ) − 6�̅�4  

peak to peak 𝑀𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥) 

Mean 
1

𝑁
∑ 𝑥𝑖
𝑁
𝑖=0   

Skewness 
1

𝑁
∑ 𝑥𝑖

3 −
3

𝑁
�̅�(∑ 𝑥𝑖

2𝑁
𝑖=0 ) + 2�̅�3𝑁

𝑖=0   

Crest factor 
max (𝑥)−min (𝑥)

1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=0

  

 

3.2 Wavelet packet decomposition features 

 

3.2.1 Description of the wavelet method 

The wavelet method requires the use of basic time-

frequency functions with different time supports to analyze 

signal structures of different sizes. The wavelet transforms, an 

extension of the short-term Fourier transform, projects the 
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original signal onto the basic functions of the wavelets and 

provides time-domain mapping at the time scale. 

A wavelet is a function belonging to L2(R) of zero mean. It 

is normalized and centered on the neighborhood of t=0. A 

family of time-frequency atoms is obtained by scaling a 

bandpass filter ψ by 𝑠 and translating it as u. L2(R) represents 

the spatial vector of the integrable functions of the measurable 

square on the real line R with ‖ψ‖=1. 

 

∫ 𝜓(𝑡)𝑑𝑡 = 0
+∞

−∞

 (31) 

 

𝜓𝑢,𝑠(𝑡) =
1

√𝑠
𝜓 (

𝑡 − 𝑢

𝑠
) (32) 

 

The wavelet transforms a function f at scale 𝑠  and the 

position u is calculated by correlating f with a wavelet atom: 

 

𝑊𝑓(𝑢, 𝑠) = ∫ 𝑓(𝑡)
1

√𝑠
𝜓. (

𝑡 − 𝑢

𝑠
) 𝑑𝑡

+∞

−∞

 (33) 

 

A real wavelet transform is complete and conserves energy 

as long as it satisfies a low eligibility requirement: 

 

∫
|𝜓(𝜔)|2

|𝜔|

+∞

0

𝑑𝜔 = ∫
|𝜓(𝜔)|2

|𝜔|

0

−∞

𝑑𝜔 = 𝐶𝜓 < +∞ (34) 

 

where, Wf(u, s) is known only for s<s0, one must retrieve f, an 

additional information corresponding to Wf(u, s) for s>s0. This 

is achieved by introducing a scale function φ which is an 

aggregate of wavelets at scales greater than 𝜓. 

In the following, we draw by �̂�(𝜔) and �̂�(𝜔) the Fourier 

transforms of ψ(n) and φ(n), respectively. 

The transformation into discrete wavelets results from the 

continuous version. Unlike the latter, DWT uses a discrete 

scale factor and translation. A discrete dyadic wavelet 

transform is called any wavelet base working with a scale 

factor u=2j. 

The discrete version of Wavelet Transform, DWT, consists 

of sampling neither the signal nor the transform but sampling 

the scaling and shift parameters [18, 19]. 

This results in high-frequency resolution at low frequencies 

and high temporal resolution at high frequencies, eliminating 

redundant information. Taking into account the positive 

frequency, �̂�(𝜔) has information in [0, π] and �̂�(𝜔) in [π, 2π]. 

Therefore, they both have complete signal information without 

any redundancy. The functions h(n) and g(n) can be obtained 

by the scalar product of ψ(t) and φ(t) [20]. The decomposition 

of the signal into [0, π] gives: 

 

ℎ(𝑛) =< 2−𝑙𝜑(2−𝑙𝑡)𝜑(𝑡 − 𝑛) > 

g(𝑛) =< 2−𝑗𝜓(2−𝑗𝑡)𝜑(𝑡 − 𝑛) > ,    𝑗 = 0, 1, …, 
(35) 

 

Wavelet decomposition does not involve the signal in [π, 

2π]. To break down the signal throughout the frequency band, 

wavelet packets can be used. After decomposition l times, we 

obtain 2l frequency bands each with the same bandwidth either: 

 

[
(𝑖 − 𝑙)𝑓𝑛

2
,
𝑖𝑓𝑛
𝑛
]      𝑖 = 1, 2, … , 2𝑙 (36) 

 

where, fn is the Nyquist frequency, in the ith frequency band. 

Wavelet packets break down the signal into a low-pass filter 

h(n) and (2l-1) band-pass filters g(n), and provide diagnostic 

information in two frequency bands. Aj is the low-frequency 

approximation and Dj is the high-frequency detail signal, both 

at j resolution: 

 

𝐴𝑗(𝑛) =∑ℎ(𝑘 − 2𝑛)𝐴𝑗−1
𝑘

 

𝐷𝑗(𝑛) =∑g(𝑘 − 2𝑛)𝐴𝑗−1     𝑛 = 1, 2, …

𝑘

 
(37) 

 

where, A0(k) is the original signal. After decomposition of the 

signal, an approximation signal Aj and detail signals Dj are 

obtained (see Figure 12). 

 

 
 

Figure 12. Tree decomposition of signal S 

 

The wavelet packet method is a generalization of wavelet 

decomposition that offers a richer range of possibilities for 

signal analysis (see Figure 13). In wavelet analysis, a signal is 

divided into an approximation and a detail. Then the 

approximation is divided into an approximation and a second-

level detail, and the process is repeated [21] until the targeted 

results are obtained. For n-level decomposition, there are n+1 

possible ways to decompose or encode the signal: 

 

𝑊2𝑛(𝑡) = √2∑ℎ(𝑘)𝑊𝑛(2𝑡 − 𝑘)

𝑘

 

𝑊2𝑛+1(𝑡) = √2∑g(𝑘)𝑊𝑛(2𝑡 − 𝑘)

𝑘

 
(38) 

 

where, W(t) is the original signal. By comparing Eq. (38) With 

Eq. (37), we can find that only Aj in Eq. (37) is decomposed 

but also Dj in Eq. (38) is decomposed. 

Wavelets and wavelet packets break down the original 

signal that is non-stationary or stationary into independent 

frequency bands with multi-resolution [21]. 

 

 
 

Figure 13. Decomposition of the signal S in wavelet packet 

 

 

4. OPTIMIZATION ALGORITHMS 

 

4.1 Binary bat algorithm (BBA) 

 

Bat Algorithm (BA) is a heuristic optimization algorithm 

that has been driven by the echolocation behavior of bats [22]. 

The algorithm uses the two key characteristics of bats to find 

prey. Bats increase the rate of emission of ultrasonic sounds 
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and decrease the volume when hunting prey. The Bat 

algorithm mathematically models this behavior using the 

velocity vector S, the position vector X, and the frequency 

vector F, for each of the artificial bats as follows: 

 

𝑆𝑖+1 = 𝑆𝑖 + (𝑋𝑖 − 𝐺𝑏𝑒𝑠𝑡) ∗ 𝐹𝑖 (39) 

 

𝑋𝑖+1 = 𝑋𝑖 + 𝑆𝑖+1 (40) 

 

𝐹 = 𝐹𝑚𝑖𝑛 + (𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛) ∗ 𝛽 (41) 

 

The velocity vector S, the position vector X, and the 

frequency F are updated as in Eq. (39), Eq. (40), and Eq. (41), 

respectively. Gbest is the solution that works best among all the 

solutions achieved so far and β is a random number of a 

uniform distribution in [0, 1], exploitation in the algorithm is 

carried out using a random step as shown in Eq. (42) where A 

is the intensity of the emitted sound that bats use to reach 

exploration and ϵ is a random number in [-1, 1]. 

 

𝑋𝑛𝑒𝑤 = 𝑋𝑜𝑙𝑑 + 𝜖𝐴 (42) 

 

The binary version of BA, Binary Bat Algorithm (BBA), 

explores the binary search space. The binary search space can 

be considered a hypercube. The algorithm's artificial search 

agents return different bit numbers to move to corners closer 

or farther from this hypercube [23]. The BA returns the 

velocity values in real space and the position update is done 

using Eq. 40. However, in the case of BBA, the actual values 

must be mapped to binary values to update the positions. The 

position can be updated according to the probability of the 

speed values using the transfer function [24]. 

 

4.2 BPSO algorithm 

 

PSO is a population-based algorithm that mimics the social 

behaviors of flocks of birds and fish swarms. This algorithm 

was first introduced by Kennedy and Eberhart [25]. PSO is 

beneficial for performing feature selection because of its ease 

of implementation, speed of convergence and low compute 

cost [26, 27]. In the PSO algorithm [25, 28], a swarm consists 

of a set of particles (Population). Each particle "i" represents a 

candidate solution and has the speed "vi" and position "xi". The 

problem is optimized by improving each candidate solution by 

the motion of the corresponding particle in the research space. 

The motion of a particle is influenced by the best local position 

"pbest" of the particle as well as the best overall solution for 

the swarm "gbest", which corresponds to the particle with the 

best pbest. The evaluation of pbest and gbest depends on an 

objective function (fitness function), which measures the 

degree of effectiveness of the solution of each particle. During 

motion, each particle in the swarm updates its "vi" speed and 

"xi" position using: 

 

𝑣𝑖(𝑡 + 1) = 𝑤 ∗ 𝑣𝑖(𝑡) + 𝑐1 ∗ 𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑖(𝑡)) + 𝑐2
∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) 

(43) 

 
𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (44) 

 

where, vi(t+1) represents the new speed of the particle, c1 and 

c2 are the acceleration coefficients, w is an inertial weight, r1 

and r2 are random numbers, vi(t) is the velocity of particle i at 

time t, xi(t) is the velocity of particle i at time t, pbesti is the 

best position occupied by particle i at time t, 𝑔𝑏𝑒𝑠𝑡 is the best 

position discovered by the swarm at time t, and xi(t+1) is the 

new position of the particle. 

Algorithm 1 presents the pseudocode of the PSO algorithm, 

where Random Position and Random Velocity are used to 

initialize each particle with a random initial position and a 

random initial velocity, respectively; Best solution returns the 

best solution among all the particles in the swarm; Update 

Velocity returns the new velocity value of a particle using Eq. 

(43); Updating Position returns the new position of a particle 

using Eq. (44), and calculates the fitness value of a solution. 

 

 
 

In the abovementioned explanation of the PSO algorithm, a 

continuous space is assumed; however, in this article, we use 

a version of PSO known as BPSO [29], which was developed 

to solve discrete problems. In addition, BPSO is one of the 

most effective methods of selecting packaging characteristics 

[26, 27]. In BPSO, the speed vi represents the probability that 

xi will take a value of 1 or 0. To restrict all real position values 

to 0 or 1, the sigmoid function is applied using: 

 

𝑥𝑖 = {
1      𝑖𝑓   𝑟𝑎𝑛𝑑(0, 1) < 𝑆(𝑣𝑖)
0                                         𝑒𝑙𝑠𝑒

 (45) 

 

𝑆(𝑣𝑖) =
1

1 + 𝑒−𝑣𝑖
 (46) 

 

where, rand (xi) is a random uniform number in the interval [0, 

1]. The updated position is normalized using S(vi), where 𝑣𝑖 
denotes the updated speed of the particle. When S(vi) is greater 

than the random number generated, the position value of the 

particle (xi) is 1; otherwise, xi is 0. 

The BPSO parameters and the problem of interest, which 

consist of the feature set, are passed to the PSO algorithm 

(Algorithm 1). The velocities and positions of the particles are 

updated according to Eq. (43) and Eq. (45), respectively. The 

main objective of this study is to improve the performance of 

the classifier. The Evaluate evaluation function is defined 

based on the accuracy results of the classifier, and the output 

is determined as Evaluate (y)=Accuracy (y). Precision (y) 

refers to the accuracy of the classifier for the model formed 

and tested using the subset of characteristics selected there by 

the particle evaluated in the PSO swarm. Subsequently, the 

Best Solution function returns the solution (a subset of 

characteristics (y)) with the best accuracy value obtained 

among the population. 
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4.3 Principal component analysis algorithm (PCA) 

 

Suppose that observations for 𝑚  features form an n×m 

matrix, signe as X=(xij) i=1, 2, .., n, j= 1, 2…, m. The PCA is 

processed as follows [30]. 

·Standardize the data as (47): 

 

𝑥𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥𝑗,𝑚𝑒𝑎𝑛

𝜎(𝑥𝑗)
 (47) 

 

·Calculate m*m correlation matrix C as (48), which is 

symmetrical and positive definite: 

 

𝐶 = 𝑋𝑇𝑋 (48) 

 

·The eigenvalue λi and the eigenvector Pj of C is calculated 

in descending order of magnitude (λ1>λ2>…>λm). The original 

data can then be expressed in terms of eigenvalues and 

eigenvectors, which define the directions of the principal 

components as (49): 

 

𝑋 = 𝑡1𝑝1
𝑇 + 𝑡2𝑝2

𝑇 +⋯+ 𝑡𝑘𝑝𝑘
𝑇 + 𝐸 (49) 

 

where, 𝐸 = 𝑡𝑘+1𝑝𝑘+1
𝑇 + 𝑡𝑘+2𝑝𝑘+2

𝑇 +⋯+ 𝑡𝑚𝑝𝑚
𝑇 . Eq. 49 can be 

rewritten in matrix form as (50): 

 

𝑋 = 𝑇𝑃𝑇 + 𝐸 (50) 

 

where, T=[t1, t2, …, tk] with k<m is called the principal 

component score, P=[p1, p2, …, pk] is called the principal 

component loads. 𝐸 is the residue and k(k<m) is the number of 

scores. The condition of optimization Eq. (50) is that the 

Euclidean norm of the residual matrix E must be minimized. 

To satisfy this criterion, it was shown that P=[p1, p2, …, pk] is 

the eigenvector of the covariance matrix of X. 

An approximate model, including the first k terms of Eq. 49, 

will capture most of the observed variance X if the data are 

correlated. The percentage by which the information in X can 

be expressed as the first k terms of the principals is Q, which 

can be expressed as Eq. (51): 

 

𝑄 =
𝜆1 + 𝜆2 +⋯+ 𝜆𝐾

∑ 𝜆𝑗
𝑚
𝑗=1

 (51) 

 

From Eq. (47) and Eq. (48), scores can be obtained in Eq. 

(52): 

 

𝑇 = 𝑋𝑃 (52) 

 

The PCA is a linear mapping of the original observed data. 

The load vector P is the linear transformation coefficient. 

After obtaining P and T, the reconstructed data can be written 

as Eq. (53): 

 

𝑋′ = 𝑇𝑃𝑇 + 𝐸 (53) 

 

where, X'=[x1, x2, …, xk]T is the reconstruction of the observed 

data and the dimensions of the data are reduced from m to 

k(k<m), the principle of PCA is illustrated in Figure 14. The 

method of determining the number (k) of the principal 

components is the key to the application of the PCA [30]. 

 

 
 

Figure 14. The principle of PCA 

 

 

5. APPLICATION OF LEARNING MACHINE-BASED 

ANN AND RF 

 

In this work, a feed-forward neural network (ANN) is 

applied with a hidden layer of 10 neurons (Figure 15) and a 

random forest (RF) with 20 trees to perform the four training 

and testing cases (without optimization and with BBAT, 

BPSO, PCA optimization algorithms). The results obtained 

are shown in Table 4. But the best results of hybrid parameters 

(statistical and wavelet packet decomposition) with PCA are 

inserted in part (6). 

The first step is to acquire samples of Ias current from 

healthy motors and fault motors with rotor broken bars. This 

current data is used as input into the signal processing stage. 

The healthy and faulty motor current samples used in this 

study were obtained from the simulation results of the multi-

wind model of the broken rotor bars. 

The size of the input data set used is 600-by-17 matrix and 

target output data is 600-by-6 matrix whose outputs are binary 

in nature where a vector output of [1; 0; 0; 0; 0; 0] healthy 

motor condition, [0; 1; 0; 0; 0; 0] presence of one broken rotor 

bar until [0; 0; 0; 0; 0; 1] presence of Three distant rotor broken 

bars (Table 3). 70% of the data set is used for ANN training 

and the rest for testing. 

 

Table 3. Classification of several faults 

 

Fault type Symbol Code 

 S1 S2 S3 S4 S5 S6 

Healthy state HS 1 0 0 0 0 0 

One broken rotor 

bar 
OBRB 0 1 0 0 0 0 

Two adjacent 

rotor broken bars 
TARBB 0 0 1 0 0 0 

Two distant rotor 

broken bars 
TDRBB 0 0 0 1 0 0 

Three adjacent 

rotor broken bars 
THARBB 0 0 0 0 1 0 

Three distant rotor 

broken bars 
THDRBB 0 0 0 0 0 1 

 

 

6. RESULTS AND DISCUSSION 

 

Initially, all statistical and wavelet packet features were 

evaluated without performing feature screening; the results are 

shown in Table 4. ANN and RF using hybrid features 

(statistical and wavelet packet parameters) for detection of 

healthy and broken rotor bar faults states produced higher 

accuracy than the other combinations. The RF classifier with 

PCA achieved the highest accuracy (98.333%) among all 

classifiers with different types of characteristics. 
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Table 4. Results of ANN and RF classifiers without and with optimization algorithms 

 

 

Statistical parameters  Wavelet Packet Decomposition parameters  
Hybrid (statistical and Wavelet Packet  

Decomposition) parameters  

Training  Testing Training Testing Training Testing 

ANN RF ANN RF ANN RF ANN RF ANN RF ANN RF 

Without optimization 
Accuracy % 81.1905 100 76.1111 87.2222 86.1905 98.8095 78.8889 79.4444 95.4762 100 87.7778 90 

Time (s) 109.8219 13.5052 2.7616 8.1943 63.207 12.0571 2.6618 4.9598 127.3953 12.0414 6.3246 4.6141 

BBAT 
Accuracy % 78.3333 99.7619 75.5556 87.2222 85.4762 99.2857 81.1111 78.3333 90.9524 99.7619 91.1111 92.7778 

Time (s) 41.2341 11.5924 2.5658 4.7801 54.2727 11.9094 2.5868 5.1606 55.3485 11.5786 2.556 4.7123 

BPSO  
Accuracy % 84.0476 99.7619 83.8889 88.3333 82.8571 99.7619 78.3333 78.8889 94.7619 99.7619 93.8889 95 

Time (s) 50.7143 11.8571 2.5342 4.9335 46.0295 11.8125 2.6083 4.8937 88.9211 11.6481 2.5552 4.8687 

PCA 
Accuracy %  75.4762 99.7619 81.1111 89.4444 93.8095 100 93.8889 96.1111 98.0952 100 97.2222 98.3333 

Time (s) 63.5083 12.2038 2.7196 4.9923 103.6447 13.513 3.8241 6.1582 77.4085 11.7981 2.8647 4.8404 

 
6.1 Classification using a hybrid parameter with PCA 

 

·Classification using artificial neural network 

 

 

 
Figure 15. Feed-forward neural network with PCA 

 

 

 
Figure 16. Error histogram between target values and 

predicted values of ANN with PCA 

 

 

 
Figure 17. Training state of ANN with PCA 

 

 
 

Figure 18. Mean square error of 2000 Epochs for the ANN 

with PCA 

·Classification using Random Forest 

 

 
 

Figure 19. The balanced error rate of RF with PCA 

 

A histogram of an error after training ANN and Training 

state. with PCA optimization algorithm is shown in Figure 16, 

17. Moreover, validation performance is shown in Figure 18. 

The mean squared error of 2000 epochs shows the best 

validation performance at epoch 18. 

Several tests of classification using random forest -by 

increasing the number of trees- have been done. From the 

result illustrated in Figure 19. we can conclude that the 

balanced error rate of RF decreases when the number of trees 

increases. It can be seen also that the best-balanced error rate 

is obtained using 20 trees, for this reason the value (0.1142) it 

will be considered as the best random forest classifier. 

Classification of the healthy and defective state of the rotor 

bars of the induction machine with artificial intelligence 

techniques like ANN and Random Forest assisted by the 

algorithms of features selection like BBAT, BPSO, and 

features reduction like PCA from the statistical parameters and 

wavelet packet decomposition parameters are all shown on 

both Tables 4 and 5. 

 

Table 5. Optimized dimensionality reduction algorithm for 

fault diagnosis of rotor broken bars in induction machine 

 

Features  

Original 

inputs 

without 

optimization 

algorithms 

Reduction inputs with 

optimization algorithms 

BBAT BPSO PCA 

Statistical 9 4 4 8 

wavelet packet 

decomposition 
8 4 5 7 

Hybrid (statistical 

and wavelet packet 

decomposition) 

17 6 7 16 

 

 

7. CONCLUSIONS 

 

The detection and early diagnosis allow for reducing 

damage and maintaining other components of induction 
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machine, through the study of defects influence and the 

behavior of the machine in case of operation fault. In this paper, 

we presented the induction machine fault by using a multi-

winding model for the simulation of broken bars. The 

proposed diagnosis method could be applied by artificial 

intelligence represented by neural networks (ANN) and 

random forest (decision tree) with BBAT, BPSO, and PCA 

optimization algorithms on induction machine during several 

parametric studies (selection of the type of network, choice of 

inputs, and choice of outputs, number of trees in the random 

forest, ...). The data acquisition operation, to establish the 

learning machine base. To be reliable indicators for detection 

and location of fault broken bars. These results indicate clearly 

that the proposed RF with optimization algorithm PCA used 

hybrid parameters (statistical and wavelet packet 

decomposition parameters) and followed by PCA gave high 

accuracy (98.3333%), it has great importance for fault 

identification, and it is capable to reduce the failure severity. 

Furthermore, it has been manifested that this approach is 

accurate and simple in the process implement diagnosis. 
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