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Intrusion Detection Systems (IDSs) play a critical role in detecting malicious assaults and 

threats in the network system. This research work proposed a network intrusion detection 

technique, which combines an Adversarial Sampling and Enhanced Deep Correlated 

Hierarchical Network for IDS. Initially, the proposed Enhanced Generative Adversarial 

Networks (EGAN) method is used to raise the minority sample. A balanced dataset can be 

created in this way, allowing the model to completely learn the properties of minority 

samples while also drastically minimizing the model training time. Then, create an 

Enhanced Deep Correlated Hierarchical Network model by using a Bi-Directional Long 

Short-Term Memory (BiLSTM) to collect temporal characteristics and Cross-correlated 

Convolution Neural Network (CCNN) to retrieve spatial characteristics. The softmax 

classifier at the end of BiLSTM is used to classify intrusion data. The traditional NSL-KDD 

dataset is utilized for the experimentation of the proposed model. 
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1. INTRODUCTION

The internet provides everyone with access to data, 

information, and knowledge that aids in our professional, 

interpersonal, and economic growth. The internet serves 

various purposes, but how we utilise it in the daily lives varies 

greatly according to our specific needs and ambitions. The 

exponential growth of the internet has led to an increase in 

digital communication among the general public. The number 

of intrusion occurrences has increased significantly. Internet 

security is a vital aspect of an organization's effectiveness 

because cyber-attacks may affect corporate operations. Hence, 

there is essential for the development of a security mechanism 

to handle these systems [1, 2]. According to a recent analysis, 

the frequency of network attacks has grown substantially, and 

researchers' interest in network intrusion analysis has risen as 

a result. In the network security domain, the detection of 

intrusions has evolved into a significant research problem [3, 

4]. 

The technique of detecting anomalous abnormal actions on 

computer systems is known as intrusion detection. The main 

aim of an Intrusion Detection System (IDS) is to identify users' 

behavior as normal or abnormal based on the data they 

communicate. Firewalls, data encryption, and authentication 

techniques were all employed in traditional security systems 

[5, 6]. Anomaly detection and misuse detection are the most 

widely used in intrusion detection systems today, although 

these two approaches have the limitations of minimum 

detection rates and large false-positive rates. Detection 

approaches based on artificial intelligence has a crucial in the 

development of IDS [7, 8]. Researchers employ machine 

learning to identify several forms of attacks to construct an 

effective intrusion detection system. 

A hybrid model with feature analysis technique [9] was 

introduced for IDS. A combination feature selection and 

Support Vector Machine (SVM) classifier ID model [10] was 

built using Chi-square, Modified Naive Bayes (MNB), SVM, 

and LPBoost. A majority votings of LP Boost MNB and SVM 

was used to forecast the intrusion label effectively. A 

combined classifier model based on tree-based methods [11] 

was proposed. Naive Bayes Tree, mRandom Tree and 

Decision Tree were combined. As a result, integrating 

classifiers using the sum rule scheme can produce better 

results than using individual classifiers. SVM, RF and 

Extreme Learning Machine (ELM) were developed [12] for 

intrusion detection and finally proved ELM outperform then 

other two classifiers.  

Classical Machine Learning (ML) techniques are based on 

narrow learning, but as network data continues to grow, a vast 

volume of non-linear network data presents new obstacles for 

intrusion detection [13]. This paper analize ML based methods 

and Deep Learning (DL) based approaches and provide a new 

solution for IDS system.  

The remaining sections of this article include: Section 2 

studies the recent work related to the intrusion detection 

categorization methods. Section 3 explains the proposed 

methodology of proposed classification frameworks and 

Section 4 displays their efficiencies. Section 5 concludes the 

entire work and suggests the future scope. 

2. LITERATURE REVIEW

The features extraction mechanism effectively applied 

lowering the data dimension from high-dimensional data and 

it produces considerable results. An EMR-SLRA approach 

was developed in the study of [13] used multi-view feature 

embedding. By merging the local nearby connection and 

discriminant analysis of the raw data to the minimum-

representation by rank. 
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DL offers many benefits for IDS over traditional anomaly-

based IDS methods. DL mainly overcome the difficulty of 

selecting appropriate features. DL is used in a range of fields 

and has been shown to be successful. To expand the generality 

of the neural network, progressive learning approach is 

designed [14]. These kinds of literature lead to believe that 

DNN can be used to understand the hierarchical aspects of 

network flow (i.e., temporal and spatial features) for 

categorizing network traffic [15]. The expressive capability of 

generative models with high level of recognition rate skills to 

imply information from little training data using the 

discriminative restricted Boltzmann machine [16]. DL based 

on RNN strategy [17] was investigated the model's efficiency 

in multiclass and binary, as well as the impact of the model's 

learning rate and collection of neurons efficiency.  

RNN for the Short and Long-Term Memory (SLTM) 

framework was utilized [18] and the performance test 

demonstrated that deep learning methodologies are successful 

for IDS. 

The proportion of diverse traffic data fluctuates 

substantially owing to the significant imbalance between 

network traffic. Minority attacks are very harmful than 

majority attacks in a real network setting. So the classification 

with consider deration of minority samples are analyzed in 

many methods. 

Robust and sparse technique was devised [19] for IDS based 

multi-class on the Ramp Loss K-Support Vector 

Classification-Regression (K-SVCR) was applied to address 

the data's contain imbalanced attacks extremely. The Synthetic 

Minority Over-Sampling Technique (SMOTE) method and 

proposed the Mean SMOTE (M-SMOTE) method to improve 

traffic data balance [20]. To integrate the gcForest with deep 

CNN suggested a multi-layer interpretation approach [21] for 

exact end-to-end network ID, which obtained correct small-

scale data and detection on imbalanced data with some fewer 

hyper-parameters than that of most existing deep learning 

techniques [22]. 

However, two main limitations of DL are security 

implications, which are lack of transparency and their 

sensitivity to adversarial attacks. For this reason, this research 

work concentrates on the adversarial vulnerability of DL 

methods. 

2.1 Research gap 

Though, the design and execution of the IDS face several 

significant challenges, which are listed below. 

Classical network intrusion detection systems use 

dimension minimization to eliminate noise in measurements 

when working with big, high-dimensional data points. As a 

result, while extracting characteristics for intrusion patterns, it 

is probable to lose essential information. This might result in 

a high rate of false detection. 

Imbalanced data is a common issue while developing a 

network intrusion detection model based on Deep Learning 

(DL) approach. This model's performance will be damaged by

the imbalanced data.

The features of data from network traffic are extremely 

complex that makes challenging for feature extraction. The 

classification results will be low if the data characteristics 

cannot be adequately retrieved. 

To increase detection accuracy, this research work 

introduced a novel network intrusion detection methodology 

that integrated Adversarial Sampling with a deep hierarchical 

network. Initially, this work starts with Adversarial Sampling, 

which is used to generate minority class samples [23, 24]. To 

perform this task this work proposed an EGAN algorithm is to 

correct for the imbalance in Network Traffic Data (NTD). As 

a result, imbalanced data can be turned to balanced data for 

categorization [25]. 

3. THE PROPOSED METHODOLOGY

This paper built a deep hierarchical network that integrates 

the proposed Cross-correlated Convolution Neural Network 

(CCNN) and Bi-directional LSTM (BiLSTM), named as 

CCNN-BiLSTM for learning the spatial and temporal aspects 

of NTD to deal with the difficulty of data features. Because of 

its strong performance in automatic feature extraction, CCNN 

has steadily been applied to network identification. 

Considering that sample attacks are time sequence data, which 

is intra-dependent. Automatically measure the time sequence 

features, this research work used BiLSTM for learning. The 

main contribution of this research work is given below. 

(1) To overcome the data imbalance problem, the research

developed an Adversarial Sampling strategy. Enhanced 

Generative Adversarial Networks EGAN is proposed in this 

research as a way to increase minority sample sizes. In this 

method created a balanced dataset for model training. Hence, 

the time for training the model is cut in half. 

(2) The deep hierarchical network model, which combines

Cross-correlated Convolution Neural Network (CCNN) and 

BiLSTM, is proposed. This approach extracts the data's 

features with reliability. The CCNN obtained a model 

performs better after training. 

Figure 1. System architecture for proposed NID model 

Figure 1 depicts the system architecture of the proposed 

Network Intrusion Detection (NID) model. To address the 

imbalance data and the difficulty of the features, the original 

data is initially applied to Adversarial Sampling process to 

provide balanced data. Finally, classification is performed in a 

Deep Hierarchical Network (DHN). It is divided into four 

sections, which are Adversarial Sampling, model training, and 

classification. 
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The performance of the classification model is influenced 

by the imbalanced data. As a result, this research work 

employs the EGAN algorithm to raise the minority samples. 

The problem of low detection rate and difficulty of feature 

learning in a small number of attack categories (U2R; R2L) 

are not considered in existing intrusion detection. Hence to 

handle the issue of feature learning in a small number of attack 

categories, a generative adversarial network method is 

proposed to identify more features. 

The NID dataset instances contain too many 0 elements that 

are not helpful for network learning and can speed up the 

convergence of the network. This is not resolved by the data 

normalization approaches. Hence to prevent the over fitting 

problem due to 0 elements, a cross-correlation-feature layer is 

included in the DNN model. The proposed CCNN and 

BiLSTM are help to retrieve the data’s temporal and spatial 

properties to increase the classification accuracy. 

Resistance training, created a model with better 

classification performance, and the model is utilized to test set 

categorization, yielding better classification outcomes. 

3.1 Balanced data set construction using adversarial 

sampling  

A typical imbalanced data classification challenge is NTD, 

which consists of a minimum number of anomalous traffic and 

significant volume of regular traffic. Although the prediction 

is accurate in this situation, the overall error is minimized. This 

work proposed an Enhanced Generative Adversarial Networks 

(EGAN), which is enhanced by incorporating an inference 

network into the conventional GAN model. It allows the 

classification methods to consider the impact inputs from both 

data and latent space. It learns the latent representation by 

combining autoencoder structure with a normal GAN 

framework. The generative net (G) and the discriminative net 

(D) are the two kinds of network in GAN. In the training stage

generative net (G), the G attempts to generate fake data based

on input priority during the training stage. The traditional

GAN has some significant issues, which are:

Model parameters fluctuate and destabilize and never 

coverage; 

The generator fails, resulting in a restricted number of 

sample variations; 

The discriminator becomes too successful, and the 

generating gradient vanishes, leaving the learner with no 

information; 

Over fitting is caused by an imbalance between the 

discriminator and the generator. 

Hyper - parameter choices are quite delicate. To overcome 

these issues, this research work combined Basic Iteration 

Method (BIM), Fast Gradient Sign Method (FGSM), and 

Projected Gradient Descent (PGD) algorithms. Initially, the 

FGSM method is to create an adversarial sample from NSL-

KDD Dataset. This technique performed an updating of 1-step 

gradient in the direction of the gradient for each dataset input. 

The BIM is the second method [26], which performs a greater 

optimization of the FGSM over multiple rounds with modest 

alterations [27]. Any feature of the input parameters is cropped 

in any cycle to avoid too significant a change on each feature. 

The PGD is a version of the FGSM attack that does not include 

the FGSM's random start characteristic [28]. For identifying 

such adversarial examples, PGD is an effective first-order 

technique, which also used to address optimization issues 

involving the simultaneous minimization of several objective 

functions. To generate the adversarial samples PGD can 

produce more accurate perturbation by using a uniform 

random perturbation as an initialization. Then it runs in the 

multiple BIM iterations to identify the adversarial samples. All 

these three approaches rely on the model gradient and are 

model dependent. Procedure was repeated with the BIM and 

PGD adversarial samples for getting higher accuracy. 

Figure 2. Adversarial sampling by EGAN using EGSM, 

BIM and PGD process 

The proposed EGAN is used in the Adversarial Sampling 

process, which aims to raise the minority samples in the 

imbalanced NTD. Figure 2 represents the Adversarial 

Sampling Process. EGAN is used of three neural networks: a 

generator (g), an encoder (i), and a discriminator (d), with g 

and i forming the autoencoder. The encoder i compresses real 

data samples (a) into a latent representation (b), while the 

decoder g reconstructs the encoded data back into the original 

data (a). By learning the joint posterior distribution p(a|b), this 

autoencoder structure can reconstitute the original data, 

improving the model's stability by decreasing mode collapse 

caused by GAN's inability to infer the mapping of actual data 

to latent data. The auto encoder may also assist with operations 

at the level of abstraction by utilizing the encoder to learn the 

inference (a b), where a (a) represents actual data spaces and 

(b) represents latent spaces, of the latent representation of

high-dimensional data spaces. In terms of the advantages of

learning latent representations in Eq. (1):

𝑚𝑎𝑥𝑔,𝑖𝑚𝑖𝑛𝑔ⅇ(𝑑, 𝑖, 𝑔)

= 𝑖𝑎~𝑝𝑎 [𝑖𝑎~𝑝𝑖(. |𝑎)[𝑙𝑜𝑔 𝑑(𝑎, 𝑏)]]

+ 𝑖𝑏~𝑝𝑏 [𝑖𝑎~𝑝𝑔 (. |𝑏)[1

− 𝑙𝑜𝑔 𝑑(𝑎, 𝑏)]]
= 𝑖𝑎~𝑝𝑎 [log 𝑑(𝑎, 𝑖(𝑎))]

+ 𝑖𝑏~𝑝𝑏 [1 − 𝑙𝑜𝑔 𝑑(𝑔(𝑏), 𝑏)]

(1) 

where, pa and pb are the sharing over the data. The pi(.│a), 

pa(.│b) and pg(.│a) and pb(.│b) are the joint distributions of 

𝑝𝑖, 𝑝𝑎, 𝑝𝑔,and𝑝𝑏, which are demonstrated using encoder and 

generator. 

Algorithm 1 Adversarial Sampling Algorithm 

Input: NSL-KDD dataset 

Output: Detection result 

Procedure: 

Step 1. Start the process 

Step 2. Generate the adversarial samples using 

FGSM 

Step 3. Update the direction of the gradient sign 

for each input dataset 

Step 4. Assign BIM for multiple rounds with 
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modest alterations for FGSM 

Step 5. Generate the adversarial samples using 

PGD  

Step 6. To run multiple BIM iterations to identify 

the 

adversaria

l samples

Step 7. From the training set, collect all minority 

class samples. 

Step 8. Initialize the discriminator 𝑑 , encoder 𝑖 , 

the generator 𝑔 

Step 9. Sort the sample into training subsets 

randomly using ⅇ(𝑑, 𝑖, 𝑔) 

Step 10. For i=1training  do 

Step 11. Assign the majority samples into subset 

Step 12. For g do 

Step 13. g Generate the imitation dataset 

Step 14. Send generated data to d; 

Step 15. End 

Step 16. Ford do 

Step 17. d classifies data including the imitation 

dataset and original dataset 

Step 18. End 

Step 19. End 

Step 20. Enhance the finally synthesized minority 

sample to obtain the first balanced dataset. 

Step 21. End 

3.2 CCNN for extraction of spatial features 

The proposed Cross-correlated Convolution Neural 

Network (CCNN)can automatically extract the features of 

objects better than traditional methods. The features delivered 

from EGAN is given to the CCNN for training. Because the 

characteristics have spatial locality at dissimilar places, 

pooling layers must be used to assemble the information of the 

characteristics at different positions to some extent to 

eliminate the dimension and overfitting should be avoided. As 

a result, CCNN is well suited to extracting geographical 

information from large networks' NTD. 

Figure 3. CCNN network structure model 

Figure 3 depicts the CCNN network structure model. The 

procedure for mining the spatial characteristics using CCNN 

is given below The CCNN the introduction of the idea of local 

perception, the convolution kernel can be shared by all 

neurons, and the collection of weights is determined by the 

number of convolution kernels. As a result, the collection of 

weights is drastically eliminated, while computational 

efficiency is greatly improved. The convolution function is 

denoted by the symbol in Eq. (2): 

ℎ𝑡 = 𝐶(ℎ𝑡−1 ⊗ ℎ𝑡+𝑏𝑎) (2) 

where, ha is the character map of layer, bias layer is 

𝑎, (𝑎𝐷 1; 2; : : 𝑛)𝑏𝑎, and ⊗ is the convolution function and c

(x) is the activation function. This research work used ReLU

as CCNN activation function. After the convolution, the

pooling layer combines the features in the local neighborhood

to generate new features. It is able to decrease the feature map

ht size and preventing over-fitting, which is defined in Eq. (3)

as follows:

ℎ𝑡 = 𝑝𝑜𝑜𝑙(ℎ𝑡−1) (3) 

where, ht must be transformed into a vector after numerous 

convolution and pooling layers. The completely linked layer 

can then be used to produce output ua. As a result, we can 

extract the geographical properties of the NTD using CCNN. 

While CCNN can extract spatial characteristics effectively, it 

struggles to learn sequence correlation information and cannot 

overcome the problem of long-term information dependence. 

As a result, network intrusion detection accuracy using solely 

CCNN has to be increased. 

3.3 Extraction of temporal features by BiLSTM 

The LSTM contains a memory module which can decide 

whether to store information in memory and when to forget it 

LSTM can effectively extract time series with significantly 

larger intervals and delays, effectively resolving gradient 

disappearance and training challenges. However, the 

importance of information after characteristics is not 

completely taken into consideration because the LSTM could 

only accept the sequence data in one way. As a result, BiLSTM 

is utilized instead of LSTM to present the upcoming 

information. Figure 4 demonstrates Fundamental Structure of 

BiLSTM. 

Figure 4. Fundamental structure of BiLSTM made up using 

stacking of 2 LSTM 

Figure 4 demonstrates Fundamental Structure of BiLSTM. 

The hidden loop layer, input layer, and an output layer 

comprise a standard LSTM network framework. The cyclic 

hidden layer, unlike the standard recurrent neural network, is 

mostly made up of nodes that represent neurons [23]. The 

memory module is the fundamental element of the cyclic 

hidden layer LSTM. The input gate, forget gate, and output 

gate are among the 3 adaptive multiplication gating units of 

this memory module. Each neuron node in the LSTM performs 

the following mathematical operation: 

The input gate is activated at time t according to the 

previous cell's output result ha in represent in Eq. (4). The 

current input xt decides whether or not to use calculation to 
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update the current information in the cell. The weight is B, 

while the bias of neurons is b: 

ℎ𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐵𝑖 . [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑖) (4) 

The information is retained or discarded using a forget gate, 

and the last instantaneous hidden layer output ti-1 and the input 

present time in Eq. (5): 

𝐶𝑖 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐵𝑐 . [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑐) (5) 

The present value of a potential memory cell is determined 

by the previous moment's output result ti-1 and input data of the 

LSTM hidden layer cell. The present value of a potential cell 

Si and its state Si-1, as well as the forget gate and input gate are 

currently altering the memory cell state value Si. The unique 

feature is the element-by-element matrix multiplication 

present in Eq. (6) and Eq. (7): 

𝑦𝑖 = 𝑡𝑎𝑛ℎ(𝐵𝑆 . [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑆) (6) 

𝑦𝑖 = 𝐶𝑖 + 𝑆𝑖−1 + ℎ𝑡 ∗ 𝑆 (7) 

Calculate the output gate ot, which is utilized to regulate 

thevalue of the cell status. The last cell's output is ht that can 

be written as Eq. (8) and Eq. (9): 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑂 . [ℎ𝑡−1,𝑥𝑡] + 𝑏𝑂) (8) 

ℎ𝑡 = 𝑜𝑡tanh (𝑆𝑡) (9) 

The BiLSTM is made up of 2 LSTM networks, one 

backwardand the otherforward. The forward LSTM hidden 

layer is in charge of extracting forward features, while the 

backward one is in charge of extracting backfeatures in Eq. 

(10), Eq. (11) and Eq. (12): 

ℎ𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = 𝐿𝑆𝑇𝑀𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑[ℎ𝑡−1,𝑥𝑡] + 𝑆𝑡−1 (10) 

ℎ𝑡
𝑓𝑜𝑟𝑤𝑎𝑟𝑑

= 𝐿𝑆𝑇𝑀𝑓𝑜𝑟𝑤𝑎𝑟𝑑[ℎ𝑡−1,𝑥𝑡] + 𝑆𝑡−1 (11) 

𝐻𝑡 = [ℎ𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 , ℎ𝑡

𝑓𝑜𝑟𝑤𝑎𝑟𝑑
] (12) 

Prior and after it is applied, the BiLSTM model can 

effectively understand the importance of every attribute in the 

sequence information. As a result, more detailed feature 

information is gathered. BiLSTM's state at time t comprises 

both forward and backward output [22]. 

3.4 Enhanced deep correlated hierarchical model 

An innovative CCNN was proposed in this research work to 

improve assessment metrics of imbalanced abnormal traffic 

data classification in intrusion detection. Finally, we offer 

some modified variants of the CCCN that may balance 

detection efficiency and time efficiency to address the 

algorithm's time efficiency. In the experimental part, we 

concentrate on enhancing each category of imbalanced 

anomalous flow data evaluation metrics rather than the total 

evaluation metrics. By merging CCNN and BiLSTM networks 

in hierarchical network architecture, the temporal and spatial 

elements of traffic data may be obtained concurrently. Due to 

the differences in the CCNN and BiLSTM inputs, the derived 

spatial characteristics are altered at the CCNN output to fit the 

BiLSTM network's input. In the CCNN based BiLSTM 

method has some issues, which are CCNN lacks the capacity 

to be spatially independent to the input data and does not 

encode the object's location and orientation. 

Both CCNN and BiLSTM are deep learning techniques that 

are representational. The Figure 5 gives DHN. In the spatial 

dimension, CCNN may retrieve data characteristics. BiLSTM 

has the property of retaining relevant historical data for an 

extended period and achieving data feature extraction at the 

temporal level. It is vital to examine the feature connection at 

the spatial level while extracting features for a network 

intrusion detection system, in addition to measuring the law of 

change at the temporal level. As a result, this article used 

CCNN and BiLSTM to retrieve the features before building a 

DHN. All convolution kernels in the CCNN are 3*3 in size 

because a lesser convolution kernel can efficiently lower the 

model's difficulty Furthermore, the larger convolution kernel's 

comparable responsive field can be obtained by stacking 

multilayer 3*3 convolution kernels. 

Figure 5. Enhanced deep correlated hierarchical structure 

model 

Assuming that Xa-1 is the current layer's input feature map 

and that the convolution kernel's input size is 3*3, the current 

layer's output feature map Xa-1 is stated as Eq. (13): 

𝑌𝑎 = 𝜔𝑎 ∗ 𝑋𝑎−1 + 𝑏𝑎 (13) 

The letter ba stands for the bias word. Due to the huge 

discrepancy in the distribution of flow data samples from 

different categories, the network adapts effectively to 

anomalous categories with large sample sizes for highly 

imbalanced abnormal own data, but the detection impact is 

often poor for own with few samples. Batch normalization 

(BN) was used to prevent overfitting [20]. BN reduces the 

internal covariate shift of the input data, which speeds up the 

convergence of the training deep network model. BN 

decreases the correlation of each feature dimension when 

dealing with unbalanced data, allowing the network to quickly 

comprehend the categories despite tiny sample sizes. By 

computing the mean and variance of the samples in an input 

mini-batch, the data for that mini-batch is normalized. The 

following is the BN transformation procedure in Eq. (14) and 

Eq. (15): 

𝜇𝐷 =
1

𝑁
∑ 𝑦𝑎

𝑛

𝑎=1

(14) 
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𝜎𝐷
2 =

1

𝑛
∑(

𝑛

𝑎=1

𝑦𝑎 + 𝜇𝐷)2 (15) 

The mean μD and variance 𝜎𝐷
2  of the mini-batch are

calculated for each of the 𝑛 input examples, and the variance 

and mean are then normalized. The unique procedure is as 

follows in Eq. (16): 

𝑦�̂� =
𝑦𝑎 − 𝜇𝐷

√𝜎𝐷
2 + 𝜀

(16) 

where, μD represents the mean of all examples in a less-feature 

batch's dimensions, and 𝜎𝐷
2 represents the variance of whole

examples in the less-batch. To obtain 𝑦�̂� , the example ya is 

normalised by μD and 𝜎𝐷
2. The normalize procedure is used in

every input layer to ensure that all input data has the same 

distribution regardless of sample variability. The features are 

scaled and moved to increase the generalization of new data 

by introducing two learnable parameters and requiring the 

model to learn the original sample distribution to improve the 

resilience of network learning present in Eq. (17): 

𝐷𝑁𝛾,𝛽(𝑦𝑎) = 𝛾𝑦𝑎 + 𝛽 (17) 

The nonlinearity is added using an activation function after 

the data has been batch normalized. All activation functions in 

our network structure use the ReLU function to speed up 

network convergence and resolve the impacts of gradient is-

appearance and gradient explosion. As a result, the last output 

feature map is written as Eq. (18): 

𝑧𝑎 = 𝑔(𝐷𝑁𝛾,𝛽(𝜔𝑎 ∗ 𝑌𝑎−1 + 𝑏𝑎)) (18) 

The activation function is denoted by the letter g. Finally, 

we utilize the Softmax function for our classification, and each 

category's sample output is stated as Eq. (19): 

𝑥𝑎 =
𝑐𝑧𝑎

∑ 𝑐2𝑑𝑒
𝑑=1

(19) 

Algorithm 2 Deep Correlated Hierarchical Model 

Input: NSL-KDD dataset. 

Output: Detection Result 

Procedure: 

Step 1. Start the process. 

Step 2. Apply CCNN and BiLSTM for feature 

extraction and classification. 

Step 3. Send balanced NSL-KDD data into 

enhanced DHN 

Step 4. For CCNN do 

Step 5. Apply Cross-correlation layer  

Step 6. Apply convolutional layer ℎ𝑡 =
𝐶(ℎ𝑡−1 ⊗ ℎ𝑡+𝑏𝑎)

Step 7. Extract spatial feature 

Step 8. End 

Step 9. For BiLSTM do 

Step 10. Apply BiLSTM in the enhanced DHN 

Step 11. Set forward and backward LSTM𝐻𝑡 =

[ℎ𝑡
𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 , ℎ𝑡

𝑓𝑜𝑟𝑤𝑎𝑟𝑑
]

Step 12. Extract temporal feature. 

Step 13. Apply fully connected layer 

Step 14. Compute the SoftMax function for 

output layer 

Step 15. SofMax layer can learn and classifying 

the dataset 

Step 16. End 

Step 17. End 

4. EXPERIMENTAL RESULTS

Tensor Flow was utilized as the backend in the experiments, 

which was encoded with Keras and Python under Windows. 

In this research work, the network model's learning rate was 

set as 0.001. 

4.1 Dataset 

The traditional and well-known NSL-KDD benchmark 

dataset [29] can be used in this research work. This dataset 

contains the 41- dimensional features that are separated to a 

thirty-eight-dimensional digital feature, a traffic type label, 

and a 3-dimensional symbol feature. The label consists of 

Normal, and four varieties of Remote-to-Local (R2L), Denial 

of Service (Do’s), Probe and User-to-Root (U2R) attack data. 

Description of the NSL-KDD dataset is given in Table 1. 

Table 1. DescriptionNSL-KDD dataset 

Type Testing Training 

Normal 9711 67343 

Denial of Service (DoS) 7458 11656 

Remote-to-Local (R2L) 2754 995 

Probe 45927 2421 

User-to-Root (U2R) 200 52 

4.2 Data preprocessing 

The one-shot encoding approach has been used to translate 

the data containing symbol features in the data set to the digital 

feature vector because the model's input is a digital matrix. 

This processing is primarily concerned with the protocol type, 

service, and aspects of data collection. They are coded 

separately and have 3, 11, and 70 symbol characteristics, 

respectively. The three protocol type attributes such as UDP, 

ICMP, and TCP in the NSL-KDD dataset, are stored as binary 

vectors (0,0,1), (0,1,0), (1,0,0), and respectively. A normalized 

processing method is used to consistently and linearly map the 

value range of each feature within the [0,1] interval, making 

arithmetic processing and dimension elimination easier. 

4.3 Performance measures 

This research work used following performance measures 

that are precision, recall, f-score measure, and accuracy have 

been used to estimate the performance of the proposed 

framework. These metrics are represented from Eq. (20) to Eq. 

(23): 

Accuracy =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝑇𝑁
(20) 

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(21) 
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𝑅ⅇ𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
(22) 

𝐹 − 𝑆𝑐𝑜𝑟ⅇ 𝑚ⅇ𝑎𝑠𝑢𝑟ⅇ = 2.
𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅ⅇ𝑐𝑎𝑙𝑙

𝑃𝑟ⅇ𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅ⅇ𝑐𝑎𝑙𝑙
(23) 

Table 2 shows the Performance Analysis for Original NSL-

KDD and Balanced NSL-KDD Dataset. From the observation, 

the proposed CCNN-BiLSTM classification algorithm gives 

higher performance ratio than existing algorithms. 

Table 2. Performance analysis for classifiers for original NSL-KDD and balanced NSL-KDD dataset 

Data Classifier Accuracy(%) Pre(%). Rec.(%) F-Sc.(%)

Original 

NSL-KDD Dataset 

CNN [22] 76.28 80.25 77.76 78.89 

CNN-BiLSTM [25] 77.91 81.39 78.38 79.71 

CCNN-BiLSTM 80.73 84.15 81.56 82.44 

Balanced NSL-KDD Dataset 

CNN [22] 77.68 81.65 79.16 80.29 

CNN-BiLSTM [25] 79.01 82.49 79.48 80.81 

CCNN-BiLSTM 81.16 85.02 82.43 83.31 

Figure 6. Performance analysis of classifiers for original 

NSL-KDD dataset 

Figure 6 gives the Performance Analysis of Classifiers for 

Original NSL-KDD Dataset. From the experimental results, it 

is observed that the proposed CCNN-BiLSTM classification 

algorithm produces 81.16,85.02,82.43,83.31 for {Accuracy, 

Precision, Recall, F-Score} with respect to original NSL-KDD 

Dataset. 

Figure 7. Performance analysis of classifiers for balanced 

NSL-KDD dataset 

Figure 7 presents the Performance Analysis of Classifiers 

for Balanced NSL-KDD Dataset. From the experimental 

results, it is noticed that the proposed CCNN-BiLSTM 

classification algorithm 80.73, 84.15, 81.56, 82.44 for 

{Accuracy, Precision, Recall, F-Score} with respect to 

balanced NSL-KDD Dataset. 

Table 3 represents the Performance Analysis for CCNN-

BiLSTM for balanced by existing and proposed balancing 

methods. The integrated Adversarial Sampling (existing GAN 

[14], DGAN [23], and proposed EGAN) algorithms and 

adversarial sampling (proposed CCNN-BiLSTM) algorithm 

results are given in above table. From the observation, the 

proposed EGAN algorithm achieves algorithm gives higher 

performance ratio than existing algorithms. 

Figure 8. Performance analysis for original NSL-KDD 

dataset 

Figure 8 illustrates the Performance Analysis for various 

GANs. From the experimental results, it is observed that the 

proposed CCNN-BiLSTM algorithm yields 79.63, 83.05, 

80.46, 81.34 for {Accuracy, Precision, Recall, F-Score} with 

respect to balanced NSL-KDD Dataset balanced by EGAN. 

Table 4 represents the Performance Analysis of Classifiers 

for each class in the NSL-KDD Dataset. From the 

experimental results, it is noticed that the proposed EGAN-

CCNN-BiLSTM classification algorithm gives higher 

performance ratio than existing algorithms.  

Figure 9. Performance Analysis of Classifiers for each class 

in the NSL-KDD dataset 
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Table 3. Performance analyses for CCNN-BiLSTM for various GANS 

Data Adversarial Sampling Accuracy Pre. Rec. F-Sc.

Original 

NSL-KDD Dataset 

GAN[14]-CCNN-BiLSTM 78.14 81.93 79.38 79.98 

DGAN[23]-CCNN-BiLSTM 78.48 82.27 79.72 80.32 

EGAN-CCNN-BiLSTM 81.18 84.62 82.01 82.89 

Table 4. Performance analysis of classifiers for each class in the NSL-KDD dataset 

Performance Factors Classifiers Normal DoS R2L Probe U2R 

Precision(%) CNN [22] 78.84 77.34 73.29 78.14 74.94 

CNN-BiLSTM [25] 79.18 77.68 73.63 78.48 75.28 

CCNN-BiLSTM 80.33 78.83 74.78 79.63 76.43 

Recall 

(%) 

CNN [22] 81.68 80.18 76.13 80.98 77.78 

CNN-BiLSTM [25] 82.02 80.52 76.47 81.32 78.12 

CCNN-BiLSTM 83.28 81.78 77.73 82.58 79.38 

F-Score

(%)

CNN [22] 80.28 78.78 74.73 79.58 76.38 

CNN-BiLSTM [25] 80.62 79.12 75.07 79.92 76.72 

CCNN-BiLSTM 81.88 80.38 76.33 81.18 77.98 

Figure 9 presents the Performance Analysis of Classifiers 

for each class in the NSL-KDD Dataset. From the 

experimental results, it is noticed that the proposed EGAN-

CCNN-BiLSTM classification algorithm achieves Precision 

rate 80.33, 78.83, 74.78, 79.63, 76.43, Recall rate 83.28, 81.78, 

77.73, 82.58, 79.38 and F-Score rate 81.88, 80.38,76.33, 81.18, 

77.98 for each class {Normal, Do’s, R2L, Probe and U2R} in 

NSL-KDD Dataset. 

Generally, all methods suffer from low classification 

accuracy when applied to U2R and R2L. For starters, training 

sets for attack types typically have very few examples. The 

classifiers place less emphasis on these types of assaults during 

training. Even though there is no silver bullet for this problem, 

the presented proposed approach significantly raises the 

detection rate on U2R.This demonstrates that the approach 

proposed in this paper successfully addresses the issues of a 

low minority detection rate caused by an uneven distribution 

of data. In light of this, our proposed approach addresses the 

difficulties of data imbalance in IDS deployment. The 

proposed work can be used in any real time network to find 

even less frequently occurred attacks. 

5. CONCLUSIONS

A robust intrusion detection system is proposed, which is 

performed based on the mixture of Adversarial Sampling and 

a DHN is presented and explained in this research. To begin, 

EGAN to build a balanced dataset. It can minimize the model's 

training time in half and, to some extent, overcome the 

problem of insufficient training from imbalanced data. In 

addition, for complicated, multivariate cyber threats, a 

network data preparation approach is devised, which is 

appropriate for the proposed model. Finally, categories the 

input data, CCNN and BiLSTM are used to construct a 

hierarchical network model. Using the exceptional properties 

of deep learning, the model collects features automatically 

through periodic multi-level learning. The NSL-KDD dataset 

is used in this research work for analyzing the performance of 

the proposed system. From the performance results, it is 

observed that the proposed EGAN-CCNN-BiLSTM algorithm 

gives a higher performance ratio than existing algorithms. 

However, a new class of attacks that generated by adversarial 

inputs not only misleading target DNNs but also deceiving 

their coupled interpretation models. An empirical evidence 

mechanism can be used to reduce the prediction-interpretation 

gap. 
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