
 

 
 
 

 
 

 
1. INTRODUCTION 

Due to its practical importance in many general science 
and engineering applications, Rayleigh–Bénard convection 
has been the subject of several theoretical, experimental, and 
numerical studies. Since, Rayleigh–Bénard convection 
presents the evolution from the stationary state to the fully 
developed turbulent regime with many different flow patterns 
and sequences of bifurcations; it is widely investigated as the 
problems of different transition mechanisms in 
hydrodynamics [1-2]. Most of the published works covering 
natural convection in enclosures that exist today can be 
classified into two categories: differentially heated enclosures 
[3-6] and enclosures heated from below and cooled from 
above (Rayleigh Bénard problems) [7]. Benchmark solutions 
related to differentially heated enclosures (first group) can be 
found in several numerical investigations [8]. However, 
numerical benchmark solutions related to the simplest case of 
2D Rayleigh-Bénard convection are less encountered in the 
literature. 

Some recent development in turbulent Rayleigh-Bénard 

convection was carried out by Lappa [9]. The case of two 

dimensional square enclosures was considered, the author 

began by the bifurcation and the symmetry breaking system. 

Four cases of possible symmetries were found (one cell, two 

horizontal cells, two vertical cells, and four cells). At the 

beginning of bifurcation, the one cell case was got. For the 

time dependence, other forms can appear following the 

oscillatory mode. Venturi et al. [10] studied the stochastic 

bifurcation and stability of the natural convection of 

Rayleigh-Bénard by different stochastic modelling 

approaches. They focused on fluid in the supercritical state 

and depicted the critical Rayleigh number at 2585 in a square 

cavity. They focused also on the sensibility of the initial 

conditions and bifurcation in steady state. 

To controlling the amplitude of bifurcated Mas et al. [11] 

studied the bifurcation and stability of the Boussinesq 

equations and the onset of the Rayleigh-Bénard convection. A 

nonlinear theory for this problem was established in this 

paper using a new concept of bifurcation called attractor 

bifurcation. Kao et al. [12] investigated the 2D Rayleigh-

Bénard convection using a simple LB model with the 

Boussinesq approximation, from the threshold of the primary 

instability with a theoretical value of critical Rayleigh number 

Rac = 1707:76 to the regime near the flow bifurcation to the 

secondary instability. Their results show that the periodic 

unsteady flows take place at certain Prandtl numbers with an 

appropriate Rayleigh number. Furthermore, the Nusselt 

number is found to be relatively insensitive to the Prandtl 

number in the ranges 0.71 < Pr < 70 and Ra < 105. Finally, 

the relationship between the Nusselt number and the Rayleigh 

number is also investigated.  Angeli et al. [13] considered a 

system of an air-filled square-sectioned 2D enclosure 

containing a horizontal heated cylinder. The results were 

shown in respect to the variation of Rayleigh number and the 

aspect ratio. The first bifurcation of the low-Ra fixed-point 

solution is tracked for each A-value, and chaotic flow features 

are detailed for the case A = 2.5. The analysis of global heat 

transfer data showed that Nu and Ra relationship is sensibly 

influenced by the transition mode associated with each value. 

A correlating equation for the average Nusselt number on the 
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ABSTRACT  
 
A numerical study of Rayleigh-Bénard convection in a rectangular cavity has been presented. The onset of 
natural convection and the transition from laminar to oscillatory convection were considered in this study. 
The finite volume method was used to solve numerically the governing equations of the phenomenon and the 
pressure-velocity coupling was matched by SIMPLER Algorithm of Patankar. This study was carried out for 
Rayleigh number varied from 103 to 106 in order to control the first value of critical Rayleigh number, Rac-1 

corresponding the onset of convection, and that for different aspect ratios of the cavity. The threshold 
transition regime of laminar-oscillatory convection is depicted by the second critical Rayleigh number Rac-2. 
Also, the different modes of bifurcation of convection were determined and discussed.   
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cylinder, derived for the subcritical case, was found to be 

valid up to slightly supercritical Ra value. Raji et al. [14] 

presented a numerical results of the natural convection in a 

square cavity filled with air, the temperature of the lower 

horizontal surface is kept constant(hot), while that of the 

upper surface is maintained at a cold temperature, the 

remaining upright walls are considered adiabatic. The 

Rayleigh number was considered in the range 103 < Ra < 

7×106. Three different solutions were obtained (single-cell 

flow, two-cell vertical flow and horizontal flow bi-cellular). 

Recently, Ghernaout et al. [15] presented the double 

diffusive natural convection in binary mixture under the effect 

of external magnetic field for steady and oscillatory state. The 

obtained results show a strong dependence of the structure of 

thermal and solutal effect to the buoyancy ratio and the 

oscillatory double diffusive flow occurs form a periodic time 

evolution where the phenomenon change around in each 

period time. A critical thermal Rayleigh number RaTCr and 

corresponding dominated frequency for the onset of 

oscillatory double diffusive convection were determined 

according the buoyancy ratio for different values of Hartman 

number (0, 25, 50, and 100). 

The aim of this study is to propose 2D numerical solutions 
related to the natural convection in enclosure. We have 
interested to the determination of the onset of natural 
convection and the transition from laminar to oscillatory 
convection in Rayleigh–Bénard configuration. Also, the 
different modes of bifurcation of convection were determined 
and discussed.   

2. MATHEMATICAL FORMULATION 

The cavity which is heated from below and cooled from 
above corresponds to the configuration of the Rayleigh-
Bénard dealing with the stability and motion of a fluid 
confined between two horizontal plates that are maintained at 
uniform temperatures (Fig. 1). We consider that the flow is 
incompressible and satisfied the Boussinseq approximation. 
To give the conservation equation in dimensionless form, we 
have used the dimensionless variables 
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coordinates, velocity components, the pressure, temperature 
and the time respectively. The dimensionless equation are 
given as follows: 
- Mass conservation equation 
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- X-momentum equation 
 

2 2

2 2

      
      

      

U U U P U U
U V

X Y X X Y
                     (2) 

 
- Y-momentum equation  
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- Energy equation 
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The flow parameters appear in Eqs(1-4) are: Rayleigh 

number and Prandtl number defined respectively as: 
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Figure 1. Schematic of Rayleigh-Bénard probleme. 

 
The initial and boundary conditions are given as follows: 
 

At 0  :  and 1                                                          (5a) 

 
At 0  : 

 

0Y  : 0 1 X , 0 U V ,  1                  (5b) 

 
1Y : 0 1 X , 0 U V , 0                    (5c) 

 
0,1X : 0 1 Y , 0 U V , 0  X        (5d) 

3. NUMERICAL SOLUTION 

Equations (1-4) associated with initial and boundary 
conditions Eqs(5a-d) have been solved by a finite-volume 
method [16]. The Quick scheme is used for discretization of 
convective and diffusive terms. The couple’s velocity-
pressure is solved by SIMPLER Algorithm. The obtained 
algebraic equations are solved by the line-by-line tri-diagonal 
matrix algorithm (TDMA). The convergence is declared 
when the maximum relative change between two consecutive 
iteration levels is less than 10-4. 

The grid independency of the numerical solution was 
established on a careful analysis of three grids (60×60), 
(80×80) and (100×100). We have used a refined grid in the 
lower and upper wall, due to the existence of a strong 
temperature and velocity gradients near this walls, refining 
value is equal to 1.05. We assume for this purpose that the 
case of a steady natural convection flow with Ra = 104. The 
Table 1 shows the grids effect on the deferent flow parameter 
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(Ѱ, U, V, and Nu).  In table 2, we have compared our results 
with those of Ben Cheikh [4]. A Good agreement has been 
obtained with two results. In addition, we found that our 
results are in accordance to those availibale in the literature 
(Venturi [10] and Gelfgat [17]). The latter used the same of 
grid size. Shishkina [18] determined the minimum number of 
nodes to have an accurate result. This grid is considered to 
show the best compromise between computational time and 
the results precision. 

 

Table 1. Flow Parameter: Ѱmax, Numoy, maxV , 
maxU ,for 

different grid size (Ra = 104) 

 

Grid size Ѱmax Numoy maxV  
maxU  

60 60 321.79 2.1 26.54 25.7 

80 80 316.61 2.02 27.81 26.07 

100 100  316.43 1.98 27.29 26.18 
 

Table 2. Comparison of our results, with those of Ben 
Cheikh et al. [4] for Ra =104 

 

Our results Results of  
[4] 

Relative 
error % 

maxV  maxU  maxV  maxU  maxV  maxU  

26.54 25.7 26.36 25.22 0.68 1.9 

4. RESULTS  

All results presented herein are given in the dimensionless 

form. Comparisons with other studies available in literature 

have been carried out. A comparison was made with 

Rayleigh-Bénard convection studied by Turan [19] and the 

Benchmark results [11] presented in Table 3. We can see a 

slight relative difference, less than 1.5%, between the two 

results. 

Another comparison was made with the works of Val 

Davis [8], presented on Table 4. In this case the heat gradient 

is horizontal. The results compared show a good agreement 

of the results with a small difference for all flow parameters. 

4.1 Onset of natural convection 

The heat convection mode is taking place by energy 
accumulation then the flow motion. The beginning of the 
convection in the case of Rayleigh-Bénard convection, then 
we will proceed to the consideration of the phenomenon by 
studying the threshold of the convection onset in the case of 
Rayleigh-Bénard convection, and then calculate the critical 
value of Rayleigh number in order to see the effect of the 
aspect ratio on this critical value. We will compare it with the 
theoretical result; and then make a close approach to the 
infinite cavity. Then and there, we will make the extension of 
the cavity.  

A linear stability analysis of the Boussinesq equations 
about the linearly conducting profile between two infinite 
horizontal no-slip plates shows that the critical Rayleigh 
number Rc-1 ≈ 1707.76. The value of Rc-1 is independent of 
the Prandtl number [11], this critical value is necessary to 
determinate the mode of heat transfer. It represents the 
threshold of the onset of convection and the first bifurcation 
flow structure. We examine the effect of the aspect ratio on 
the first Rayleigh critical number (Rac-1). Four aspect ratios of 

the Rayleigh-Bénard cavity were examined (A = 1, 2, 4 and 
8). In Figure 2, we presented the average Nusselt number 
along the hot wall in function of Rayleigh number. The value 
of Rac-1 for various aspect ratios was given in Table 5. We 
note that although the aspect ratio has an influence on the 
value of Rac-1, therefore the fluid motion is depending to the 
geometry of the cavity. In the literature, we found that for the 
infinite cavity case Rac-1 = 1708 but for a square cavity (A = 
1) the value of critical Rayleigh is much greater (Rac-1 = 
2585.01). In Table 6, we compared our results of Rac-1 for a 
different aspect ratio with the results of Gelfgat [17]. A good 
agreement was obtained.  

4.2 Onset of oscillatory natural convection 

At the beginning of the convection the flow is laminar and 
does not depend on time. But, an oscillating state appears 
later and the flow becomes time dependent. We will confirm 
that the oscillations are physical in origin, and then make an 
evaluation for different probes into the cavity.  

 

 
 

Figure 2. Average Nusselt Number in function of Rayleigh 

number for aspect ratios A = 1, 2, 4 and 8 

 
According to linear theory, a significant change in 

convection will take place as soon as the critical Rayleigh 
number is exceeded and Rayleigh-Bénard problem will 
become nonlinear. In our study we found that the time 
dependent flow begins at around 16 Rac-1, it is the oscillatory 
mode. The critical value of this mode is Rac2= 4.58×104. In 
order to view the physical oscillatory flow, we have chosen 
many arbitrary probes in the cavity. We note that the steady 
state is obtained up to the value of Ra = 4×104 (Figure 3a). 
However, past this value (Rac2 = 4.58×104), the flow becomes 
unsteady and not periodic (Figure 3b). 

 

Table 3. Comparison of our results with those of Turan 

[19] and Benchmark [11] 

 

Ra 
Our 
results 

Results of 
Turan [19] 

Benchmark 
Results [11] 

Relative 
difference with 
[19] (%) 

103 1 1 .0004 1 0.039 

104 2.2 2.1581 2.154 1.49 

105 3.9 3.9103 3.907 0.26 

106 6.4 6.3092 6.36 1.439 
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Table 4. Comparison of our results with those of Val Davis 
[8] 

 
Ra     [8] Nu Nu [8] 

103 1.171 1.170 1.118 1.117 

104 5.061 5.059 2.25 2.240 

105 9.147 9.059 4.53 4.505 

106 16.22 16.24 8.9 8.810 

 

Table 5. Critical Raleigh number for different aspect ratios 

 
Aspect ratio 1 2 4 8 

Rac-1 2 585.01 2 013.5 1810 1752 

 
To control the nature of the oscillations (physics and not 

numerical), a probe was fixed in our cavity with the same 
flow parameter and we reduced the time step to the half, the 
figure 4 shows that there is no influence of the time step on 
the oscillation amplitude. Consequently, these instabilities are 
physical and not numerical. Another test of oscillatory mode 
is the phase portrait as showed in figure 5. The phase 
portraits reflect the change of hydrodynamic and thermal 
parameters between them. So, for a periodic oscillatory 
regime at given point in the flow, these changes are closed 
circles that reflects the periodicity of the flow regime. 
Moreover, for no periodically oscillations these changes 
appear become the endpoints or other unordered structure.  
This technique has been used successfully by Ghernaout et al. 
[15]. 

 

 
(a) Ra = 4× 104 

 

 
(b) Rac2 = 4.58×104 

 

Figure 3. Time-dependent of dimensionless vertical velocity 
at the probe P1 for two value of Rayleigh number 

 
Oscillatory flow regime occurs for the critical value of 

Rayleigh number Ra = 4.58×104. We note that steady state is 
obtained up to the value of Rayleigh number Ra = 4×104. In 
order to illustrate the temporal evolution of the horizontal, 
vertical velocity component, and temperature, we chose the 

same probes (p1, p6, p7, p8) in the cavity to look into the 
field, and the results are shown in figures 6a-c. 

It is clear that these profiles are oscillatory and periodic, so 
the flow regime is unstable. We observe that the amplitude of 
these oscillations changes from one point to another in the 
enclosure. The difference in the degree of oscillation depends 
on the location of probes in relation to adiabatic walls to the 
hot wall and the cold wall. For example, probe 1 (Table 6) is 
in the middle of the enclosure, the probes 6, 7 and 8. Probes 
2, 3, 4 and 5 are used to explain the wave propagation flow. 

 

Table 6. Physical location of measurement probes 

 
 P1 P2 P3 P4 

X 0.5 0.75 0.75 0.25 

Y 0.5 0.75 0.25 0.25 

 P5 P6 P7 P8 

X 0.25 0.2 0.1 0.6 

Y 0.75 0.1 0.4 0.9 

 

 
 

Figure 4. Time dependent of vertical velocity component for 
two time setp in P1 (choosing arbitrary) and for  

Rac2 = 4.58 ×104 
 

 
 

Figure 5. Phase portrait of horizontal velocity component in 
function of temperature at point P2 (choosing arbitrary), for 

Rac2 = 4.58 ×104 
 

The amplitude of the temperature is greater on the hot wall, 
as the particles back into the wall; it means average amplitude 
of the adiabatic wall. But, there is small amplitude for the 
center point and the cold wall. It is clearly observed on the 
probes 2, 3, 4 and 5, the same amplitude and the same 
structure of the wave, except in phase shift that is due to the 
wave propagation.  
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(a) Dimensionless horizontal velocity component U 

 

 
(b) Dimensionless vertical velocity component V 
 

 
(c) Dimensionless temperature 

 

Figure 6. Time-dependent of dimensionless horizontal (a), 
vertical velocity component (b) and dimensionless 

temperature (c), in probes P1, P2, P3, P4, P5, P6, P7 and P8 
(choosing arbitrary), for Rac2 = 4,58× 104 

 
To better understand the oscillatory flow, we have 

presented the time-dependent flow on a period of time for 
Rac2 = 4.58×104 (Figure 7) and illustrated the structure of the 
flow by the streamlines evolution over time (τa, τb, τc, τd, τe 
and τf). It was found that the flow remains unstable and 
unicellular streamlines which looks oscillatory (Figures 8a-g). 
We can see two cells counter-rotating, the left one is bigger 
than the other, later they will have the same shape in the 
symmetry case. And then the right one becomes bigger. For 
the isotherms, we can see that the head of the mushroom 
move slowly between the left side and the central axe of the 
cavity. In the next time period it will move from the central 
axe to the right side (Figure 9a-g). 

 

 
 

Figure 7. Time-evolution of the vertical velocity component 
in τ =1, for Rac2 = 4.58 × 104 
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Figure 8. Streamlines of oscillatory convection (Rac2 = 4.58× 
104), at several time (τa, τb, τc, τd, τe and τf) 
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4.3 Flow bifurcation 

The bifurcation flow in the cavity and the different forms 
that may have: bifurcated cells, unicellular, two vertical cells, 
two horizontal cells are presented in this section. This study 
was done for values of Rac-1 up to 106. We can observe 
different bifurcation flow structures shown in Table 7. 

Figure 10 shows the logarithmic bifurcation diagram of 
Rayleigh-Bénard convection. The figure also summarizes the 
streamlines and isothermal line according the Rayleigh 
number. The first bifurcation is observed for Rac-1, which 
represents the transition from conduction to convection (onset 
of convection). This bifurcation is represented by the one 
principal cell in the middle of the cavity and with a clockwise 
flow direction, followed by another bifurcation that appears 
for the value of Rac-1= 1.9×104. In this case, the basic unit cell 
of our convection (UC) is divided in two vertical cells (2VC), 
one cell with a clockwise direction and the other has a 
counter-clockwise, to move on impulse isothermal lines. In 
this case the particles do not lie near the adiabatic wall but in 
the center of the hot wall and the cold particles come down 
almost close of the two adiabatic walls. It will create a 
mushroom shape. Rayleigh-Bénard convection is very 
sensitive area which has a lot of bifurcations, as a result the 
two cells bifurcation, at Ra = 5×104, another single 
bifurcation cell appears similar to the first. Finally, for the 
value Ra = 4.2×105, there are two cells. But in this case, they 
are horizontal (2HC), hot and cold particles; go up and down 
on one and the same adiabatic wall. 
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Figure 9. Isothermal lines of oscillatory convection (Rac2 = 
4.58× 104), at several time (τa, τb, τc, τd, τe and τf) 

 

Table 7. Flow Structure for different Rayleigh numbers 

 
Ra Cell number and 

disposition 
Flow regime 

[2.5×103, 1.8×104] Unicellular  
(UC) 

Steady state  

[1.9×104, 4.57×104] Two vertical cells 
(2VC) 

Steady state 

[4.58×104, 
4.99×104] 

Two vertical cells 
(2VC) 

periodic oscillatory 

[5×104, 4.1×105] Unicellular  
(UC) 

Steady state 

[4.2×105, 106] Two horizontal 
cells (2HC) 

periodic oscillatory 

 

 
 

Figure 10. Logarithmic bifurcation diagram of Rayleigh-
Bénard convection with streamlines and isothermal 

line 

5. CONCLUSIONS 

The study has been made for the Rayleigh number varied 
from 2.5×103 to 106 in order to define the Rac-1 corresponding 
to the onset of natural convection for different aspect ratios of 
the cavity. The transition threshold regime laminar-oscillatory 
convection which is defined by Rac2 is determined. In the 
range studied there were five modes of bifircation of 
Rayleigh-Bénard convection: unicellular (UC), two vertical 
cells (2VC) in steady state, two vertical cells (2VC) in 
oscillatory periodic state, and two horizontal cells (2HC) in 
oscillatory periodic state. 
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NOMENCLATURE 

A Aspect ratio 
g 
k 

gravitational acceleration, m.s-2 
thermal conductivity, W.m-1. K-1 

H   dimensional height of the enclosure  (m) 
Nu Nusselt number  
P  dimensionless pressure  
Pr Prandtl number 
Ra Rayleigh number 
Rac-1 first critical Rayleigh number (onset of 

convection) 
Rac-2 second critical Rayleigh number 

(oscillatory convective flow) 
t  dimensional time (s) 
T dimensional temperature (K) 
u,v  velocity components (m.s-1) 
U,V dimensionless velocity components  
x,y  dimensional coordinate space (m) 
X,Y dimensionless coordinate space  
W dimensional width of the enclosure (m) 

 

Greek symbols 
 

 

α thermal diffusivity (m2.s-1) 
β  coefficient of thermal expansion at 

constant pressure (K-1) 
λ thermal conductivity of the fluid (w.m-1K-) 
υ kinematics viscosity (m2.s-1) 
μ dynamic viscosity (kg.s-1.m-1) 
ρ density (kg.m3) 
τ dimensionless time 
θ dimensionless temperature  
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