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Reducing the seismic effect is important to ensure people's safety and structures to remain 

operational even after the earthquakes. Therefore, many studies have been carried out in 

this filed in recent years. In this study three types of sliding mode control are designed to 

reduce the effect of vibration on buildings during an earthquake. An Active Tuned Mass 

Damper (ATMD) is used in this study as an actuator to absorb seismic vibration. Classical 

Sliding Mode Control (SMC), Integral Sliding Mode Control (ISMC) and Integral Sliding 

Mode Control based on barrier function (ISMCbf) are designed to control the performance 

of ATMD to reduce structural vibrations under effect of earthquake excitation. The three 

types of controllers are compared under effect of two types of earthquakes: El Centro 

1940 earthquake and Mexico City earthquake. This comparison shows that ISMCbf has 

many advantages, firstly, it does not require prior knowledge of the bounds of 

disturbances and uncertainties. Secondly, ISMCbf is chattering free, thus, it does need any 

type of approximation to avoid chattering phenomenon. Finally, the numerical simulation 

results showed that the state trajectory is confined within the barrier of the sliding 

manifold and provided a better performance. 
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1. INTRODUCTION

One of the main goals of civil engineering is to design safe 

and comfortable buildings to their users. To achieve this goal, 

buildings should maintain stability by resisting external 

disturbances such as wind and earthquakes. The increase in 

population led to the necessity of constructing multi-story 

buildings. Conventional seismic structural design attempts to 

construct buildings that do not collapse under strong 

earthquake excitations, but damage of non-structural elements 

may not be avoided. This can render the building non-

functional after the earthquake, which may be problematic in 

some structures, like hospitals, which need to remain 

functional after earthquake.  

Two basic technologies are used to protect buildings from 

damaging earthquake effects. These are base isolation devices 

(passive control) and seismic dampers (active, hybrid and 

semi-active control) [1]. The idea behind base isolation is to 

detach (isolate) the building from the ground in such a way 

that earthquake motions are not transmitted up through the 

building, or at least greatly reduced. Isolation techniques are 

good choice but not sufficient in some cases and they are 

passive devices (uncontrolled) [2]. 

On the other hand, there are active control devices that work 

in the presence of external forces generated by actuators such 

as Active Tuned Mass Damper (ATMD). These are 

transmitted through the structure and give a response that 

reduces the seismic effects [3]. Active control devices are areal 

time control [4]. The combination of the two previous types 

produces the so called hybrid control system. Its active portion 

is only used when there is high building excitation, otherwise, 

it behaves passively. The force of these devices is adjustable 

based on the control of fluid viscosity using electrical or 

magnetic fields supplied by low-power batteries such as a 

magneto rheological fluid damper (MRD) [5]. 

Many researchers have been involved in this field, some of 

them adopted classical control methods like [6] where the 

authors suggested MRD to control a three story scaled 

structure with Linear Quadratic Regulator (LQR) controller, 

El Ouni et al. [7] studied the effect of adding shear walls with 

active control. Others relied on robust control. In previous two 

studies the authors proposed classical controllers which are not 

sufficient to control the systems with perturbations.  

Moreover, Wasilewski et al. [8] designed an active control 

system for 20-story large scale structure and compared three 

types of controllers: Linear-quadratic-Gaussian (LQG) 

regulator, H∞ and adaptive optimal control. These types of 

controllers were checked under different earthquake 

simulations (Kobe earthquake, El Centro earthquake, Sine 

signal and Poly harmonic signal). The acceleration drift was 

minimized to 50% using adaptive control as compared to the 

other controllers.  

Fali et al. [9] and Humaidi et al. [10] proposed adaptive 

sliding mode control (ASMC) to control a three story scaled 

structure then compared it with classical SMC. They used 

MRD as an actuator. They concluded that the adaptive gain of 

ASMC varies between the upper and lower bounds of sliding 

gain depending on the perturbations bounds. Khatibinia et al. 

[11] designed Optimal Sliding Mode Control (OSMC) to

control a 11-story building with ATMD installed on the top

floor. They compared OSMC with PID controller, LQR and

fuzzy logic controller (FLC) under simulated earthquakes.

They concluded that OSMC can further reduce the

displacement by 36.7%. Concha et al. [12] proposed an

automatic tuning algorithm to design SMC to control an

ATMD to reduce vibration effect on structures. They
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compared SMC with LQR and concluded that SMC 

performance dominated the LQR results. 

As presented above, SMC is proved to be one of the reliable 

robust controllers for such systems under severe external 

disturbances. However, from the previous studies it is noticed 

that SMC, ASMC and OSMC need the perturbations upper 

bounds in the design procedure. Moreover, these robust 

controllers usually need kind of approximation to avoid 

chattering phenomenon caused by discontinuous term in 

controller design.  

In this work, Integral Sliding Mode Control Based on 

Barrier Function (ISMCbf) is designed for the first time for 

this application. It is chosen due to its robustness and design 

simplicity where the upper bound of external disturbances is 

not required in the design procedure [13]. Moreover, ISMCbf 

does not have a discontinues term hence, it is a chattering-free 

SMC type as will be shown later. ISMCbf is designed to 

control ATMD that is placed on the top floor of a 5-story 

scaled building exposed to El Centro earthquake. The results 

are compared to SMC performance [12]. Simulation results 

show that ISMCbf is efficient in reducing structural 

displacement and control effort as well. Moreover, the 

proposed control algorithm is more robust and simpler in 

design as compared to other SMC types. 

This paper organized as follows: the mathematical model of 

a building with ATMD section 2. Sliding mode control design 

explained in section 3. Thereby, in section 4 the results were 

presented and discussed. Finally, this study was concluded 

with the conclusion section 5. 

 

 

2. MATHEMATICAL MODEL OF A BUILDING WITH 

AN ATMD 

 

 
 

Figure 1. A building with ATMD on the top floor 

 

A 5-story scaled structure is employed in this work in Figure 

1. This scaled model is described by the following differential 

equations [12]: 

 

𝑀�̈�(𝑡) + 𝐶�̇�(𝑡) + 𝐾𝒙(𝑡) = −𝑀𝐼�̈�𝑔(𝑡) − 𝛤 𝐹(𝑡) (1) 

 

𝑚𝑑�̈�𝑑(𝑡) + 𝑚𝑑�̈�𝑛(𝑡) + 𝑚𝑑�̈�𝑔(𝑡) = 𝐹(𝑡) (2) 

 

𝐹(𝑡) = 𝑢(𝑡) − 𝑘𝑑𝑥𝑑(𝑡) − 𝑐𝑑�̇�𝑑(𝑡) − 𝑓(�̇�𝑑(𝑡)) (3) 

 

where, 𝐶, 𝐾  and 𝑀 𝜖 𝑅𝑛∗𝑛  are damping, stiffness and mass 

matrices. 𝑀  is a diagonal matrix. 𝐶 and 𝐾  are tridiagonal 

matrices. �̈�𝑔 is the earthquake acceleration, the vector 𝒙 =

[𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑛 ]𝑇 where 𝑥𝑖  represents the displacement of 

the ith floor related to the ground floor and 𝑛 = 5 . 

𝑥𝑑 , 𝑚𝑑 , 𝑐𝑑, 𝑘𝑑 and 𝑓(�̇�𝑑) are the displacement, mass, damping, 

stiffness and non-linear friction of the ATMD, respectively. 𝐹 

is the force acting upon the ATMD. 𝑢(𝑡) is the control force 

applied to ATMD, 𝐼 𝜖 𝑅𝑛∗𝑛 is unity vector, 𝛤 𝜖 𝑅𝑛∗𝑛 represent 

the location of ATMD as the follows: 

 

𝛤 = [0, 0, 0, … . , 1]𝑇  

 

The structural dominant mode during an earthquake is the 

first mode of the building with ATMD, which represents 

approximately the building for control purposes. It can be 

approximated as [12]: 

 

𝑚0 𝑥0̈(𝑡) + 𝑐0 𝑥0̇(𝑡) + 𝑘0𝑥0(𝑡)
= −𝑏0 𝑚0�̈�𝑔(𝑡) − 𝐹(𝑡) 

(4) 

 

𝑚𝑑 (𝑥0̈(𝑡) + 𝑥�̈�(𝑡) + 𝑥�̈�(𝑡)) = 𝐹(𝑡) (5) 

 

where, 𝑥0 , 𝑚0, 𝑐0 and 𝑘0are the displacement, mass, damping 

and stiffness of the dominant mode respectively, which are 

given by [12]: 

 

𝑥0(𝑡) =
ɸ𝑇 𝑀 𝒙(𝑡)

ɸ𝑇  M ɸ
 (6) 

 

𝑚0 = ɸ𝑇 M ɸ (7) 

 

𝑐0 = ɸ𝑇C ɸ (8) 

 

𝑘0 = ɸ𝑇  K ɸ (9) 

 

𝑀𝑏0 = 
ɸ𝑇 𝑀 𝐼

ɸ𝑇  M ɸ
 (10) 

 

where, ɸ 𝜖 𝑅𝑛∗𝑛 that satisfy: 

 

ɸ𝑇  𝛤 = 1 (11) 

 

This equality led to this approximation: 

 

𝑥𝑛 (𝑡) ≈  𝑥0(𝑡) (12) 

 

The dominant mode natural frequency is given by [12]:  

 

𝜔 = √
𝑘0

𝑚0

 (13) 

 

Using the approximation in Eq. (12) then substituting 𝐹(𝑡) 

in Eq. (3) in to Eq. (4) and (5) [12]: 

 

�̈�𝑛 = −
𝑐0

𝑚0

�̇�𝑛 − 
𝑘0

𝑚0

𝑥𝑛 − 𝑏0𝑥�̈� +
𝑐𝑑

𝑚0

�̇�𝑑 +
𝑘𝑑

𝑚0

 𝑥𝑑

+
𝑓(�̇�𝑑)

𝑚0

− 
1

𝑚0

 𝑢 

(14) 

 

�̈�𝑑 = (
𝑚0 + 𝑚𝑑

𝑚0 𝑚𝑑
) (𝑢 − 𝑐𝑑  �̇�𝑑 − 𝑓(�̇�𝑑) − 𝑘𝑑𝑥𝑑)

+
𝑘0

𝑚0

𝑥𝑛 +
𝑐0

𝑚0

 �̇�𝑛 + (𝑏0 − 1)𝑥�̈� 

(15) 

 

The state variables are defined as the follows: 

 

𝑧1 = 𝑥𝑑   𝑧2 = 𝑥𝑛  𝑧3 = �̇�𝑑   𝑧4 = �̇�𝑛 (16) 

 

Rewriting the system in Eqns. (14) and (15) using the new 
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state variables in Eq. (16) as [12]: 

 

𝒛 ̇ = 𝐴 𝒛 + 𝐵(𝑢 − 𝑓(𝑧3)) + 𝐷 �̈�𝑔 (17) 

 

where: 𝐴 =

[
 
 
 
 

−

0
0

𝑘𝑑(𝑚0+𝑚𝑑)

𝑚0 𝑚𝑑
 

𝑘𝑑

𝑚0

0
0
𝑘0

𝑚0

−𝑘0

𝑚0

1
0

 −
𝑐𝑑(𝑚0+𝑚𝑑)

𝑚0 𝑚𝑑
 

𝑐𝑑

𝑚0

0
1
 𝑐0

𝑚0
−𝑐0

𝑚0 ]
 
 
 
 

, 𝐳 = [

𝑧1

𝑧2

𝑧3

𝑧4

] ,

𝐵 =

[
 
 
 
 

0
0

(𝑚0+𝑚𝑑)

𝑚0 𝑚𝑑

−1

𝑀0 ]
 
 
 
 

, 𝐷 = [

0
0

𝑏0 − 1
−𝑏0

]. 

 

𝑓(𝑧3) =  𝜇𝑑 𝑠𝑔𝑛(𝑧3)  

 

The above dominant mode model will be used for the 

control design purposes. 

 

 

3. CONTROL DESIGN 

 

Sliding mode control is a robust controller that has two 

phases, reaching phase and sliding phase [14, 15]. It can reject 

the effect of matched disturbances and uncertainties during the 

sliding phase. The sliding manifold is designed to be attractive 

and invariant. Therefore, SMC is a good choice for systems 

where the controller and the disturbance are in the same 

channel [16].  

ISMC has no reaching phase and sliding occurs from the 

first instance. Hence, the system is not affected by the 

undesired external inputs as it is imposed to remain on the 

sliding manifold. Moreover, ISMC can guarantee that 

unmatched disturbances are not amplified via a good selection 

of sliding surface [17, 18]. For both classical SMC and ISMC, 

the bounds of the matched disturbances and uncertainties are 

needed. A new ISMCbf [19] is designed here which does not 

require the prior knowledge of the bounds of disturbances and 

uncertainties. Only one parameter is to be chosen, as will be 

shown in subsection 3.3. 

Classical SMC, ISMC and ISMCbf are designed next to 

compare their performances. 

 

3.1 Classical ISMC design 

 

Classical ISMC is designed for the dominant mode model 

in Eq. (17). First define the switching variable [17]: 

 

𝜎 = 𝐺 𝒛 + 𝑌 (18) 

 

The vector 𝐺 is given by: 

 

𝐺 = [𝑔1 𝑔2 𝑔3 𝑔4 ] (19) 

 

where, 𝑔1, . . 𝑔4 are design parameters. 𝑌 is the integral term 

whose dynamics is described in Eq. (20) [17]; 

 

�̇� =  −𝐺𝐴 𝒛 − 𝑢𝑛 (20) 

 

ISMC control law is as follows: 

 

𝑢= (𝐺 𝐵)−1( 𝑢𝑛 + 𝑢𝑠) (21) 

𝑢𝑠 = −𝐾0 𝑠𝑖𝑔𝑛(𝑆) (22) 

 

𝑢𝑛 = −𝐾𝒛 (23) 

 

where, 𝑢𝑛 is a nominal controller which provides the nominal 

system performance, 𝑢𝑠 is the discontinuous control which 

handles disturbances and uncertainties [20]. 𝐾0  is a positive 

switching gain that will be designed depending on the upper 

bound of the perturbation. In this way the discontinuous 

control term 𝑢𝑠 will compensate the perturbation effect. 𝐾 is a 

gain vector which can be designed by using Ackermann’s 

formula. 𝐺 is designed such that (𝐺 𝐵) is invertible.  

To ensure the attractiveness of the sliding manifold 𝜎 the 

condition in Eq. (24) must be satisfied [21]: 

 

𝜎 �̇� < 0 (24) 

 

The dynamics of the sliding manifold σ which used in Eq. 

(24) is: 

 

�̇� = 𝐺 �̇� + �̇� = 𝐺(𝐴 𝒛 + 𝐵(𝑢 − 𝑓(𝑧3)) + 𝐷 �̈�𝑔) + �̇� (25) 

 

The condition (24) becomes: 

 

𝜎 �̇� = (𝜎 𝐺(𝐴 𝑍 + 𝐵(𝑢 − 𝑓(𝑧3)) + 𝐷 �̈�𝑔) + �̇�) < 0 (26) 

 

Assumption 1. The earthquake acceleration �̈�𝑔  and the 

non-linear friction 𝑓(𝑧3)  are assumed to be unknown but 

bounded by known positive quantities 𝛿  and ῶ  respectively 

[12]: 

 
|�̈�𝑔| ≤ 𝛿 (27) 

 

|𝑓(𝑧3)| ≤ ῶ (28) 

 

Using Eqns. (21), (22) and (23), and taking the above upper 

bounds into consideration in Eq. (26), the result is; 

 

𝜎 �̇� ≤ −|𝜎|(𝐾0 + 𝐺 𝐵 ῶ − 𝐺 𝐷 𝛿) (29) 

 

𝐾0 is designed to ensure attractiveness condition (24) i.e.: 

 

𝐾0 > 𝐺 𝐷𝛿 − 𝐺 𝐵 ῶ (30) 

 

During sliding 𝜎 = 0 , �̇� = 0 , the equivalent of the 

discontinuous control is yielded [𝑢𝑠]𝑒𝑞  

 
[𝑢𝑠]𝑒𝑞 = 𝐺 𝐵 ῶ − 𝐺 𝐷 𝛿 (31) 

 

Thus, the equivalent system dynamics during the sliding 

phase becomes: 

 

�̇� = (𝐴 − 𝐵𝐾) 𝒛 (32) 

 

Finally, ISMC is as follows: 

 

𝑢 =  (𝐺 𝐵)−1(−𝐺𝐴𝒛 − 𝐾 𝒛 − 𝐾0 𝑠𝑖𝑔𝑛(𝜎)) (33) 

 

3.2 Integral sliding mode based on barrier function  

 

In this study ISMCbf is used as it does not require the 

perturbations bounds and it is inherently continuous. The 

design principle is based on replacing the discontinuous 
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control term 𝑢𝑐  by a barrier function. The barrier function 

provides a simpler ISMC design as it does not require any 

information regarding the bounds of the unknown disturbance 

as classical SMC and ISMC do [19, 22]. Moreover, it provides 

a continuous control without the high frequency chattering that 

is present in the classical SMC and ISMC as shown in Eq. (33).  

Two types of barrier function exist: Positive definite BFs 

(PBFs) and Positive Semi-definite BFs (PSBFs) [19, 22]. 

PSBFs is used in this work. ISMCbf design procedure does not 

differ from ISMC design presented earlier, only the 

discontinuous term is replaced as follows [22]: 

 

𝜎 = 𝐺 𝒛 + 𝑌 (34) 

 

�̇� =  −𝐺𝐴 𝒛 − 𝑢𝑛 (35) 

 

𝑢𝑛 = −𝐾𝒛 (36) 

 

𝑢𝑠 = − 
𝜎

𝜖 − |𝜎|
 (37) 

 

𝑢 = (𝐺 𝐵)−1( 𝑢𝑛 + 𝑢𝑠) (38) 

 

where, 𝜖 is very small positive number. Finally, ISMCbf is as 

follows: 

The attractiveness of the sliding manifold is verified by: 

 

𝜎 𝜎 ̇ = 𝜎 (−
𝜎

𝜖 − |𝜎|
− 𝐺𝐵 𝑓(𝑧3) + 𝐺 𝐷 �̈�𝑔) < 0 (39) 

 

Let −𝐺𝐵 𝑓(𝑧3) + 𝐺 𝐷 �̈�𝑔 = 𝛿1 

 

𝜎 𝜎 ̇ ≤ −|𝜎|(
|𝜎|

|𝜖 − |𝜎||
− |𝛿1|) (40) 

 

So 𝜎 𝜎 ̇ < 0 for |𝜎| sufficiently near 𝜖 where 
|𝜎|

|𝜖−|𝜎||
> |𝛿1|. 

As shown, the main advantage of ISMCbf is that the upper 

bound of parameters uncertainty and disturbances are not 

required [19, 21]. Only one control parameter is to be chosen 

that is 𝜖, which is very small positive constant.  

To compare the performance of the proposed control 

algorithm, classical SMC will also be designed in the 

following subsection.  

 

3.3 Classical SMC design  

 

The design procedure of SMC which used in the study of 

Concha et al. [12] will be followed in this work. The sliding 

manifold is defined as [12]: 

 

𝜎 = 𝐺 𝒛 (41) 

 

SMC control action is as follows: 

 

𝑢 =  −𝐾0𝑠𝑖𝑔𝑛(𝜎) (42) 

 

The switching gain 𝐾0 is choose to insure the attractiveness 

of sliding manifold [12]: 

 

𝐾0 >  ῶ + ℎ0 (43) 

 

where, ℎ0 is defined as follows [12]: 

 

ℎ0 = |−𝐾𝒛 + 𝛼1 �̈�𝑔| (44) 

 

𝛼1 = 𝑏0(𝑔4 − 𝑔3) + 𝑔3 (45) 

 

For more details see the study of Concha et al. [12].  

 

 

4. RESULT AND DISCUSSION  

 

This section presents the simulation results of 5-story scaled 

structure with three types of sliding mode controllers to drive 

the ATMD. All results are obtained by Matlab/ Simulink 

environment. The initial condition of Eq. (17) is set to zero 

(𝒙(0) = 0); the gain vector 𝐾 is designed by Ackermann’s 

formula according to the desired characteristic Eq. (46). It is 

chosen based on the selection of the desired damping ratio and 

the natural frequency ζ and 𝑤𝑛 respectively [12]: 

 

(𝑠2 + 2𝜁𝜔𝑛 + 𝜔𝑛
2)(𝑠 + 𝜆3)(𝑠 + 𝜆4) (46) 

 

𝜆1,2 = − 𝜁𝜔𝑛 ± 𝑗 𝜔𝑑 , 𝜆3 = −3𝜁𝜔𝑛 (47) 

 

𝜆4 is any negative value. Where 𝑤𝑑 is the damped natural 

frequency expressed as [12]: 

 

𝜔𝑑 = 𝜔𝑛√1 − 𝜁2 (48) 

 

𝑤𝑛 is chosen based on frequency of the dominant mode 𝑤0. 

The feasible range of 𝑤𝑛 is [12]: 

 

𝜔𝑛𝑙 <  𝜔𝑛 < 𝜔𝑛𝑢 (49) 

 

where, 𝜔𝑛𝑙 = 0.5 𝜔0  and 𝜔𝑛𝑢 = 0.8 𝜔0 . Note that if 𝑤𝑛  is 

selected near 𝑤0 then a sudden movement may occur, on the 

other hand if 𝑤𝑛 is selected 0.5𝑤0 the transient response will 

be very slow. 𝜁 is within [12]: 

 

𝜁𝑙  <  𝜁 <  𝜁𝑢  (50) 

 

where, 𝜁𝑙 = 0.5, 𝜁𝑢 = 0.9. 

The desired 𝜁, 𝜔𝑛 𝑎𝑛𝑑 𝜔0 are given in Table 1. It is good to 

mention that these values of (𝜁)  and (𝑤𝑛)  provide a better 

damping behaviour than the values given in [12]. 

A well-known fact of SMC is that the discontinues term 𝑢𝑠 

in SMC and ISMC cause chattering phenomenon, where 

chattering is a finite amplitude signal with high frequency [23, 

24]. Hence, to avoid chattering, the following approximation 

is used in Eqns. (33) and (42) [12]: 

 

𝑠𝑖𝑔𝑛(𝜎) ≈  
𝜎

|𝜎| + ɑ
 (51) 

 

where, ɑ is very small positive value given in Table 2. 

 

Table 1. Design parameters of model and ATMD [12] 

 
Parameter Value 

𝑚0, 𝑘0, 𝑏0  28.07 kg, 2.75 ×10 N/m, 1 

𝑐0 
Calculated by Rayleigh damping, with 

damping ratios 0.01 

𝑚𝑑 , 𝑐𝑑 𝑘𝑑  1.4 kg, 3.54 Ns/m, 121.66 N/m, 

𝜇𝑑 , 𝑤0 0.35 N, 9.9 rad/s 
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Table 2. Control parameters 

 
Parameter Value 

𝐺 [0 0 0 1] 
𝜁, 𝑤𝑛 0.7, 0.8𝑤0 

𝜆1,2, 𝜆3, 𝜆4 −5.44 ± 𝑗2.24, -16.632, -28 

𝜖, ɑ 0.005, 0.005 

 

As mentioned earlier ISMCbf does not require a prior 

knowledge of the perturbation upper bounds. Therefore, to 

prove this the design is tested under two different earthquakes 

with the same ISMCbf design. The simulation results 

presented below compares three types of controllers (SMC, 

ISMC and ISMCbf) under effect of time scaled El Centro 1940 

earthquake. To show the robustness of the proposed controller, 

all three controllers are compered under a different disturbance 

which is the time scaled Mexico City earthquake. The open-

loop uncontrolled top floor displacement under El Centro 1940 

time scale earthquake is illustrated in Figure 2 and 3 

respectively. 

 

 
 

Figure 2. Uncontrolled top floor displacement effected by El 

Centro 1940 time scale earthquake 

 

 
 

Figure 3. El Centro 1940 time scale earthquake 

 

 
 

Figure 4. Displacement of the top floor with SMC, ISMC 

and ISMCbf 

SMC, ISMC and ISMCbf control actions in Eqns. (24), (36) 

and (47) are applied respectively to control the system. Figure 

4 shows the result of top floor displacement with SMC, ISMC 

and ISMCbf. 

Control action of SMC, ISMC and ISMCbf are shown in 

Figure 5. 

 

 
 

Figure 5. Control action with SMC, ISMC and ISMCbf 

 

Sliding surfaces of SMC, ISMC and ISMCbf in Eqns. (18), 

(34) and (41) are shown in Figure 6. Notice that the sliding 

variable of ISMCbf is confined in the invariant set 𝜎 <  |𝜖|. 
 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6. The sliding surface of SMC, ISMC, ISMCbf 

respectively 
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Table 3. Maximum structural displacement and control action under El Centro1940 earthquake 

 
 Open-loop SMC ISMS ISMCbf 

Maximum first floor displacement (m) 0.0024 0.0008 0.0008 0.0008 

Maximum second floor displacement (m) 0.004 0.0013 0.0013 0.0013 

Maximum third floor displacement (m) 0.0055 0.0016 0.0016 0.0016 

Maximum fourth floor displacement (m) 0.008 0.00178 0.00178 0.00178 

Maximum top floor displacement (m) 0.01 0.002 0.002 0.002 

Maximum control action (N) - 15 10.64 10.64 

The statistical results of the compared controllers under 

effect of time scaled El Centro 1940 earthquake are given in 

Table 3. From these results it is clear that both SMC, ISMC 

and ISMCbf succeeded in reducing structural displacement in 

the same rate but with deferent control force, ISMC and 

ISMCbf reduced the control force by (33%) as compared to 

SMC. 

A second case study is taken here where the system is 

exposed to the time scaled Mexico City earthquake which is 

shown in Figure 7. The purpose of this test is to show the 

robustness of ISMCbf under different disturbances without the 

need of any information of the perturbations bounds in the 

both cases.  

 

 
 

Figure 7. Time scaled Mexico City earthquake 

 

 
 

Figure 8. Uncontrolled top floor displacement effected by 

time scaled Mexico City earthquake 

 

 
 

Figure 9. The displacement of the top floor controlled by 

SMC, ISMC and ISMCbf respectively 

 
 

Figure 10. Control action with SMC, ISMC and ISMCbf 

 

The uncontrolled building displacement under time scaled 

Mexico City earthquake is shown in Figure 8. 

Controlled top floor displacement and controlled force of 

SMC, ISMC and ISMCbf are shown in Figures 9 and 10 

respectively. 

Sliding surfaces for SMC, ISMC and ISMCbf are shown in 

Figure 11. 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 11. The sliding surface of SMC, ISMC, ISMCbf 

respectively 
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Table 4. Maximum structural responses under the Mexico City earthquake 

 
 Open-loop SMC ISMS ISMCbf 

Maximum first floor displacement (m) 0.0055 0.0028 0.0028 0.0028 

Maximum second floor displacement (m) 0.01 0.00365 0.00365 0.00365 

Maximum third floor displacement (m) 0.0135 0.0048 0.0048 0.0048 

Maximum fourth floor displacement (m) 0.0185 0.0057 0.0057 0.0057 

Maximum top floor displacement (m) 0.022 0.0065 0.0065 0.0065 

Maximum control action (N) - 19.5 15 15 

The statistical results of effect of Mexico City earthquake 

case study are presented in Table 4. The same conclusion of 

the first case study is yielded here, in terms of the applied and 

required control energy there is significant differences as 

shown in Table 4. ISMC and ISMCbf reduced control action 

about (33%) as compared to SMC to get the same 

displacement reduction. 

From the results, it is clear that ISMCbf deals with two 

different bounds of disturbances without needing to update the 

design parameters (no change of control design). 

 

 

5. CONCLUSION  

 

In this study ISMCbf is designed for the first time to reduce 

structural displacement due to seismic effect with ATMD. The 

main advantage which distinguishes ISMCbf from ISMC and 

SMC is that ISMCbf does not need any information about the 

upper bounds of the disturbances in the design. Only one 

parameter is to be specified which represents a small positive 

constant. The simulation results in the presence of earthquake 

show that ISMCbf and ISMC has the minimum control action 

as compared to SMC with the same disturbance rejection 

performance. Moreover, to reduce chattering in ISMC and 

SMC, a sigmoid function is utilized which adds another design 

parameter to be specified. ISMCbf prevents chattering as it is 

a continuous controller therefore, there is no need for this kind 

of approximation. Hence, ISMCbf proved to be more efficient 

and simpler in the design.  

ISMCbf proves its efficiency with ATMD, but ATMD has 

some disadvantages, like high power requirements and thus a 

high cost. Moreover, ATMD performance has a constraint in 

its design and implementation. Therefore, as a future work, it 

is suggested to replace ATMD with MRD which is known to 

be more reliable, have a low power requirement and of low 

cost and easy to install and maintain. 
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