
Nonlinear Radiative Flow over a Vertical Cylinder Moving with Nonlinear Velocity 

Tarek G. Emam 

Department of Mathematics, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21589, Saudi Arabia 

Corresponding Author Email: temam@uj.edu.sa

https://doi.org/10.18280/ijht.400413 ABSTRACT 

Received: 21 July 2022 

Accepted: 20 August 2022 

In this work, nonlinear radiative flow over a vertical cylinder moving with a nonlinear 

velocity is presented. The mathematical model of the problem is formulated to include 

many parameters such as the thermal radiation parameter, the nonlinearity parameter, the 

Prandtl number, etc. Mathematica program is built to numerically solve the system of 

ordinary differential equations together with boundary conditions that is derived from the 

partial differential equations governing the fluid motion through using suitable similarity 

transformations. Numerical results obtained for the case of linear cylinder velocity are 

compared with analytical results obtained for the same case to validate the numerical 

method used in this work. Profiles of the fluid velocity and fluid temperatures are 

introduced and discussed to explore different parameters effects. 
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1. INTRODUCTION

It is known that the flow of Newtonian and Non-Newtonian 

fluids has many industrial applications, so a lot of authors have 

presented many studies in this field for the last few decades. 

We can find a lot of applications to the problem of our concern 

which is the study of the boundary layer flow over a moving 

cylinder. One can find such applications in wire drawings as 

well as in plastic and metallurgy industries. 

Sakiadis [1] obtained a numerical solution to the problem of 

boundary layer flow over a moving cylinder using a similarity 

transformation. Rotte and Beek [2] have considered the heat 

transfer coefficients to a moving cylinder. Ganesan and 

Loganathan [3] have considered the problem of mass transfer 

effects and thermal radiation on flow of an incompressible 

viscous fluid past a moving vertical cylinder. Recently Ado-

Eldahab and Salem [4] have considered a flow past a moving 

cylinder and taken into consideration the heat transfer of non-

Newtonian power law fluid with chemical reaction and 

diffusion. Amkadni and Azzouzi [5] have given a study on the 

steady flow of an electrically conducting incompressible fluid 

over a moving vertical cylinder that is semi-infinite in the 

presence of a uniform transverse magnetic field. Due to its 

importance and valuable applications, the Study of 

hydrodynamic flow and the transfer of heat in a porous 

medium is very interesting. It has many applications in the 

process of controlling boundary layer flow such as the removal 

of heat from nuclear debris. 

Elbashbeshy et al. [6] have studied the problem of boundary 

layer flow over a horizontal stretching that is embedded in a 

porous medium. They have studied the effects of heat transfer, 

thermal radiation, and suction/injection. An Analytic solution 

of the problem of flow of a micropolar fluid over moving 

cylinder taking into consideration axisymmetric stagnation 

flow has been introduced by Rehman et al. [7] and Rasheed et 

al. [8] have presented a study that gives a good view of the 

electrically conducting boundary layer flow of viscoelastic 

incompressible nanofluid which flows due to a moving 

linearly stretching surface. More recent papers of the subject 

of boundary layer flow over a cylinder can be found in the 

references [9-16]. 

In this paper we investigate the problem of heat and mass 

transfer and flow over a cylinder moving vertically with 

nonlinear velocity in the presence of nonlinear thermal 

radiation.  

2. MATHEMATICAL MODEL AND METHOD OF

SOLUTIONS

We consider an incompressible steady laminar flow over a 

cylinder that is moving with nonlinear velocity. We consider 

that the cylinder is semi-infinite with radius R. The fluid 

properties are constant. Axial coordinate x is measured along 

the axis of the cylinder. The radial coordinate r is measured 

normal to the axis of the cylinder. The two axes intersect at the 

origin. The external velocity is 𝑢𝑒(𝑥) = 𝑢∞ (
𝑥

𝑙
)

𝑛

, 𝑢∞ > 0.

The equations govern the model are: 

𝜕(𝑟 𝑣)

𝜕𝑟
+

𝜕(𝑟𝑢)

𝜕𝑥
= 0 (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑟
=

𝜈

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑢

𝜕𝑟
) + 𝑢𝑒

𝑑 𝑢𝑒

𝑑𝑥
+

𝜈

Κ𝑝

(𝑢𝑒 − 𝑢) (2) 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑟
=

𝛼

𝑟
[

𝜕

𝜕𝑟
(𝑟

𝜕𝑇

𝜕𝑟
) −

1

𝜅

𝜕

𝜕𝑟
(𝑟 𝑞𝑟)] (3) 

Subject to the boundary conditions 

𝑢(𝑅, 𝑥) = 𝑢𝑤 (
𝑥

𝑙
)

𝑛

, 

𝑣(𝑅, 𝑥) = 0, lim
𝑟→∞

𝑢(𝑟, 𝑥) = 𝑢∞ (
𝑥

𝑙
)

𝑛 (4) 
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𝑇(𝑅, 𝑥) = 𝑇𝑤 , 𝑇 = 𝑇∞, 𝑎𝑠 𝑟 → ∞ (5) 

 

where, u and v stand for the velocity components along the x 

and r directions respectively, v is the kinematic viscosity, ρ is 

the fluid density, σ is the electrical conductivity of the fluid, 

l is the characteristic length, Kp is the porosity of the medium, 

α is the thermal diffusivity, κ is the thermal conductivity, and 

𝑞𝑟 =
−4 𝜎∗

3 𝑘∗

𝜕𝑇4

𝜕𝑟
 is the radiation heat flux in the radial direction, 

where σ* is the Stefan-Boltzmann constant and k* is the 

Rosseland radiation absorptivity. 

Defining a stream function 𝜓 as: 

 

𝑟 𝑢 =
𝜕𝜓

𝜕𝑟
, 𝑟 𝑣 = −

𝜕𝜓

𝜕𝑥
 (6) 

 

where, 

 

𝜓 = √𝜈 𝑅 (𝑛+1)𝑢∞ 

2
(

𝑥

𝑙
)

𝑛+1

 𝑅 𝑓(𝜂),  

𝜂 = √
𝑢∞ 

2𝜈 𝑅 (𝑛+1)
(

𝑥

𝑙
)

𝑛−1

 
1

𝑅
(𝑟2 − 𝑅2)  

(7) 

 

where, f  is the dimensionless stream function and η is the 

similarity variable which is also a dimentionless quantity. 

The dimensionless temperature θ(η) is defined as: 

 

𝜃(𝜂) =
𝑇−𝑇∞

𝑇𝑊−𝑇∞
  (8) 

 

Substituting from Eqns. (6)-(8) into Eqns. (3)-(5) we get the 

following system of ordinary differential equations: 

 
2

𝑛 + 1
(𝜂 𝑀 + 1)𝑓′′′(𝜂) 

+ (
2 𝑀

𝑛 + 1
+

𝜖(𝑛 + 1)

2
 𝑓(𝜂)) 𝑓′′(𝜂) + 𝑛 𝜖(1 − (𝑓′(𝜂))2)

− 𝐾(𝑓′(𝜂) − 1) = 0 

(9) 

 
𝜖(𝑛+1)𝑃𝑟

4
𝑓 𝜃′ +

𝑀

(𝑛+1)
(1 + 𝑅𝑑(1 + (𝜃𝑊 −

1)𝜃)3)𝜃′+
𝑀

(𝑛+1)
({1 + 𝑅𝑑(1 + (𝜃𝑊 − 1)𝜃)3}𝐶 𝜃′)′=0 

(10) 

 

subject to the boundary conditions: 

 

𝑓(0) = 0, 𝑓′(0) =
𝑢𝑊

𝑢∞

= 𝑎, 

𝑓′(∞) = 1, 𝜃(0) = 1, 𝜃(∞) = 0 
(11) 

 

where, 𝑀 = √
2 𝜈 (𝑛+1)

𝑢∞𝑅
(

𝑙

𝑥
)

𝑛−1

, 𝜖 =
𝑅

𝑙
, the permeability 

parameter 𝐾 =
𝜈 𝑅

𝐾𝑝𝑢∞
(

𝑙

𝑥
)

𝑛−1

, 𝑃𝑟  is the Prandtl number, the 

thermal radiation parameter 𝑅𝑑 =
16 𝜎∗𝑇∞

3  

3 𝑘∗ 𝜅
, 𝜃𝑊 =

𝑇𝑊

𝑇∞
, 𝐶 =

𝑟2

𝑀 𝑅2. 

Using the following assumptions: 

 

𝑦1 = 𝑓, 𝑦2 = 𝑓′, 𝑦3 = 𝑓′′, 𝑦4 = 𝜃, 𝑦5 = 𝜃′ 

 

The system of Eqns. (9)-(11) is transformed into a system 

of first order differential equations as follows: 

 

𝑦1
′ (𝜂) = 𝑦2(𝜂) (12) 

𝑦2
′ (𝜂) = 𝑦3(𝜂) (13) 

 
2

𝑛 + 1
(𝜂 𝑀 + 1)𝑦3

′ (𝜂 ) 

= − (
2 𝑀

𝑛 + 1
+

𝜖(𝑛 + 1)

2
 𝑦1(𝜂)) 𝑦3(𝜂) 

−𝑛𝜖(1 − 𝑦2
2(𝜂)) + 𝐾(𝑦2(𝜂) − 1) 

(14) 

 

𝑦4
′(𝜂) = 𝑦5(𝜂) (15) 

 

𝑀

(𝑛+1)
({1 + 𝑅𝑑(1 + (𝜃𝑊 − 1)𝑦4(𝜂))

3
} 𝐶 𝑦5(𝜂))

′

= 

−
𝑀

(𝑛 + 1)
(1 + 𝑅𝑑(1 + (𝜃𝑊 − 1)𝑦4(𝜂))

3
) 𝑦5(𝜂) 

−
𝜖(𝑛 + 1)𝑃𝑟

4
𝑦1(𝜂)𝑦5(𝜂) 

(16) 

 

Subject to the initial conditions: 

 

𝑦1(0) = 0, 𝑦2(0) = 𝑎, 𝑦3(0) = 𝑠, 𝑦4(0) = 1,
𝑦5(0) = 𝑢 

(17) 

 

The numerical values of the parameters are chosen in a 

suitable way. While 𝑠  and 𝑢  are priori unknown that are 

determined as a part of the solution. 

 

 

3. METHOD OF SOLUTIONS 

 

The software Mathematica is used to solve the problem 

numerically through defining a function 𝐹[𝑠, 𝑢]: =
𝑁𝐷𝑆𝑜𝑙𝑣𝑒[(12) − (17)] . The unknown values 𝑠  and 𝑢  are 

found through solving the equations 𝑦2(𝜂𝑚𝑎𝑥) =
1, 𝑦4(𝜂𝑚𝑎𝑥) = 0. A reasonable start value is given to 𝜂𝑚𝑎𝑥 

and then increased to reach 𝜂𝑚𝑎𝑥  for which the difference 

between two successive values of 𝑠 and those of 𝑢  are less 

than 107. Now the problem can be solved easily as an initial 

value problem using the function 𝑁𝐷𝑆𝑜𝑙𝑣𝑒 . See references 

[16-18]. 

To validate the numerical method used in this paper we 

consider the velocity Eq. (9) 

 

(𝜂 𝑀 + 1)𝑓′′′(𝜂) + (𝑀 +  𝜖 𝑓(𝜂))𝑓′′(𝜂) 

+ 𝜖(1 − (𝑓′(𝜂))2) − 𝐾(𝑓′(𝜂) − 1) = 0 
(18) 

 

With the boundary conditions: 

 

𝑓(0) = 0, 𝑓′(0) =
𝑢𝑊

𝑢∞

= 𝑎, 𝑓′(∞) = 1 (19) 

 

where, 𝑀 = √
4 𝜈

𝑢∞𝑅
 and 𝐾 =

𝜈 𝑅

𝐾𝑝𝑢∞
. 

The exact solution given in [17] is: 

 

𝑓(𝜂) = 𝜂 +
(𝑎 − 1)𝑀

𝜖
(1 − 𝑒

−𝜖𝜂
𝑀 ) (20) 

 

where, 

 

𝐾 = (
𝜖

𝑀
)

2

− 𝜖 (𝑎 + 2) (21) 

 

Now we solve Eq. (18) with the initial conditions (19) 
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numerically. The exact solutions and the numerical solutions 

are compared for some values of the considered parameters 

and exhibited in Table 1.  

 

Table 1. Values of 𝑓′′(0) where 𝑀 = 0.3, 𝜖 = 1 

 

𝒂 Exact Soln. 

[17] 

Num. Soln. Error |𝑓′′(0) − 1| 

1.1 
−

1

3
 

−0.3333333 2.722 × 10−12 

1.3 −1 −1.0000000 1.529 × 10−10 

1.5 
−

5

3
 

−1.6666667 8.240 × 10−13 

2 
−

10

3
 

−3.3333333 7.450 × 10−12 

 

The numerical calculated value of |𝑓′′(0) − 1| is given in 

column 4 of Table 1. Exact values should be zeroes as 𝜂𝑚𝑎𝑥 →
∞. So, one can assures that the numerical method used is valid. 

 

 

4. RESULTS AND DISCUSSIONS 

 

The solutions of the problem for different values of the 

considered parameters are given in this section. The variance 

of the fluid velocity 𝑓′(𝜂) and the fluid temperature θ(η) with 

𝜂 are plotted for different values of the parameters considered 

in the problem. As shown in Figures 1-5 the fluid velocity 

changes inversely with η till the fluid velocity takes the value 

of one which indicates the case of ambient fluid. Figure 1 

shows how the parameter 𝜖  affects the fluid velocity. 

Decreasing 𝜖 =
𝑅

𝑙
 results in increasing the fluid velocity. Such 

behavior is reasonable since the decrease of the cylinder radius 

𝑅  results in diminishing the cylinder surface area and 

consequently decreases the frictional force which in turn tend 

to increase the fluid velocity. The parameter 𝑛 effect on the 

fluid velocity is exhibited in Figure 2. It is found that the 

increase of 𝑛  results in decreasing the fluid velocity. To 

understand such behavior, we compare values of 𝑓′′(0) for 

different n values. The comparison shows that 𝑓′′(0) 

decreases with the increase of 𝑛  which implies such effect 

shown in Figure 2. Figure 3 ensures that the increase of the 

initial velocity parameter 𝑎 will give rise to the fluid velocity. 

Table 2 shows that −𝑓′′(0)  increases with increasing 𝐾 

which forces the fluid velocity to decrease as exhibited in 

Figure 4. From Figure 5 one can find that the fluid velocity 

also decreases with the increase of 𝑀 since −𝑓′′(0) increases 

with increasing 𝑀 as shown in Table 2. 

Figures 6-12 exhibit the variation of the fluid temperature 

similarity variable θ(η) which represents the difference 

between the fluid temperature and the ambient temperature 

with the similarity variable 𝜂. 

The behavior of the graphs as expected shows that θ(η) 

decreases with the increase of 𝜂 damping to zero. The effects 

of different parameters considered in this article on θ(η) are 

also shown in figures that require physical interpretation. As 

the initial velocity parameter 𝑎  increases the fluid velocity 

increases and consequently the cooling rate increases also so 

𝜃(𝜂) decrease which is shown clearly in Figure 6. Figure 7 

exhibits the variation of the fluid temperature θ(η) with the 

parameter 𝑛 . The increase of the parameter 𝑛  results in 

decreasing the fluid temperature. Since the increase of 𝑛 

increases the surface heat flux (−𝜃′(0)) as shown in Table 2. 

Increasing the value of the parameter 𝜖 =
𝑅

𝑙
 results in 

increasing the cylinder surface area which in turn tends to 

increase value of −𝜃′(0) and so the value of 𝜃(𝜂) decrease as 

verified well in Figure 8. 

The effect of Prandtl number 𝑃𝑟 on the fluid temperature 

θ(η) can be interpreted physically considering its definition 

( 𝑃𝑟 = 𝜈/𝛼  the ratio of momentum diffusivity (kinematic 

viscosity) to thermal diffusivity), the fluid thermal 

conductivity decreases with the increase of 𝑃𝑟 and hence the 

surface heat flux (see Table 2) which in turn reduces the fluid 

temperature. Such behavior is detectable in Figure 9. 

Figure 10 shows the effect of the thermal radiation 

parameter 𝑅𝑑 on the fluid temperature θ(η). To understand the 

variation of θ(η) with 𝑅𝑑 we notice that the Rossland radiation 

absorptivity 𝑘∗  decreases with the increase of 𝑅𝑑  and 

consequently the radiation heat flux 𝑞𝑟 =
−4 𝜎∗

3 𝑘∗

𝜕𝑇4

𝜕𝑟
 increases 

resulting in increasing the rate of radiative heat transferred to 

the fluid hence elevating the fluid temperature. As 𝜃𝑊 =
𝑇𝑊

𝑇∞
 

increases the wall temperature increases which in turn results 

in increasing the fluid temperature that can be noticed clearly 

upon investigating Figure 11. 

The variation of the fluid temperature θ(η) with the 

parameter M is exhibited in Figure 12. From Table 2 one can 

notice that as M increases the value of −𝜃′(0) decreases; From 

the definition of the parameter 1
2 ( 1)

( )
n

v n l
M

u R x

−



+
= , one 

can notice that as M increases the cylinder radius R decreases 

which in turn results in diminishing the cylinder surface area 

that is lower the surface heat flux −𝜃′(0)  which leads to 

increasing the fluid temperature which is shown in Figure 12. 

 

 
 

Figure 1. Variation of the fluid velocity 𝑓′(𝜂) with the 

parameter 𝜖, where 𝑀 = 0.2, 𝑎 = 1.2, 𝑛 = 0.3, 𝜃𝑊 =
1.1, 𝐾 = 0.4, Pr = 7.6, Rd = 1, 𝐶 = 2 

 

 
 

Figure 2. Variation of the fluid velocity 𝑓′(𝜂) with the 

parameter 𝑛, where 𝑀 = 0.2, 𝑎 = 1.2, 𝜖 = 1, 𝜃𝑊 = 2, 𝐾 =
1, Pr = 7.6, Rd = 1.2, 𝐶 = 2 
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Figure 3. Variation of the fluid velocity 𝑓′(𝜂) with the 

parameter 𝑎, where 𝑀 = 0.2, 𝑛 = 0.3, 𝜖 = 1, 𝜃𝑊 = 2, 𝐾 =
1, Pr = 6.2, Rd = 1.2, 𝐶 = 2 

 

 
 

Figure 4. Variation of the fluid velocity 𝑓′(𝜂) with the 

parameter 𝐾, where 𝑀 = 0.2, 𝑛 = 0.3, 𝜖 = 1, 𝜃𝑊 = 2, 𝑎 =
1.2, Pr = 7.6, Rd = 1, 𝐶 = 2 

 
 

Figure 5. Variation of the fluid velocity 𝑓′(𝜂) with the 

parameter 𝑀, where 𝐾 = 0.4, 𝑛 = 0.3, 𝜖 = 1, 𝜃𝑊 = 1.1, 𝑎 =
1.2, Pr = 7.6, Rd = 1, 𝐶 = 2 

 

 
 

Figure 6. Variation of the fluid temperature 𝜃(𝜂) with the 

parameter 𝑎, where 𝑀 = 0.2, 𝑛 = 0.3, 𝜖 = 1, 𝜃𝑊 = 2, Pr =
6.2, Rd = 1.2, 𝐶 = 2, 𝐾 = 1 

 

 
 

Figure 7. Variation of the fluid temperature 𝜃(𝜂) with the 

parameter 𝑛, where 𝑀 = 0.2, 𝑎 = 1.2, 𝜖 = 1, 𝜃𝑊 = 2, 𝑎 =
1.2, Pr = 7.6, Rd = 1.2, 𝐶 = 2, 𝐾 = 1 

 

 
 

Figure 8. Variation of the fluid temperature 𝜃(𝜂) with the 

parameter 𝜖, where 𝑀 = 0.2, 𝑎 = 1.2, 𝑛 = 0.3, 𝜃𝑊 =
1.1, 𝑎 = 1.2, Pr = 7.6, Rd = 1.2, 𝐶 = 2, 𝐾 = 0.4 

 

 
 

Figure 9. Variation of the fluid temperature 𝜃(𝜂) with the 

parameter 𝑃𝑟, where 𝑀 = 0.2, 𝑎 = 1.2, 𝑛 = 0.3, 𝜃𝑊 = 2, 𝑎 =
1.2, 𝜖 = 1, Rd = 1.2, 𝐶 = 2, 𝐾 = 1 

 

 
 

Figure 10. Variation of the fluid temperature 𝜃(𝜂) with the 

parameter 𝑅𝑑, where 𝑀 = 0.2, 𝑎 = 1.2, 𝑛 = 0.3, 𝜃𝑊 =
2, 𝑎 = 1.2, 𝜖 = 1, Pr = 7.6, 𝐶 = 2, 𝐾 = 1 

a=1.2,1.5,1.7,2

1 2 3 4 5

1.2

1.4

1.6

1.8

2.0

f

K=0.1,0.4,0.7,1

1 2 3 4 5

1.05

1.10

1.15

1.20

f

M 0.2, 0.4, 0.6, 0.8

1 2 3 4 5

1.05

1.10

1.15

1.20

f

a=1.2,1.5,1.7,2

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

n=0.3,0.7,1,2

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

=1,1.3,1.6,2

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Pr=0.71,1.38,4,7.6

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

Rd=1,1.5,1.7,2

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

964



 

 
 

Figure 11. Variation of the fluid temperature 𝜃(𝜂) with the 

parameter 𝜃𝑊, where 𝑀 = 0.2, 𝑎 = 1.2, 𝑛 = 0.3, 𝑅𝑑 =
1, 𝑎 = 1.2, 𝜖 = 1, Pr = 7.6, 𝐶 = 2, 𝐾 = 1 

 
 

Figure 12. Variation of the fluid temperature 𝜃(𝜂) with the 

parameter 𝑀, where 𝜃𝑊 = 1.1, 𝑎 = 1.2, 𝑛 = 0.3, 𝑅𝑑 =
1, 𝑎 = 1.2, 𝜖 = 1, Pr = 7.6, 𝐶 = 2, 𝐾 = 0.4 

 

Table 2. Values of −𝑓′′(0) and −𝜃′(0) for various values of the considered parameters 

 
𝑛 𝑀 𝜖 𝐾 𝑃𝑟 𝑅𝑑 𝜃𝑤 𝐶 𝑎 −𝑓′′(0) −𝜃′(0) 

0.5 

0.7 

0.1 

0.4 1.0 1.0 7.6 1.2 2.0 2.0 1.2 

0 .  2 9 4 0 7 6 

0 . 3 3 8 8 7 5 

0 . 4 0 5 7 7 4 

0 . 6 5 5 9 9 5 

0 . 7 1 7 1 5 9 
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5. CONCLUSIONS 

 

The problem of nonlinear radiative flow over a vertical 

cylinder moving with nonlinear velocity is studied. 

Mathematical model is introduced to formulate the problem 

including all parameters affecting the fluid velocity and 

temperature. The results obtained from the numerical method 

used to solve the problem was compared to those of exact 

solution in some special cases to show how accurate is the 

numerical method. The influences of the considered 

parameters are investigated and interpreted. 
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