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A proof of the theorem giving the maximum available active power with constant 

transmission losses (i.e., maximum efficiency) valid for arbitrary waveforms, is proposed. 

This makes it possible to rigorously generalize the definitions of power factor based on 

the definition of apparent power as the maximum power available to apply them to systems 

with non-symmetric, non-sinusoidal, and eventually time-varying (i.e., non-periodic) 

waveforms or DC grids, thus extending its application to hybrid multi-wire systems with 

asymmetrical phases, with different voltages, frequencies or waveforms (i.e., non-

sinusoidal waves, such as rectangular or PWM) and even DC, which can be combined 

eventually sharing the neutral conductor. Finally, an example of application to a hybrid 

system composed of DC and unbalanced load inverter-based non-sinusoidal AC 

subsystems is included. 
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1. INTRODUCTION

In polyphase systems, most of the current definitions of 

power factor proposed in the standards [1-18] are based on a 

theorem that gives the maximum power delivered for constant 

transmission losses [4, 6]. However, instead of naming this 

theorem as "Maximum Power Theorem" we prefer to name it 

as "Maximum Efficiency Power Transmission Theorem" to 

avoid confusions with the classical theorem of electrical 

circuits, which states that the power that a source could supply 

a load becomes maximum when the load impedance is the 

complex complement of the Thévenin impedance. 

This maximum efficiency power transmission theorem is 

generally proven for sinusoidal waveforms operating in the 

time domain using trigonometric functions, or more simply 

using complex phasors [4, 6, 12, 15]. 

However, as it will be shown in the next section, the 

theorem is also valid for non-sinusoidal waveforms, even in 

time-varying systems. 

This means that this theorem is valid for "polyphase" hybrid 

systems where some lines are DC supplies, other single phase 

sinusoidal, three phase unbalanced power subsystems and 

even high frequency rectangular waveform power sources 

(e.g., the typical 400 Hz power systems). This extends the 

application of the theorem to solve problems currently 

generated by the proliferation of power electronic loads [18-

21]. 

2. THEOREM OF MAXIMUM EFFICIENCY

2.1 Maximum transmission efficiency with respect to the 

power source 

This is the approach adopted to define the system apparent 

power used in standards like the IEEE1459 and DIN 40110. 

In the circuit of Figure 1, the waveforms are not assumed 

sinusoidal, or even periodic (i.e., arbitrary waveforms). 

It is assumed that both the resistances and the parasitic 

inductances of the lines can be different one from each other, 

although as will be seen in the demonstration that follows, it 

will not be necessary to know the value of the parasitic 

inductances to determine the maximum possible transmission 

efficiency (since these do not dissipate energy). 

It is assumed that the functions of the waveforms of the 

voltages and currents are continuous, bounded, and satisfy the 

necessary conditions to permute the derivation and integration 

operations (practical waveforms have continuous derivatives 

bounded to values less than infinity). 

The impedances of the load can be non-linear and 

eventually active (that is, they can contain voltage or current 

generators with arbitrary waveforms). 

To calculate the energy transferred to the load, the 

instantaneous power is integrated during a time τ 

corresponding to the operating time of the system, or to the 

chosen analysis interval (which in the particular case of 

periodic waves can be one or multiple periods of the network). 

Let m be the number of phases, the instantaneous power 

delivered by the source is: 

𝑝 = ∑ 𝑣𝑥  𝑖𝑥
𝑚
𝑥=1 + 𝑣𝑁 𝑖𝑁 (1) 

where, vN and iN are the neutral voltage and current. 

Therefore, the energy consumed is: 

𝑊 = ∫ 𝑝 𝑑𝑡
𝜏

0
= ∫ (∑ 𝑣𝑥 𝑖𝑥

𝑚
𝑥=1 + 𝑣𝑁 𝑖𝑁)𝑑𝑡

𝜏

0
(2) 

and the average active power is defined as: 

𝑃𝑎𝑣 = 𝑊 𝜏⁄ (3) 
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An instantaneous power loss will dissipate in power lines, 

expressed by: 

 

𝑝𝑆 = ∑ 𝑅𝑆𝑥 
𝑚
𝑥=1 𝑖𝑥

2
+ 𝑅𝑁 𝑖𝑁

2  (4) 

 

During the time τ the energy lost in the lines will be: 

 

𝑊𝑆 = ∫ 𝑝𝑆 𝑑𝑡
𝜏

0
= ∫ (∑ 𝑅𝑆𝑥  

𝑚
𝑥=1 𝑖𝑥

2
+ 𝑅𝑁 𝑖𝑁

2)𝑑𝑡
𝜏

0
  (5) 

 

The root mean square value of each current is defined as: 

 

𝐼𝑥
2 =

1

𝜏
 ∫ 𝑖𝑥

2 𝑑𝑡
𝜏

0
; ∀𝑥 = 1, 2, 3, . . . , 𝑚, 𝑁  (6) 

 

and that of each voltage as: 

 

𝑉𝑥
2 =

1

𝜏
 ∫ 𝑣𝑥

2 𝑑𝑡
𝜏

0
;  ∀𝑥 = 1, 2, 3, . . . , 𝑚, 𝑁  (7) 

 

Defining the transmission efficiency as (W-WS)⁄(W) in order 

to obtain its maximum, the minimum of WS will be found for 

a constant total transmitted energy W. For this, the Lagrange 

multipliers method will be used. 

 

 
 

Figure 1. Circuit for the proof of the maximum efficiency 

theorem (m: number of phases) 

 

It will be assumed that the functions corresponding to the 

waveforms of voltages and currents admit permutation 

between the operations of summation, integration and 

derivation (which happens for the waveforms used in practice, 

which are continuous and have continuous derivatives with 

bounded values less than infinity). 

The minimum of WS will be found with the restrictions that 

the total energy (W) transmitted from the source is constant: 

 

𝑓(𝑖𝑥) = ∫ 𝑝 𝑑𝑡
𝜏

0
−𝑊 = 0; ∀𝑥 = 1, 2, 3, . . . , 𝑚, 𝑁  (8) 

 

and the restriction imposed by the node equation: 

 

𝑔(𝑖𝑥 , 𝑖𝑁) = ∑ 𝑖𝑥
𝑚
𝑥=1 + 𝑖𝑁 = 0  (9) 

which is equivalent to: 

 

∫ 𝑔 𝑑𝑡
𝜏

0
= ∫ (∑ 𝑖𝑥

𝑚
𝑥=1 + 𝑖𝑁)𝑑𝑡

𝜏

0
= 0  (10) 

 

With which, from the Lagrange method, the system of 

equations in partial derivatives to solve is: 

 

𝜕 𝑊𝑆

𝜕𝑖𝑥
− 𝜆1  

𝜕𝑓

𝜕𝑖𝑥
− 𝜆2  

𝜕 ∫ 𝑔 𝑑𝑡
𝜏
0

𝜕𝑖𝑥
= 0  (11) 

 

By exchanging derivation and integration, the system to 

solve becomes: 

 
𝜕 𝑝𝑆
𝜕𝑖𝑥

− 𝜆1  
𝜕𝑝

𝜕𝑖𝑥
− 𝜆2  

𝜕𝑔

𝜕𝑖𝑥
= 0; ∀𝑥 = 1, 2, 3, . . . , 𝑚, 𝑁 (12) 

 

Since pS is always greater than zero, after finding its 

minimum instantaneous value, it will be integrated to obtain 

the minimum total energy lost. 

Notice that if a minimum instantaneous function pS is found 

for each instant, its integral during time τ (which is WS) must 

also be minimum. 

Deriving (1), (4) and (10), and substituting in (12) one 

obtains: 

 

2 𝑖𝑥 − 𝜆1 (
𝑣𝑥

𝑅𝑆𝑥
⁄ ) − (

𝜆2
𝑅𝑆𝑥

⁄ ) = 0;∀𝑥

= 1, 2 . . . 𝑚 
(13a) 

 

2 𝑖𝑁 − 𝜆1 (
𝑣𝑁

𝑅𝑁
⁄ ) − (

𝜆2
𝑅𝑁
⁄ ) = 0 (13b) 

 

Adding member to member (13a) and (13b) gives: 

 

2(∑ 𝑖𝑥
𝑚
𝑥=1 + 𝑖𝑁) − 𝜆1 [∑ (

𝑣𝑥
𝑅𝑆𝑥
⁄ )𝑚

𝑥=1 +

  + (
𝑣𝑁

𝑅𝑁
⁄ )] − (

𝜆2
𝑅𝑆//

⁄ ) = 0  
(14) 

 

where, 

 

𝑅𝑆// =
1

[∑ (1 𝑅𝑆𝑥
⁄ )𝑚

𝑥=1 + (1 𝑅𝑁
⁄ )]

⁄  
(15) 

 

is the result of associating in parallel all the parasitic 

resistances of the lines. 

Applying the law of nodes (9), one gets: 

 

𝜆2 = −𝜆1𝑣𝑂 (16) 

 

where, 

 

𝑣𝑂 = 𝑅𝑆// [∑ (
𝑣𝑥

𝑅𝑆𝑥
⁄ )𝑚

𝑥=1 + (
𝑣𝑁

𝑅𝑁
⁄ )]  (17) 

 

is a reference voltage that will be zero when the phase voltages 

have no homopolar component and the neutral voltage is 

negligible. 

Substituting (16) and (17) in (13a) and (13b), it results: 

 

𝑖𝑥 = (𝜆1 2⁄ )[(𝑣𝑥 − 𝑣𝑂) 𝑅𝑆𝑥⁄ ] (18a) 

 

𝑖𝑁 = (𝜆1 2⁄ )[(𝑣𝑁 − 𝑣𝑂) 𝑅𝑁⁄ ] (18b) 
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𝑣3 
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2 
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Substituting in the equation of energy losses (WS) (5), yields: 

 

𝑊𝑆 = (𝜆1 2⁄ )2  ∫ {[∑ (𝑣𝑥 − 𝑣𝑂)
2 𝑅𝑆𝑥⁄𝑚

𝑥=1 ] + ⋯+
𝜏

0

[(𝑣𝑁 − 𝑣𝑂)
2 𝑅𝑁⁄ ]}𝑑𝑡  

(19) 

 

Defining: 

 

𝑉𝑥𝑂
2 =

1

𝜏
∫ (𝑣𝑥 − 𝑣𝑂)

2𝑑𝑡
𝜏

0

; ∀𝑥 = 1, 2, 3, . . . 𝑚, 𝑁 (20) 

 

and substituting in (19), exchanging sum and integral, one 

obtains: 

 

𝑊𝑆 = (𝜆1 2⁄ )2 𝜏[(∑ 𝑉𝑥𝑂
2 𝑅𝑆𝑥⁄𝑚

𝑥=1 ) + (𝑉𝑁𝑂
2 𝑅𝑁⁄ )]  (21) 

 

from where it follows: 

 

2
𝜆1
⁄ = √

𝜏
𝑊𝑆
⁄ √(∑ 𝑉𝑥𝑂

2 𝑅𝑆𝑥⁄𝑚
𝑥=1 ) + (𝑉𝑁𝑂

2 𝑅𝑁⁄ )  (22) 

 

Using definitions (5) and (6): 

 

𝑊𝑆 = 𝜏[(∑ 𝑅𝑆𝑥 𝐼𝑥
2𝑚

𝑥=1 ) + 𝑅𝑁 𝐼𝑁
2]  (23) 

 

Substituting (23) in (22) it results: 

 
2
𝜆1
⁄

= √(∑𝑉𝑥𝑂
2 𝑅𝑆𝑥⁄

𝑚

𝑥=1

) + (𝑉𝑁𝑂
2 𝑅𝑁⁄ ) √(∑𝑅𝑆𝑥 𝐼𝑥

2

𝑚

𝑥=1

)+ 𝑅𝑁 𝐼𝑁
2⁄  

(24) 

 

On the other hand, from (18a) and (18b): 

 

𝑣𝑥 = (2 𝜆1
⁄ ) 𝑅𝑆𝑥  𝑖𝑥 + 𝑣𝑂; ∀𝑥 = 1, 2, 3, . . . . , 𝑚 (25a) 

 

𝑣𝑁 = (2 𝜆1
⁄ )𝑅𝑁 𝑖𝑁 + 𝑣𝑂 (25b) 

 

Substituting (25a) and (25b) in (2) yields: 

 

𝑊 = 𝜏 𝑃𝑎𝑣 = ∫ {(2 𝜆1
⁄ ) [(∑ 𝑅𝑆𝑥 𝑖𝑥

2𝑚
𝑥=1 ) +

𝜏

0

𝑅𝑁 𝑖𝑁
2] + 𝑣𝑂(∑ 𝑖𝑥

𝑚
𝑥=1 +  +𝑖𝑁)} 𝑑𝑡  

(26) 

 

Applying the law of nodes ∑  𝑖𝑥
𝑚
𝑥=1 + 𝑖𝑁 = 0, it results: 

 

𝑊 = 𝜏 𝑃𝑎𝑣 = (2 𝜆1
⁄ )∫ [(∑ 𝑅𝑆𝑥 𝑖𝑥

2𝑚
𝑥=1 ) +

𝜏

0

𝑅𝑁 𝑖𝑁
2] 𝑑𝑡  

(27) 

 

With the definitions given by (6), exchanging summation 

and integration, one obtains: 

 

𝑊 = 𝜏 𝑃𝑎𝑣 = 𝜏 (2 𝜆1
⁄ ) [(∑ 𝑅𝑆𝑥 𝐼𝑥

2𝑚
𝑥=1 ) + 𝑅𝑁 𝐼𝑁

2]  (28) 

 

Substituting (24) in (28), gives: 

 

𝑃𝑎𝑣 = √(∑𝑉𝑥𝑂
2 𝑅𝑆𝑥⁄

𝑚

𝑥=1

) + (𝑉𝑁𝑂
2 𝑅𝑁⁄ ) √(∑𝑅𝑆𝑥 𝐼𝑥

2

𝑚

𝑥=1

)+ 𝑅𝑁 𝐼𝑁
2 (29) 

 

A total equivalent system voltage (or DC equivalent voltage) 

can be defined as: 

 

𝑉𝑒𝑞−𝑡𝑜𝑡 = √𝑅𝑆//√(∑ 𝑉𝑥𝑂
2 𝑅𝑆𝑥⁄𝑚

𝑥=1 ) + (𝑉𝑁𝑂
2 𝑅𝑁⁄ )  (30) 

 

and a total equivalent system current (or DC equivalent 

current): 

 

𝐼𝑒𝑞−𝑡𝑜𝑡 = √(∑ 𝑅𝑆𝑥  𝐼𝑥
2𝑚

𝑥=1 ) + 𝑅𝑁 𝐼𝑁
2

√𝑅𝑆//⁄   (31) 

 

Using both definitions, one gets: 

 

𝑃𝑎𝑣 = 𝑉𝑒𝑞−𝑡𝑜𝑡 . 𝐼𝑒𝑞−𝑡𝑜𝑡 (32) 

 

To show that the found losses WS correspond to a minimum, 

the second order derivatives of the auxiliary function of the 

Lagrange method must be considered: 

 

ℎ(𝑖𝑥) = 𝑝𝑆 − 𝜆1 𝑓(𝑖𝑥) − 𝜆2 𝑔(𝑖𝑥); ∀𝑥 = 1, 2, 3. . . 𝑚, 𝑁 (33) 

 

where, the constants λ1 and λ2 can be calculated using (16), (17) 

and (24). 

Using (16), the auxiliary function (33) can be written as: 

 

ℎ(𝑖𝑥) = (∑ 𝑅𝑆𝑥  𝑖𝑥
2𝑚

𝑥=1 ) + 𝑅𝑁 𝑖𝑁
2 − 𝜆1[∑ (𝑣𝑥 −

𝑚
𝑥=1

−𝑣𝑂) 𝑖𝑥 +(𝑣𝑁 − 𝑣𝑂) 𝑖𝑁]  
(34) 

 

and the second order derivatives are: 

 

𝜕2ℎ
𝜕𝑖𝑥

2⁄ = 2 𝑅𝑆𝑋; ∀𝑥 = 1, 2, 3, . . . , 𝑚 (35a) 

 

𝜕2ℎ
𝜕𝑖𝑁

2⁄ = 2 𝑅𝑁 (35b) 

 

𝜕2ℎ
𝜕𝑖𝑥  𝜕𝑖𝑦

⁄ = 0; ∀ 𝑥 ≠ 𝑦 (36) 

 

The Hessian matrix that can be formed with the second-

order partial derivatives of the Lagrange's method auxiliary 

function, is a diagonal matrix in which all the determinants of 

its principal submatrices (called principal minors) are greater 

than zero (positive definite matrix according to the Sylvester 

criterion). Therefore, the singular point found is a minimum. 

For example, for m = 3 it is: 
 

[
 
 
 
 
 
 
 

𝜕2ℎ
𝜕𝑖1

2⁄ 𝜕2ℎ
𝜕𝑖1 𝜕𝑖2
⁄

𝜕2ℎ
𝜕𝑖2 𝜕𝑖1
⁄ 𝜕2ℎ

𝜕𝑖2
2⁄
    

𝜕2ℎ
𝜕𝑖1 𝜕𝑖3
⁄ 𝜕2ℎ

𝜕𝑖1 𝜕𝑖𝑁
⁄

𝜕2ℎ
𝜕𝑖2 𝜕𝑖3
⁄ 𝜕2ℎ

𝜕𝑖2 𝜕𝑖𝑁
⁄

𝜕2ℎ
𝜕𝑖3 𝜕𝑖1
⁄ 𝜕2ℎ

𝜕𝑖3 𝜕𝑖2
⁄

𝜕2ℎ
𝜕𝑖𝑁 𝜕𝑖1
⁄ 𝜕2ℎ

𝜕𝑖𝑁 𝜕𝑖2
⁄

      

𝜕2ℎ
𝜕𝑖3

2⁄  𝜕2ℎ
𝜕𝑖3 𝜕𝑖𝑁
⁄

𝜕2ℎ
𝜕𝑖𝑁 𝜕𝑖3
⁄ 𝜕2ℎ

𝜕𝑖𝑁
2⁄
]
 
 
 
 
 
 
 

= 2 

[
 
 
 
𝑅𝑆1 0

   0 𝑅𝑆2
     
0     0
0     0

     0    0
     0    0

     
𝑅𝑆3 0

0 𝑅𝑁]
 
 
 

 

 

In this matrix it is evident that all the principal minors, that 

is, all the determinants of the principal submatrices, are 

greater than zero, so both the instantaneous power pS and its 

integral, which is the lost energy, are minimal. 
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For the constant energy W, the losses found are minimal and 

the transmission efficiency is maximum, so the opposite is also 

valid, that is, for constant losses, the transferred power 

calculated through (29) will be the maximum possible for 

these effective values of current and voltage (rms values with 

periodical waveforms). 

Consequently, this maximum possible power is the one that 

should be adopted as the denominator to calculate the power 

factor, and (29) can be adopted as the definition of apparent 

power for the more general case of a polyphase system 

discussed here. 

Particular Cases of Special Interest. 

There are two situations of particular interest: 

(1) First, when the parasitic resistances of the lines are equal 

to each other, but different from the resistance of the neutral 

conductor. That is: 

 

𝑅𝑆𝑥 = 𝑅𝑆 ≠ 𝑅𝑁; ∀𝑥 = 1, 2, 3, . . . . , 𝑚 (37) 

 

With this condition one gets: 

 

𝑅𝑆// =
1
[(𝑚 𝑅𝑆⁄ ) + (1 𝑅𝑁 

⁄ )]⁄   
(38) 

 

and defining: 

 

𝜌 = 𝑅𝑁 𝑅𝑆⁄  (39) 

 

it results: 

 

𝑅𝑆// =
𝑅𝑆

[𝑚 + (1 𝜌 ⁄ )]
⁄  (40) 

 

Substituting (40) in (17): 

 

𝑣𝑂 = (∑ 𝑣𝑥
𝑚
𝑥=1 + 𝑣𝑁) [𝑚 + (1 𝜌⁄ )]⁄   (41) 

 

and then (29) yields: 

 

𝑃𝑎𝑣 = √∑ 𝑉𝑥𝑂
2𝑚

𝑥=1 + (𝑉𝑁𝑂
2 𝜌⁄ )√∑ 𝐼𝑥

2𝑚
𝑥=1 + 𝜌 𝐼𝑁

2  (42) 

 

(2) Case in which all the parasitic resistances of the lines are 

equal to each other. That is: 

 

𝑅𝑆 = 𝑅𝑁 ⟹ 𝜌 = 1 (43a) 

 

and 

 

𝑅𝑆// = 𝑅𝑆 (𝑚 + 1)⁄   (43b) 

 

Therefore: 

 

𝑣𝑂 = (∑ 𝑣𝑥
𝑚
𝑥=1 + 𝑣𝑁) (𝑚 + 1)⁄    (44) 

 

turns out to be the homopolar, or zero sequence, voltage of the 

polyphase system formed by v1, v2, v3, ..., vm, vN. 

Thus, it results: 

 

𝑃𝑎𝑣 = √∑ 𝑉𝑥𝑂
2𝑚

𝑥=1 + 𝑉𝑁𝑂
2 √∑ 𝐼𝑥

2𝑚
𝑥=1 + 𝐼𝑁

2   (45) 

 

An equivalent system voltage per phase can be defined as: 

𝑉𝑒𝑞 = √(∑ 𝑉𝑥𝑂
2𝑚

𝑥=1 + 𝑉𝑁𝑂
2) 𝑚⁄    (46) 

 

and an equivalent system current per phase: 

 

𝐼𝑒𝑞 = √(∑ 𝐼𝑥
2𝑚

𝑥=1 + 𝐼𝑁
2) 𝑚⁄    (47) 

 

which is the equivalent current originally proposed by 

Buchholz. With these definitions it results: 

 

𝑃𝑎𝑣 = 𝑚 𝑉𝑒𝑞  𝐼𝑒𝑞  (48) 

 

which is the maximum active power obtainable in a balanced 

and symmetric polyphase system with m phases operating with 

the given currents and effective voltages. 

 

2.2 Maximum transmission efficiency with respect to the 

power delivered to the load 

 

Observing Figure 1, it can be concluded that it would be 

more interesting and appropriate to search the maximum 

efficiency by minimizing transmission losses for a constant 

power consumed in the load, instead of imposing that the 

power delivered by the source be kept constant. That is, 

finding the minimum of WS given by (5), keeping constant the 

total energy consumed by the load: 

 

𝑊′ = 𝜏 𝑃𝑎𝑣
′ = ∫ 𝑝′

𝜏

0
 𝑑𝑡 = ∫ (∑ 𝑣𝑥

′ 𝑖𝑥
𝑚
𝑥=1 )

𝜏

0
 𝑑𝑡  (49) 

 

where, 

 

𝑝′ = ∑ 𝑣𝑥
′𝑚

𝑥=1  𝑖𝑥  (50) 

 

is the instantaneous power consumed by the load and 

 

𝑃𝑎𝑣
′ = 𝑊′ 𝜏⁄  (51) 

 

is the average active power consumed by the load. 

The instantaneous power losses pS continues to be given by 

(4), and therefore the energy lost in transmission is also WS 

given by (5). 

Now, using the method of Lagrange multipliers, the 

minimum of WS will be found keeping W' constant, with which 

the first restriction is: 

 

𝑓(𝑖𝑥) = ∫ 𝑝′ 𝑑𝑡
𝜏

0
−𝑊′ = 0; ∀𝑥 = 1, 2, 3, . . . , 𝑚 (52) 

 

and the second restriction is the law of nodes, expressed by (9) 

or (10). 

In an entirely similar way to what was done before, one 

must solve the system formed by: 

 
𝜕 𝑝𝑆

𝜕𝑖𝑥
− 𝜆1  

𝜕𝑝′

𝜕𝑖𝑥
− 𝜆2  

𝜕𝑔

𝜕𝑖𝑥
=0; ∀𝑥 = 1, 2, 3, . . . , 𝑚, 𝑁 (53) 

 

Differentiating (4), (9) and (50), one obtains: 

 

2 𝑖𝑥 − 𝜆1 (
𝑣𝑥

′

𝑅𝑆𝑥
⁄ ) − (

𝜆2
𝑅𝑆𝑥

⁄ ) = 0; ∀𝑥

= 1, 2, . . . 𝑚  
(54) 

 

2 𝑖𝑁 − (
𝜆2

𝑅𝑁
⁄ ) = 0 (55) 
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Adding member to member (54) and (55) yields: 

 

2(∑ 𝑖𝑥
𝑚
𝑥=1 + 𝑖𝑁) − 𝜆1 [∑ (

𝑣𝑥
′

𝑅𝑆𝑥
⁄ )𝑚

𝑥=1 ] −

(
𝜆2

𝑅𝑆//
⁄ ) = 0  

(56) 

 

where, 𝑅𝑆// is given by (15) and applying the law of nodes (9) 

it results: 

 

𝜆2 = −𝜆1𝑣𝑂
′ (57) 

 

where, 

 

𝑣𝑂
′ = 𝑅𝑆// [∑(

𝑣𝑥
′

𝑅𝑆𝑥
⁄ )

𝑚

𝑥=1

] (58) 

 

Substituting (57) in (54) gives: 

 

𝑖𝑥 = (𝜆1 2⁄ )[(𝑣𝑥
′ − 𝑣𝑂

′) 𝑅𝑆𝑥⁄ ]  (59) 

 

and from (55) and (57) it results: 

 

𝑖𝑁 = −(𝜆1 2⁄ ) 𝑣𝑂
′ 𝑅𝑁⁄   (60) 

 

Substituting in the expression of energy losses (WS), (5): 

 

𝑊𝑆 =

(𝜆1 2⁄ )2 ∫ {[∑ (𝑣𝑥
′ − 𝑣𝑂

′)2 𝑅𝑆𝑥⁄𝑚
𝑥=1 ](𝑣𝑂

′ 2 𝑅𝑁⁄ )} 𝑑𝑡
𝜏

0
  

(61) 

 

Defining: 

 

𝑉𝑥𝑂
′ 2

=
1

𝜏
∫ (𝑣𝑥

′ − 𝑣𝑂
′)2 𝑑𝑡

𝜏

0
 ; ∀𝑥 = 1, 2, 3, . . . 𝑚 (62) 

 

𝑉𝑂
′2 =

1

𝜏
∫ (𝑣𝑂

′)2𝑑𝑡
𝜏

0

 (63) 

 

and substituting in (61), exchanging summation and integral, 

gives: 

 

𝑊𝑆 = (𝜆1 2⁄ )2 𝜏[(∑ 𝑉𝑥𝑂
′ 2

𝑅𝑆𝑥⁄𝑚
𝑥=1 ) + (𝑉𝑂

′2 𝑅𝑁⁄ )]  (64) 

 

from which it yields: 

 

2
𝜆1
⁄ = √

𝜏
𝑊𝑆
⁄  √(∑ 𝑉𝑥𝑂

′ 2
𝑅𝑆𝑥⁄𝑚

𝑥=1 ) + (𝑉𝑂
′2 𝑅𝑁⁄ )  (65) 

 

Substituting (23) in (65), yields: 

 
2
𝜆1 
⁄ =

√(∑ 𝑉𝑥𝑂
′ 2

𝑅𝑆𝑥⁄𝑚
𝑥=1 ) + (𝑉𝑂

′2 𝑅𝑁⁄ ) √(∑ 𝑅𝑆𝑥 𝐼𝑥
2𝑚

𝑥=1 ) + 𝑅𝑁 𝐼𝑁
2⁄   

(66) 

 

Substituting (59) into (49): 

𝑊′ = 𝑃𝑎𝑣
′  𝜏 = ∫ [(2 𝜆1

⁄ ) (∑ 𝑅𝑆𝑥
𝑚
𝑥=1  𝑖𝑥

2) +
𝜏

0

    +𝑣𝑂
′(∑ 𝑖𝑥

𝑚
𝑥=1 )] 𝑑𝑡  

(67) 

 

Solving from the node equation, it is ∑ 𝑖𝑥
𝑚
𝑥=1 = −𝑖𝑁  and 

using (60): 

 

𝑊′ = 𝑃𝑎𝑣
′  𝜏 = (2 𝜆1

⁄ ) ∫ [(∑ 𝑅𝑆𝑥
𝑚
𝑥=1  𝑖𝑥

2) +
𝜏

0

𝑅𝑁 𝑖𝑁
2]  𝑑𝑡  

(68) 

 

Permuting integral and summation, using the definitions 

given by (6), one obtains: 

 

𝑊′ = 𝑃𝑎𝑣
′  𝜏 = (2 𝜆1

⁄ ) 𝜏 [(∑ 𝑅𝑆𝑥
𝑚
𝑥=1  𝐼𝑥

2) + 𝑅𝑁 𝐼𝑁
2]  (69) 

 

Substituting (66) into (69) gives: 

 
𝑃𝑎𝑣
′ =

√(∑ 𝑉𝑥𝑂
′ 2

𝑅𝑆𝑥⁄𝑚
𝑥=1 ) + (𝑉𝑂

′2 𝑅𝑁⁄ )  √(∑ 𝑅𝑆𝑥 𝐼𝑥
2𝑚

𝑥=1 ) + 𝑅𝑁 𝐼𝑁
2  

(70) 

 

As in the previous case, a total equivalent system voltage 

(or DC equivalent voltage) and a total equivalent system 

current (or DC equivalent current) can be defined such that: 

 

𝑃𝑎𝑣
′ = 𝑉′

𝑒𝑞−𝑡𝑜𝑡 . 𝐼
′
𝑒𝑞−𝑡𝑜𝑡  (71) 

 

where, 

 

𝑉′
𝑒𝑞−𝑡𝑜𝑡 = √𝑅𝑆//√(∑ 𝑉𝑥𝑂

′ 2
𝑅𝑆𝑥⁄𝑚

𝑥=1 ) + (𝑉𝑂
′2 𝑅𝑁⁄ )  (72) 

 

𝐼′𝑒𝑞−𝑡𝑜𝑡 = 𝐼𝑒𝑞−𝑡𝑜𝑡 =

√(∑ 𝑅𝑆𝑥  𝐼𝑥
2𝑚

𝑥=1 ) + 𝑅𝑁 𝐼𝑁
2

√𝑅𝑆//⁄   
(73) 

 

where, this current is the same as that of the preceding case. 

 

2.3 Comparison between both approaches 

 

The expression of the maximum power obtained with the 

second approach is very similar to that obtained with the first 

one, which has been the preferred criterion by most 

international standards. The numerical results do not differ 

substantially between the two criteria when the neutral 

voltages are small and the transmission efficiencies are high. 

However, note that in the case of optimizing the efficiency 

with respect to the power transferred to the load, the reference 

voltage 𝑣𝑂
′ , given by (58), does not depend on the neutral 

voltage, which, as can be deduced from observing Figure 1, is 

a voltage difficult to measure from the point of electrical 

energy consumption where the user is located. 

For the case in which the parasitic resistances of the lines 

are equal to each other, but different from the resistance of the 

neutral conductor (condition 37), it is: 

 

𝑣𝑂
′ = {𝑚 [𝑚 + (1 𝜌⁄ )]⁄ }𝑣Σ

′   (74a) 

 

where, 𝑣Σ
′  is the homopolar component of the load voltages: 

 

𝑣Σ
′ = (1 𝑚⁄ ) ∑ 𝑣𝑥

′𝑚
𝑥=1   (74b) 

 

Thus, (72) and (73) become: 

 

𝑉′
𝑒𝑞−𝑡𝑜𝑡 = √(∑ 𝑉𝑥𝑂

′ 2𝑚
𝑥=1 ) + (𝑉𝑂

′2 𝜌⁄ ) √𝑚 + (1 𝜌⁄ )⁄   (75) 

 

𝐼′𝑒𝑞−𝑡𝑜𝑡 = √∑ 𝐼𝑥
2𝑚

𝑥=1 + 𝜌 𝐼𝑁
2√𝑚 + (1 𝜌⁄ )   (76) 
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This second approach based on (70) allows defining the 

apparent power without the need to know the neutral voltage 

drop as: 
 

𝑆′ = √(∑ 𝑉𝑥𝑂
′ 2𝑚

𝑥=1 ) + (𝑉𝑂
′2 𝜌⁄ ) √∑ 𝐼𝑥

2𝑚
𝑥=1 + 𝜌 𝐼𝑁

2  (77) 

 

which would be a simpler definition than those based on the 

first approach (which is used in IEEE Std. 1459). 

When there is no homopolar component in the output 

voltages, (75) and (76) are simplified as: 
 

𝑉′
𝑒𝑞−𝑡𝑜𝑡 = √(∑ 𝑉𝑥

′2𝑚
𝑥=1 ) 𝑚⁄    (78) 

 

𝐼′𝑒𝑞−𝑡𝑜𝑡 = √∑ 𝐼𝑥
2𝑚

𝑥=1 + 𝜌𝐼𝑁
2 √𝑚  (79) 

 

and (77) becomes: 

 

𝑆′ = √(∑ 𝑉𝑥𝑂
′ 2𝑚

𝑥=1 )√∑ 𝐼𝑥
2𝑚

𝑥=1   (80) 

 

In both optimization approaches, losses can be expressed as: 

 

𝑃𝑆 = (∑ 𝑅𝑆𝑥𝐼𝑥
2𝑚

𝑥=1 ) + 𝑅𝑁 𝐼𝑁
2  (81) 

 

with which, (29) and (70) become: 

 

𝑃𝑎𝑣 = 𝑉𝑒𝑞−𝑡𝑜𝑡⌋𝑐𝑟𝑖𝑡#1√𝑃𝑆 √𝑅𝑆//⁄   (82a) 

 

𝑃𝑎𝑣
′ = 𝑉′

𝑒𝑞−𝑡𝑜𝑡⌋𝑐𝑟𝑖𝑡#2√𝑃𝑆 √𝑅𝑆//⁄   (82b) 

 

where, 𝑉𝑒𝑞−𝑡𝑜𝑡⌋𝑐𝑟𝑖𝑡#1 and 𝑉′
𝑒𝑞−𝑡𝑜𝑡⌋𝑐𝑟𝑖𝑡#2 are given by (30) and 

(72) respectively. From where the equivalent voltages per 

phase can be defined, according to: 

 

𝑉𝑒𝑞⌋𝑐𝑟𝑖𝑡#1 = 𝑉𝑒𝑞−𝑡𝑜𝑡⌋𝑐𝑟𝑖𝑡#1 √𝑚⁄   (83a) 

 

𝑉′
𝑒𝑞⌋𝑐𝑟𝑖𝑡#2 = 𝑉′

𝑒𝑞−𝑡𝑜𝑡⌋𝑐𝑟𝑖𝑡#2 √𝑚⁄   (83b) 

 

Note that in the most general case it results: 

 

𝑉′
𝑒𝑞⌋𝑐𝑟𝑖𝑡#1 = 𝑉𝑒𝑞⌋𝑐𝑟𝑖𝑡#1 − 𝑅𝑆//𝐼𝑒𝑞−𝑡𝑜𝑡 ≠ 𝑉′

𝑒𝑞⌋𝑐𝑟𝑖𝑡#2  (84) 

 

which should be taken into account when proposing the 

equivalent circuit models. 

With either criteria, at least three equivalent circuit 

topologies can be proposed for a polyphase system with 

arbitrary waveforms (Figure 2). 

(a) Polyphase equivalent model with sinusoidal alternating 

current, with symmetrical source and balanced load (Figure 2a) 

The current of each phase is adopted as 𝐼𝑒𝑞 = 𝐼𝑒𝑞−𝑡𝑜𝑡 √𝑚⁄   

and the equivalent voltages per phase Veq and V'eq will have 

expressions that will depend on the optimization criteria 

adopted. The loss equivalent series resistors will be: 

𝑅𝑆𝑒𝑞 = 𝑅𝑆//, such that: 

 

𝑃𝑆 = 𝑚 𝐼𝑒𝑞
2 𝑅𝑆𝑒𝑞 = 𝐼𝑒𝑞−𝑡𝑜𝑡

2𝑅𝑆// =

(∑ 𝑅𝑆𝑥𝐼𝑥
2𝑚

𝑥=1 ) + +𝑅𝑁𝐼𝑁
2   

(85) 

When it is: 

 

𝑅𝑆𝑥 = 𝑅𝑆;  ∀𝑥 = 1, 2, 3, . . . 𝑚 (86a) 

 

𝑅𝑁 = 𝜌 𝑅𝑆  (86b) 

 

based on (42), the model can be expressed by: 

 

𝑅𝑆𝑒𝑞 = 𝑚 𝑅𝑆// = 𝑅𝑆 [1 + (1 𝑚 𝜌⁄ )]⁄  (87) 

 

𝐼𝑒𝑞 = √∑ 𝐼𝑥
2𝑚

𝑥=1 + 𝜌 𝐼𝑁
2 √1 + (1 𝑚 𝜌⁄ )  (88) 

 

with Veq given by (83a), for criterion # 1, or V'eq given by (83b) 

for criterion #2. 

 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure 2. Equivalent circuit models, (a) Sinusoidal polyphase 

equivalent system with symmetric source and balanced load, 

(b) Sinusoidal single-phase equivalent system, (c) Direct 

current equivalent system 

 

Using (87) and (88) one may verify that PS results the same 

given by (85). 

It is clear that since all quantities are sinusoidal, phasors can 

be used. 

b) Single-phase sinusoidal equivalent model (Figure 2b) 

In this case, the sinusoidal voltage source will have an 

effective voltage equal to Veq-tot (with the corresponding 

expression according to the optimization criterion adopted) 
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and the sinusoidal current will have an rms value Veq-tot, given 

by (31) and the equivalent series loss resistance will be 𝑅𝑆//. 

c) Bifilar equivalent model of direct current (Figure 2c) 

From Figure 2c it follows that: 

 
𝑅𝑆𝑡𝑜𝑡 = 𝑅𝑆(+) + 𝑅𝑆(−) = 𝑅𝑆//  (89) 

 
The DC voltage 𝑉𝐵  will be 𝑉𝐵 = 𝑉𝑒𝑞−𝑡𝑜𝑡 (with the 

expression corresponding to the optimization criteria adopted) 

and the direct current will be 𝐼𝐷𝐶 = 𝐼𝑒𝑞−𝑡𝑜𝑡 , given by (31). 

 

 
3. APPARENT POWER AND POWER FACTOR 

DEFINITION IN HYBRID SYSTEMS 

 
A hybrid system is generally composed of several 

subsystems of different nature, for example, polyphase, single-

phase, two-wire direct current, multi-wire direct current and 

others with rectangular, trapezoidal or pulse width modulated 

waveforms, with separate or shared neutral wires. 

Adopting the criterion of defining apparent power as the 

maximum active power that could be obtained from the system 

with the given effective current and voltage conditions, it is 

concluded that this maximum power will be: 

 

𝑆′𝑡𝑜𝑡 = ∑ 𝑃𝑘
′
𝑚𝑎𝑥

𝑛
𝑘=1 = ∑ 𝑆 𝑘

′𝑛
𝑘=1   (90) 

 

where, n is the number of subsystems that make up the hybrid 

system and S'tot is the total apparent power of the system that 

turns out to be the sum of the apparent powers of each 

subsystem (arithmetic apparent power) and: 

 
𝑆𝑘
′ = 𝑉′

𝑒𝑞−𝑡𝑜𝑡𝑘
𝐼′𝑒𝑞−𝑡𝑜𝑡𝑘  (91) 

 
where, 𝑉′

𝑒𝑞−𝑡𝑜𝑡𝑘
 is the total equivalent system voltage of 

subsystem k given by (72) and 𝐼′𝑒𝑞−𝑡𝑜𝑡𝑘 is the total equivalent 

system current of the same subsystem given by (73). 

The power factor is the relation of the active power divided 

by the apparent power. 

Thus, the power factor of each subsystem "k" will be: 

 
𝑃𝐹𝑘 = 𝑃𝑘

′ 𝑆 𝑘
′⁄   (92) 

 
and the total power factor of the entire hybrid system is: 

 
𝑃𝐹𝑡𝑜𝑡 = (∑ 𝑃 𝑘

′𝑛
𝑘=1 ) 𝑆′𝑡𝑜𝑡⁄    (93) 

 

which can be also expressed as the weighted summation: 

 

𝑃𝐹𝑡𝑜𝑡 = ∑ 𝐹𝑃𝑘
𝑛
𝑘=1  (𝑆 𝑘

′ 𝑆′𝑡𝑜𝑡⁄ )  (94) 

 

 

4. APPLICATION EXAMPLE: POWER FACTOR 

CALCULATIONS IN A HYBRID SYSTEM 

 

In Figure 3, a hybrid system composed of three subsystems 

(numbered from # 1 to #3), with different nature and 

topologies of direct current and alternating current, is 

presented. It will be shown here how to define the apparent 

powers of each subsystem applying a definition based on the 

second optimization criterion proposed in Section 2, using (72) 

and (73) to define by (91) the apparent power of each 

subsystem.  

It is assumed that the effective values of the voltages and 

currents indicated in the figures were experimentally measured, 

as well as the active powers of each load phase. With these 

data, the apparent powers and the power factors of each 

subsystem can be obtained and then through (93) or (94), the 

total apparent power and the total power factor. 

 

4.1 Subsystem #1 (Figure 3a) 

 

The subsystem shown in Figure 3a is a two-wire direct 

current power supply system with a number of phases m=1. 

Therefore, to apply definition (78), or also (91), one first gets 

from (58): 

 

𝑉𝑂
′
#1

=
1

𝑚+1
𝑉#1
′ =

1

2
𝑉#1
′   (E.1) 

 

from which the total equivalent system effective voltage (75) 

results: 

 

𝑉′
𝑒𝑞−𝑡𝑜𝑡#1

= √(𝑉#1
′ − 𝑉𝑂

′
#1
)
2
+ 𝑉𝑂

′
#1

2
=

1

√2
𝑉#1
′   (E.2) 

 

and the total equivalent system effective current is obtained by 

applying (76): 

 

𝐼𝑒𝑞−𝑡𝑜𝑡#1 =
√𝐼#1

2 + 𝐼𝑁
2 = √2 𝐼#1  (E.3) 

 

Therefore: 

 

𝑆′#1 = 𝑉′
𝑒𝑞−𝑡𝑜𝑡#1

𝐼′𝑒𝑞−𝑡𝑜𝑡#1 = 𝑉#1
′  𝐼#1  (E.4a) 

 

Using the first optimization criterion, the following would 

have been obtained: 

 

𝑆#1 = 𝑉𝑒𝑞−𝑡𝑜𝑡#1 𝐼𝑒𝑞−𝑡𝑜𝑡#1 = 𝑉#1 𝐼#1   (E.4b) 

 

which was naturally expected according to definition (93). 

Assuming negligible voltage drops in the lines, it results: 

𝑉#1 ≅ 𝑉#1
′ . 

As 𝑉#1 ≅ 𝑉#1
′ = 500 𝑉  and I#1=50 A, it is: 𝑆#1 ≅ 𝑆′

#1
=

25 𝑘𝑉𝐴. 

Since the load is pure resistive, it results: 𝐹𝑃#1 = 1. 

 

4.2 Subsystem #2 (Figure 3b) 

 

In Figure 3b a multi-wire direct current subsystem is shown, 

with 4 wires whose parasitic resistances are all the same. As in 

the previous case it will be assumed that voltage drops in the 

lines can be neglected compared to the voltages in the loads. 

The measured voltages and currents are: 𝑉1#2 = 400 𝑉 , 

𝑉2#2 = 300 𝑉 , 𝑉3#2 = 260 𝑉 , 𝐼1#2 = 10 𝐴 , 𝐼2#2 = 20 𝐴 , 

𝐼3#2 = 30 𝐴. 

In this subsystem it is m = 3 and from (58): 

 𝑉𝑂
′
#2

=
1

4
 (𝑉1#2 + 𝑉2#2 + 𝑉3#2) = 240 𝑉. 

According to (75) the total equivalent system voltage is: 

 
𝑉′

𝑒𝑞−𝑡𝑜𝑡#2

= √(𝑉1#2
′ − 𝑉𝑂

′
#2
)
2
+ (𝑉2#2

′ − 𝑉𝑂
′
#2
)
2
+ (𝑉3#2

′ − 𝑉𝑂
′
#2
)
2

 
+ 𝑉𝑂

′
#2

2

= 295.3 𝑉  

(E.5) 
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and the total equivalent system current according to (76) is: 

𝐼𝑒𝑞−𝑡𝑜𝑡#2 = 𝐼′𝑒𝑞−𝑡𝑜𝑡#2 =

√𝐼1#2
2 + 𝐼2#2

2 + 𝐼3#2
2 + 𝐼𝑁#2

2
(E.6) 

where according to the law of nodes is: 

𝐼𝑁#2
2 = (𝐼1#2 + 𝐼2#2 + 𝐼3#2)

2
(E.7) 

(a) 

(b) 

(c) 

Figure 3. Hybrid system, (a) Two-wire direct-current 

subsystem, (b) Multiwire DC subsystem, (c) Three phase 

symmetric subsystem with rectangular waves 

Substituting (E.7) in (E.6) and replacing by the numerical 

values given as data, yields: 

𝐼𝑒𝑞−𝑡𝑜𝑡#2 = 𝐼′𝑒𝑞−𝑡𝑜𝑡#2 = 70.7 𝐴 (E.8) 

With the values given by (E.5) and (E.8) one obtains: 

𝑆′#2 = 𝑉′
𝑒𝑞−𝑡𝑜𝑡#2

 𝐼𝑒𝑞−𝑡𝑜𝑡#2 = 20.88 𝑘𝑉𝐴 (E.9) 

According to data, the total active power of subsystem #2 is: 

𝑃𝑡𝑜𝑡#2 = 𝑉1#2 𝐼1#2 + 𝑉2#2 𝐼2#2 + 𝑉3#2 𝐼3#2
= 17.8 𝑘𝑊 

(E.10) 

and consequently, with (E.9) and (E.10), the power factor of 

subsystem #2 is: 

𝑃𝐹#2 = 𝑃𝑡𝑜𝑡#2 𝑆′#2⁄ = 0.852 (E.11) 

Note that the sum of the powers calculated as the product of 

each voltage and each current would also be the total apparent 

power considering each source and its respective load as 

separate subsystem from the others grouped as subsystem #2 

(according to what was proposed in Section 3) which would 

be in disagreement with the result obtained through (E.9). 

What this equation shows is that more power could be 

transferred to the load with the same level of transmission 

losses, if the multi-wire system of Figure 3b were replaced by 

the equivalent two-wire system formed by a direct voltage 

source 𝑉′
𝑒𝑞−𝑡𝑜𝑡#2

 delivering a continuous power to the load,

equal to S'#2. 

Obviously, when establishing a standard, it should be 

decided the criteria to address this issue regarding DC multi-

wire systems. 

When the source voltages are different and are intended to 

supply loads independent of each other, it should be more 

appropriate to consider each source with its load as a separate 

subsystem (even if they share the neutral). 

In contrast, in symmetrical sources (delivering opposite 

voltages: +VB and -VB), either single-pair or multi-pair (such 

as those used in some HVDC power transmission links) it is 

recommended to adopt a definition of apparent power (and 

consequently of power factor) based on the application of the 

maximum transmission efficiency theorem shown here (with 

either of the two optimization criteria exposed) because in this 

way, a figure of merit would be available to show the wasted 

transmission capacity of the link as a consequence of eventual 

load asymmetries. 

4.3 Subsystem #3 (Figure 3c) 

Figure 3c shows an inverter capable of delivering load 

phase voltages with rectangular waveforms, with a pulse width 

DT⁄2 where T is the period and D is the duty cycle, between 

0<D≤2⁄3 (see Figure 4). The rms currents are: 𝐼1#3 = 11 𝐴,

𝐼2#3 = 20 𝐴, 𝐼3#3 = 14 𝐴, 𝐼𝑁#3
= 5 𝐴.

The active powers consumed by the non-linear impedances: 

𝑃𝑍_𝑂1 #3 = 1100 𝑊, 𝑃𝑍_𝑂2 #3 = 2500 𝑊, 𝑃𝑍_𝑂3 #3 = 1400 𝑊.

The symmetrical DC supply voltages are: 

𝑉(+)#3 = 𝑉(−)#3 = 300 𝑉.

There are two possible values for D that are of particular 

interest: 

a) For D = 2⁄3 the pulse width is 2π⁄3 and the waveform of

the phase voltage obtained does not contain harmonic 

components of order 3 or their multiples, nor does it contain 

even components, so the first harmonic component that 

appears is of order 5 (which would facilitate filtering if it were 

decided to do so). 

b) For D = 1⁄2 the crest factor (or peak factor) of the

resulting rectangular wave is the same that would correspond 

to a sine wave (𝐹𝐶𝑅𝐷=1/2 = 𝐹𝐶𝑅𝑠𝑖𝑛 = �̂� 𝑉⁄ = √2). This can be

advantageous when powering equipment that must receive a 

peak voltage similar to that of a sinusoidal power line, for 

example, equipment powered by sources that include a 

rectifier with a direct capacitive filter and simultaneously, 

equipment containing transformers, filament lamps or heaters, 

which require an rms voltage similar to that of the public main. 

𝑁#1 

1′#1 

2′#1 

1#1 

2#1 

𝑅𝑂#1
𝑉𝑂#1

𝑉#1 
𝑅𝑆#1

2⁄  
𝐼#1 

𝑅𝑆#1
2⁄  

𝑉′1#2

1′#2 

𝑉1#2

1#2 

𝑅𝑂1#2

𝑅𝑆#2
𝐼1#2

𝑉2#2

𝑉3#2

2#2 

3#2 

𝑁#2 

𝐼2#2

𝐼3#2

𝐼𝑁#2

2′#2 

3′#2 

𝑁′#2 

𝑅𝑂2#2

𝑅𝑂3#2

𝑉′2#2
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𝑅𝑆#2

𝑅𝑆#2

𝑅𝑆#2

𝑁#2 

 

𝑣′1#3
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𝑁#3 

𝑖𝑁#3

2′#3 

𝑁′#3 

𝑅𝑆#3

𝑁#3 

DC 

AC 

𝑅𝑆#3
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𝑅𝑆#3
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Figure 4. Waveforms of Subsystem # 3, which includes a 

rectangular wave inverter with non-linear and unbalanced 

load 

In Figure 4 the phase voltages are shown for an arbitrary 

value of the duty cycle comprised between 0 < 𝐷 ≤ 2/3. 

The peak voltage of the rectangular wave is: 

𝑉𝑃 ≅ 𝑉(+)#3 = 𝑉(−)#3 (E.12) 

According to Figure 4 the pulse width is Dπ and ∆θ is: 

∆𝜃 = 𝜋 (
2

3
− 𝐷) (E.13) 

and also: 

𝑣𝑂
′
#3

=
1

4
𝑣Σ
′ =

1

4
∑𝑣𝑥

′
#3

3

𝑥=1

(E.14) 

Notice that the period of 𝑣𝑂
′
#3
 is 3 times less than that of the

phase voltages. From Figure 4 it is concluded that: 

1

2𝜋
∫ (𝑣𝑥

′
#3
− 𝑣𝑂

′
#3
)
2

2𝜋

0

 𝑑𝜃 

=
1

2𝜋
∫ (𝑣𝑥

′
#3

2
− 2 𝑣𝑥

′
#3
 𝑣𝑂

′

#3

2𝜋

0

+ 𝑣𝑂
′
#3

2
)  𝑑𝜃 = 𝑉𝑥

′
#3

2
+ 𝑉𝑂

′
#3

2

(E.15) 

because, 

∫  𝑣𝑥
′
#3
 𝑣𝑂

′

#3

2𝜋

0

 𝑑𝜃 = 0 (E.16) 

being: 

𝑉𝑥
′
#3

2
=

1

2𝜋
∫ 𝑣𝑥

′
#3

2
2𝜋

0

 𝑑𝜃 (E.17a) 

𝑉𝑂
′
#3

2
=

1

2𝜋
∫ 𝑣𝑂

′
#3

2
2𝜋

0

 𝑑𝜃 (E.17b) 

which gives: 

𝑉′
𝑒𝑞−𝑡𝑜𝑡#3

= √3 𝑉#3
′ 2

+ 4 𝑉𝑂
′
#3

2 (E.18) 

From Figure 4 one obtains: 

𝑉#3
′ 2

= 𝐷 𝑉𝑃
2 (E.19) 

𝑉𝑂
′
#3

2
=

Δ𝜃

𝜋 3⁄
(𝑉𝑃 4⁄ )2 (E.20) 

Substituting (E.13), (E.19) and (E.20) in (E.18) gives: 

𝑉′
𝑒𝑞−𝑡𝑜𝑡#3

=
𝑉𝑃
2
√9 𝐷 + 2 (E.21) 

Being VP = 300 V, for 𝐷 = 2/3  it results: 

𝑉′
𝑒𝑞−𝑡𝑜𝑡#3

⌋
𝐷=2 3⁄

= √2 𝑉𝑃 = 424.3 𝑉 (E.22) 

and for 𝐷 = 1/2 it is: 

𝑉′
𝑒𝑞−𝑡𝑜𝑡#3

⌋
𝐷=1 2 ⁄

= 1.275 𝑉𝑃 = 382.4 𝑉 (E.23) 

The total equivalent system current (76) is: 

𝐼𝑒𝑞−𝑡𝑜𝑡#3 = 𝐼′𝑒𝑞−𝑡𝑜𝑡#3

= √𝐼1#3
2 + 𝐼2#3

2 + 𝐼3#3
2 + 𝐼𝑁#3

2 = 27.24 𝐴
(E.24) 

and the apparent power, neglecting the losses in the lines, can 

be expressed as: 

𝑆#3 ≅ 𝑆#3
′ = 𝑉′

𝑒𝑞−𝑡𝑜𝑡#3
 𝐼𝑒𝑞−𝑡𝑜𝑡#3 (E.25) 

If it were 𝐷 = 2/3 it would be: 

𝑆#3 = 11.56 𝑘𝑉𝐴 (E.26a) 

If instead it were 𝐷 = 1/2 it would result: 

𝑆#3 = 10.42 𝑘𝑉𝐴 (E.26b) 

The total active power of subsystem #3 is: 

𝑃𝑡𝑜𝑡#3 = 𝑃𝑍_𝑂1 #3 + 𝑃𝑍_𝑂2 #3 + 𝑃𝑍_𝑂3 #3 = 5 𝑘𝑊 (E.27)

and with these values the power factors may be easily obtained: 

𝐹𝑃#3⌋𝐷=2/3 = 𝑃𝑡𝑜𝑡#3 𝑆#3⁄ = 0.43 (E.28a) 

𝐹𝑃#3⌋𝐷=1/2 = 𝑃𝑡𝑜𝑡#3 𝑆#3⁄ = 0.48 (E.28b) 

𝜋 3⁄  Δ𝜃 

2 π 

θ 

θ 

Δ𝜃 𝐷 𝜋 𝜋 

𝑉𝑃

− 𝑉𝑃

𝑉𝑃

− 𝑉𝑃

𝑣Σ
′

 

𝑣′ x

𝑣′1#3 𝑣′2#3
𝑣′3#3

𝑣′1#3
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REMARK: In a real case, when modifying the duty cycle, 

the currents would be modified (depending on the converter 

topology and load features) and a different Ieq-tot would have to 

be considered. 

5. CONCLUSIONS AND PERSPECTIVES

The maximum efficiency theorem can be formulated 

following two optimization approaches, depending on the 

power supplied by the source or the power consumed by the 

load. The first approach has been preferred in the standards 

based on this type of definition of the apparent power obtained 

through demonstrations based mostly on the phasor 

representation (thus limiting its validity to the case of sine 

waves). Using phasors the first optimization approach implies 

a simpler demonstration that the one required if the second 

criterion here presented is adopted. The proof presented here 

is not based on the use of phasors and is valid for any practical 

waveform (continuous functions). 

A second optimization criterion is proposed, optimizing 

with respect to the power consumed in the load, which leads 

to a simpler definition of the apparent power that does not 

depend explicitly on the neutral voltage of the consumer 

referred to the source one (sometimes cumbersome to 

measure). Perhaps, it would be better to adopt this second 

criterion to define the equivalent apparent power of the system, 

also simplifying its expression so as not to need to know the 

proportion of power consumed in star and delta (parameter ξ 

of the IEEE 1459 standard) that is normally unknown (which 

leads to adopt ξ=1 in such very common situations) [1, 4, 15]. 
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