
Classification of OME with Eardrum Otoendoscopic Images Using Hybrid-Based Deep 

Models, NCA, and Gaussian Method 

Harun Bingol 

Department of Software Engineering, Faculty of Engineering and Naturel Sciences, Malatya Turgut Ozal University, Malatya 

44200, Turkey 

Corresponding Author Email: harun.bingol@ozal.edu.tr

https://doi.org/10.18280/ts.390422 ABSTRACT 

Received: 12 May 2022 

Accepted: 5 August 2022 

Otitis media with effusion (OME) is defined as a middle ear disease that occurs with the 

accumulation of fluid in the posterior part of the eardrum, usually without any symptoms. 

When OME disease is not treated, some negative consequences arise that deeply affect the 

education, social and cultural life of the patient. OME disease is a difficult issue to diagnose 

by specialists. In this article, autoendoscopic images of the eardrum have been classified 

using deep learning methods to help specialists in the diagnosis of OME. In this study, a 

hybrid deep model based on artificial intelligence is proposed. In the proposed hybrid model, 

feature maps were obtained using Efficientnetb0 and Densenet201 architectures from both 

the original dataset and the improved dataset using the gaussian method. Then, the merging 

process was applied to these feature maps. Unnecessary features are eliminated by applying 

NCA dimension reduction to the combined feature map. The most valuable features obtained 

at the end of the optimization process are classified in different machine learning classifiers. 

The proposed model reached a very competitive accuracy value of 98.20% in the SVM 

classifier. 
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1. INTRODUCTION

OME is a serious disease that can cause hearing loss in 

children today [1]. OME is a disease in which acute infection 

is not observed, but fluid formation in the middle ear is 

observed [2]. Due to their nature, people feel the need to hear 

the sounds that emerge as a result of the events happening 

around them. OME causes speech disorders and hearing loss 

in patients. Speech impairment and hearing loss seriously 

affect the patient's life. For these reasons, the patient will start 

treatment earlier with the early diagnosis of OME. Thus, the 

patient will be able to integrate into social life. In addition, the 

patient will have a chance to receive better education. It is 

actually not a very correct approach to look at this situation 

only from the point of view of the patient. Every year, billions 

of dollars are spent on healthcare in the United States for the 

treatment of OME, and millions of boxes of antibiotics are 

used [3, 4]. Since this disease does not show severe symptoms, 

it is likely to be overlooked by experts [5]. In addition, when 

the disease is diagnosed, it is very important to follow up with 

certain periods in terms of the course of the disease. For the 

diagnosis of OME, otolaryngologists examine eardrum 

otoendoscopic images. For this disease, which is frequently 

observed in children and does not show any symptoms, other 

specialists such as pediatricians and practitioners can examine 

eardrum otoendoscopic images. However, these specialists are 

not as successful as otolaryngologists in diagnosing a disease 

related to the eardrum. Thus, erroneous diagnosis situations, 

which is an undesirable situation, may occur. Computer-aided 

systems should be used to prevent erroneous diagnosis 

situations that may arise in this way [6]. In recent years, 

computer-aided disease assessment applications have been 

widely used in the biomedical field [7-9]. 

1.1 Related works 

Some studies in the literature using deep learning methods 

related to the diagnosis and classification of OME are as 

follows; 

Wu et al., in their study, performed classification using 

Xception and MobilenetV2 deep architectures in the dataset 

they created from otoendoscopic images obtained from their 

own institutes and obtained accuracy values of 97.45% and 

95.72%, respectively. The researchers tested the pre-trained 

deep models they used in the study only on their own datasets 

[10]. 

Sundgaard et al. used deep learning techniques to detect 

otitis media on a dataset containing 1336 otoscopy images of 

the tympanic membrane in their study. They stated that the 

accuracy rate of classifying the tympanic membrane images of 

the model they proposed was 85%. The researchers could 

compare the model they proposed in the study with the CNN 

architectures accepted in the literature so that the performance 

of the proposed model could be seen more clearly. In this way, 

the performance of the proposed model could be observed 

more clearly [11]. 

Crowson et al. tried to classify OME with deep learning 

models using a total of 338 ear images, 126 normal and 212 

abnormal, taken from children for the diagnosis of OME. They 

used the Resnet34 architecture during the experiments. The 

researchers used the Resnet34 architecture in the study and 

obtained an accuracy value of 83.8%. Therefore, the accuracy 

value remained low [12]. 

Seneras et al. stated that they used two different deep 
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learning architectures in the detection of eardrum 

abnormalities in their study. They stated that the accuracy rate 

they obtained was 84.4% in the first architecture, Network1, 

and 82.6% in the second architecture, Network2 [13]. 

Eroglu and Yildirim in their study, tried to classify eardrum 

images using deep learning techniques. During the 

experiments, a dataset containing 3 classes, 1 of which was 

normal, was used. The accuracy rate of their proposed model 

in classifying OME was stated as 94.27% [5]. 

In their study, Khan et al. stated that they performed the 

classification process with 95% accuracy using deep learning 

methods on 2484 autoendoscopic images collected by them for 

the diagnosis of middle ear infection and eardrum. In this study, 

rotation and translation processes from data augmentation 

methods were applied. These methods are not suitable for use 

as they cause memorization of the proposed model [14]. 

Camalan et al. used deep learning methods in the 

classification of OME in their study. The dataset they used 

during the experiments consists of normal, effusion, and tube 

classes containing autoendoscopic images. The dataset 

contains a total of 454 images. They stated that the accuracy 

rate they obtained in the classification of OME was 80.58%. 

Achieved performance criteria can be increased with new 

models to be developed [15]. 
 

1.2 Contribution and Novelty 
 

In this study, it was aimed to diagnose OME by using 

autoendoscopic images of the eardrum. In the study, first of all, 

the images in the data set were improved using the Gaussian 

method. Then, feature maps were extracted from both the 

original dataset and the images in the enhanced dataset. 

Densenet201 and Efficientnetb0 architectures were used in 

feature extraction. The feature maps obtained using these two 

architectures are combined. In this way, different features of 

the same image are brought together. Therefore, the 

performance rates of the models have increased. 

NCA dimension reduction method was applied to the 

feature map obtained in the last step. Since the number of 

features is reduced with this optimization method, the model 

runs faster. Finally, the optimized feature map was classified 

in different classifiers. 
 

1.3 Organization of paper 
 

In the first part of the article, general information about 

OME disease and its treatment is given. In the second part, 

detailed information about the dataset used in the study, 

Gaussian image enhancement method, NCA size reduction 

method, proposed hybrid deep model, and machine learning 

classifiers are given. In the third section, experimental results 

are given. In the fourth chapter, the experimental results are 

evaluated. In the fifth and last chapter, the results of the study 

are discussed.  
 
 

2. THEORETICAL BACKGROUND 
 

The dataset used in the paper, CNN models, supervised 

learning methods, NCA size reduction method, Gaussian 

image enhancement method, and the model we proposed are 

explained. 
 

2.1 Dataset description 
 

A publicly available dataset was used during the 

experiments. This dataset contains a total of 454 eardrum 

images. There are 3 classes in total, effusion, tube, and normal 

in the dataset [15]. In Table 1, the number of images in each 

class is given. In addition, preprocessing steps were not carried 

out on the images in the dataset. Some tympanic images of the 

3 classes in the dataset are shown in Figure 1. 

 

 
 

Figure 1. Examples of endoscopic images in the dataset 

 

Table 1. The number of images in each class in the dataset 

 
Classes Effusion Tube Normal  

Number of images 179 96 179 

 

2.2 Deep models, Gaussian method, machine learning 

methods and NCA 

 

Deep learning techniques were used to classify the eardrum 

images effectively. Deep models have been used frequently in 

recent years, especially in the fields of biomedical image 

processing and disease diagnosis. Thanks to deep learning, 

time is saved and less expert knowledge is needed. It does not 

need expert knowledge while performing the classification 

operations of deep models. In other words, unlike classical 

machine learning methods, feature maps are automatically 

generated in deep learning techniques, and manual selection is 

not performed. In addition, machine learning methods, unlike 

deep learning methods, perform data preprocessing stages. 

Thus, it brings the additional cost to the system in terms of 

hardware and takes extra time. This is another advantage of 

deep learning methods. In this study, the Gaussian method was 

applied to the original dataset in order to increase the accuracy 

while classifying the eardrum images. Gaussian method is a 

method frequently used for image enhancement in the 

literature. Successful results were obtained in the classification 

of OME images by applying the Gaussian method to the 

original images in the dataset. The mathematical expression of 

the Gaussian method is shown in Eq. (1). Thanks to the 

improved dataset, the features to be obtained before the 

classification was obtained more efficiently. 

 

𝑃𝐺(𝑍) =
1

𝛼√2𝜋
𝑒
−
(𝑧−𝜇)2

2𝜎2  (1) 

 

The gray level, mean value and standard deviation values 

are shown in Eq. (1) as Z, 𝜇, and 𝜎, respectively. The original 

image with noise may have dark pixels in the bright regions 

and bright pixels in the dark regions. The Gaussian method can 

be applied to obtain the original image. Thus, the noise caused 

by some bit errors that may occur during the conversion of the 

data or during the transmission of the data with tools such as 

ADC (Analog Digital Converter) can be removed [16-18].  
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Both the original dataset and the Gauss-improved dataset 

were used together while extracting the feature maps of 

tympanic membrane images. Two different deep models were 

used as the base while creating the hybrid model we suggested. 

These models are the Efficientnetb0 and Densenet201 

architectures. 

The feature maps obtained from the developed hybrid 

method are classified by Support Vector Machines (SVM), 

which is one of the supervised machine learning methods [19, 

20]. Furthermore, to measure the performance values of other 

classifiers, Decision Trees (DT) [21], k-NearestNeighbors 

(KNN) [22], Naive Bayes (NB) [23], Subspace Ensemble (SE) 

[24], and Diskriminant Analysis (DA) [25] classifiers were 

used. NCA method was preferred for dimension reduction in 

feature maps obtained with deep models. Since feature maps 

have been reduced in size by the NCA, processing of these 

features will take less time. These features will also be easier 

to understand. The NCA approach will remove unnecessary 

features. 

In order to evaluate the performance metrics of the proposed 

hybrid model, firstly, 8 different pre-trained deep models were 

used to obtain results. The first of these is the Efficientnetb0 

architecture. The Efficientnetb0 architecture was proposed by 

Tan and Le in 2019. In this proposed model, it is stated that 

the depth as well as the width and resolution factors affect the 

performance. The biggest difference of this model from other 

models developed before it is that for the first time, width and 

resolution parameters are also taken into account [26]. The 

other architecture, MobilenetV2, was proposed by Howard et 

al. in 2017. This architecture is designed for use in mobile 

networks with lower data processing capability [27]. The 

InceptionV3 architecture was developed by Szegedy et al. This 

model roughly consists of three parts: the initial block, the 

convolution block, and the classifier block. Consisting of 315 

layers, this architecture takes input images in 299x299 size 

[28]. Alexnet architecture was developed in 2012 by 

Krizhevsky et al. It won the ImageNet competition held in 

2012, causing deep learning to attract the attention of the 

scientific World [29]. Resnet50 architecture, which was 

developed by He et al. in 2015, became the winner of the 

ImageNet competition with an error rate of 3.6%. Resnet50 

architecture, which has 26 million parameters, consists of 152 

layers [30]. Densenet201 architecture was developed by 

Huang et al. in 2017. The main advantage of this architecture 

is that this model is denser and more efficient as it uses short 

links between layers. This allowed the use of small filters [31]. 

Googlenet, on the other hand, won the ImageNet competition 

held in 2014 with an error rate of 6.66%. This architecture was 

the first to move away from the tradition of sequentially 

ordering layers. In this architecture, parallel layers are used in 

order to reduce the memory cost and reduce the probability of 

memorizing the network [32]. The last used Shufflenet 

architecture is designed for mobile devices with limited 

computing power, similar to the MobilenetV2 architecture. 

The error rate of this architecture is stated as 7.8% [33, 34]. 

 

2.3 Proposed model 

 

In the study, a hybrid model is proposed for the 

classification of OME images. In order to increase the 

performance of the proposed model, Gaussian image 

enhancement technique was applied to the OME images in the 

dataset. Then, separate feature maps were obtained by using 8 

different deep models to create the proposed hybrid model. 

Then, 2 models with the highest performance ratio among 

these models (Efficientnetb0 and Densenet201) were used as 

the base in the proposed hybrid model. Using these models, 

feature maps were obtained from both the original dataset and 

the improved dataset. These resulting feature maps were then 

combined. In this way, different features of the same image are 

brought together. 

NCA dimension reduction method was applied to the 

feature map that emerged after this step. The size of the feature 

map obtained after merging was 454x4000, while the size of 

the feature map obtained after the NCA size reduction method 

was 454x102. The resulting feature map was classified into 6 

different machine learning classifiers. The block diagram of 

the proposed model is shown in Figure 2. 
 

 
 

Figure 2. Block representation of the proposed model 
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When Figure 2 is examined, the "efficientnet-

b0|model|head|dense|MatMul" layer of this architecture is 

used while obtaining the feature map using the Efficientnetb0 

architecture. In Densenet201 architecture, the feature map was 

obtained from the "fc1000" layer. 

 

 

3. EXPERIMENTAL RESULTS 

 

In this study, constant coefficients were used in all 

experiments. The results are obtained using fixed parameters 

in both deep learning architectures and machine learning 

classifiers. Again in the experiments, the cross-validation 

coefficient was determined as 5. The experiments were carried 

out on a computer with an i5 processor, 16 GB RAM, 4 GB 

graphics card and Windows 10 operating system. Confusion 

matrices were used to measure the performance of both the 

proposed hybrid model and other deep models. The 

performances of the methods were compared using the metrics 

Precision (Pre), Sensitivity (Sens), F-score (F1), Accuracy 

(Acc), Specific (Spc), False Discovery Rate (FDR), False 

Negative Rate (FNR), False Positive Rate (FPR). Effusion, 

normal, and tube classes in the confusion matrix are 

represented as 1, 2, and 3 respectively. 

 

3.1 Results of pre-trained deep models 

 

Eight different pre-trained state-of-the-art models were used 

in this study. It is very important to use the same parameters 

in all experiments in order to compare the results in the most 

accurate way. In this respect, we used the same parameters in 

the experiments. Table 2 lists the training parameters 

employed in these state-of-the-art models. 

 

Table 2. Training parameters used in state-of-the-art methods 

 

Environment 
Max 

Epochs 

Mini 

Batch 

Size 

Learn 

Rate 
Optimization 

Matlab 2021b 5 8 1e-4 Sgdm 

 

The dataset is divided into 20% testing and 80% training. 

The values of the accuracy obtained from the deep 

architectures are listed in Table 3. 

 

Table 3. Accuracy values of state-of-the-art models 

 
Efficientnetb0 InceptionV3 MobilenetV2 Resnet50 

85.71% 78.02% 74.73% 76.92% 

Alexnet Googlenet Densenet201 Shufflenet 

84.62% 79.12% 81.32% 80.22% 

 

Among the architectures utilized in this study, the highest 

value for the accuracy of 85.71% was achieved in the 

Efficientnetb0 model. This architecture was followed by 

Alexnet 84.62%, Densenet201 81.32%, Shufflenet 80.22%, 

Googlenet 76.12%, InceptionV3 78.02%, Resnet50 76.92% 

and MobilenetV2 with 74.73%, respectively. The 

MobilenetV2 architecture has the lowest accuracy value of the 

pre-trained models employed in the study, with 74.73 percent. 

Table 4 shows the confusion matrices obtained from pre-

trained deep models. 

When the confusion matrices acquired from the networks 

trained with state-of-the-art architectures are examined, the 

Efficientnetb0 is found to be the best model, with an accuracy 

of 85.71 percent. While the Efficientnetb0 model successfully 

recognized 78 of the 91 test data, it wrongly classified 13 of 

them. 

Table 4. Confusion matrices get from state-of-the-art architectures 

 
Efficientnetb0 MobilenetV2 InceptionV3 Alexnet 

 

1 36   

2 10 26  

3 3  16 

 1 2 3 

 

1 33 1 2 

2 12 24  

3 8  11 

 1 2 3 

 

1 34 1 1 

2 12 24  

3 5 1 13 

 1 2 3 

 

1 32 4  

2 7 29  

3 3  16 

 1 2 3 

Resnet50 Densenet201 Googlenet Shufflenet 
 

1 31 2 3 

2 11 25  

3 5  14 

 1 2 3 

 

1 36   

2 10 26  

3 6 1 12 

 1 2 3 

 

1 35 1  

2 11 25  

3 7  12 

 1 2 3 

 

1 34 1 1 

2 10 26  

3 5 1 13 

 1 2 3 

 

Table 5. Deep models + NCA + supervised learning methods 

 
Deep Models /  

Feature Counts 

Accuracy Values obtained from the Algorithms (%) 

DT DA NB SVM KNN SE 

Efficientnetb0(39) 79.50 90.50 88.50 92.50 89.20 90.10 

MobilenetV2(77) 70.70 88.50 86.60 89.90 90.50 90.30 

InceptionV3(31) 72.00 87.40 85.50 89.40 88.30 87.00 

Alexnet (42) 74.70 88.30 85.70 89.20 86.30 88.10 

Resnet50(43) 72.90 85.20 89.20 90.50 89.00 88.80 

Densenet201(107) 74.90 89.90 88.10 91.00 89.60 89.60 

Googlenet(112) 72.20 84.40 84.80 88.10 88.30 86.80 

Shufflenet(147) 73.60 86.10 85.00 89.40 87.20 89.60 
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Effusion was class in which the best results are obtained 

from the Efficientnetb0 model with an accuracy of 100 percent. 

All 36 Effusion images were succesfully classified by the 

Efficientnetb0 model. The Efficientnetb0 model succesfully 

classified 26 of 36 Normal images, and incorrectly classified 

10 as Effusion. Finally, 16 of the 19 Tube images were 

correctly classified and 3 of Tube images were incorrectly 

classfied as Effusion by the the Efficientnetb0 model. 

Furthermore, Confusion Matrices obtained using pre-

trained deep architectures show that, MobilenetV2 seems the 

worst model with 74.73% accuracy. 68 of 91 test data were 

correctly classified and 23 data were incorrectly classified by 

MobilenetV2. MobilenetV2 model showed better performance 

in Effusion class. The MobilenetV2 architecture correctly 

classified 33 of the 36 Effusion images, , incorrectly predicted 

1 as normal and 2 as tube. MobilenetV2 architecture correctly 

classified 24 of 36 images in Normal class and classified 12 of 

them as Effusion. The MobilenetV2 model successfully 

classified 11 of the 19 images belonging to Tube class and 

misclassified 8 of these images as Effusion.  

It is seen in the fine-tuning tests performed on the same 

dataset and using fixed parameters that the classification 

performances of deep models may differ. 
 

3.2 NCA, deep architecture, and feature extraction 
 

Feature maps were obtained with pre-trained deep 

architectures in the second step of the study. NCA algorithm 

optimized the obtained feature maps and they were classified 

in traditional supervised learning methods. Default values for 

the parameters are utilized for feature selection in the NCA 

algorithm. For estimating the feature weights, Stochastic 

Gradient Descent (SGD) was chosen as the solvent. The value 

of the Verbosity Level Indicator (Verbose) is chosen as 1 for 

rapid results. The size of the feature maps get using state-of-

the-arts models is 454x1000 in each model. When the NCA 

algorithm is separately performed to the extracted features, the 

obtained new feature map size is 454x39 in Efficientnetb0, 

454x77 in MobilenetV2, 454x31 in InceptionV3, 454x42 in 

Alexnet, 454x43 in Resnet50, 454x107 in Densenet201, 

454x112 in Googlenet and 454x147 in Shufflenet. Table 5 lists 

the accuracy values obtained from deep models. 

The highest values for the accuracy metric were achieved 

by the Densenet201 and Efficientnetb0 architectures, as 

demonstrated in Table 5. Thus, these two architectural models 

are utilized in the proposed methodology. Confusion matrices 

obtained from two architectures are listed in Table 6. 
 

Table 6. Confusion matrices 
 

Densenet201+NCA+SVM Efficiennetb0+NCA+SVM 

1 166 12 1 

2 21 158  

3 7  89 

 1 2 3 
 

1 162 16 1 

2 8 171  

3 8 1 87 

 1 2 3 
 

 

The confusion matrices in Table 6 and accuracy rates listed 

in Table 5 show that the maximum accuracy value is 92.50% 

for the classification of the features extracted with the 

Efficientnetb0 model. The Efficientnetb0 architecture 

classified 162 of the 179 Effusion images correctly, while 

misclassifying 16 as Normal class and 1 as Tube class. The 

Efficientnetb0 architecture classified 171 of the 179 Normal 

class images correctly, while it misclassified 8 of them as 

Effusion class. While the Efficientnetb0 model correctly 

classified 87 of the 96 Tube class images, it misclassified 8 as 

Effusion class and 1 as Normal class. 

In addition, Table 5 shows that Densenet201 reached the 

second-highest accuracy rate with 91%. When Table 6 is 

examined, Densenet201 architecture correctly classified 166 

of 179 Effusion images, while it misclassified 12 as Normal 

class and 1 as Tube class. Again, while this architecture 

correctly classified 158 of 179 Normal class images, 21 of 

them were incorrectly classified as Effusion class. While the 

Densenet201 architecture correctly classified 89 of the 96 

Tube class images, 7 of them were incorrectly classified as 

Effusion class. 
 

3.3 Proposed model 
 

Feature maps were obtained using Densenet201 and 

Efficientnetb0 architectures from both the original dataset and 

the dataset, which was improved using the Gaussian method. 

Then, these features were combined and a feature map was 

obtained. The size of the feature map formed after merging 

was 454x4000. For eliminating the worthless features from the 

feature map, NCA algorithm was utilized. Default parameter 

values were used for the NCA algorithm. SGD was chosen as 

the solvent and value for Verbose was selected as 1. The new 

feature map size formed after the optimization is 454x102. 

Table 7 lists the accuracy values obtained from traditional 

supervised learning algorithms in the proposed model. 

The features extracted from the proposed hybrid model are 

classified by different supervised intelligent classifaction 

methods. SVM (Quadratic Version) achieved the best results 

with an accuracy value of 98.20%. DTs seems the worst 

algorithm with an accuracy value with 83.90% for this task. 

SVM, SE, and DA seem the most successfull classifiers 

methods. Table 8 lists the confusion matrices obtained from 

the used supervised learning methods. 

SVM, SE, and DA algorithms seem the best succesfull 

methods with the highest accuracy rates obtained from the 

proposed model. For example, SVM method succescfully 

classified 446 of 454 otoendoscopic images of the eardrum 

while insuccesfully classified the rest. Performance metrics of 

the proposed model are listed in Table 9. 

When the obtained values for the performance metrics data 

are checked, it seems that the only accuracy value is not an 

appropirate for performance comparison. While the highest 

Sensitivity value with 100% was obtained in the Tube class, 

the highest accuracy value with 98.32% was obtained in the 

Effusion class and Normal class by the proposed model. Thus, 

the proposed model in this study achieved the best success for 

diagnosing otoendoscopic images of the eardrum. Therefore, 

it is thought that the proposed model can be used in the 

diagnosis of tympanic otoendoscopic images. 

Eight deep network architectures and six intelligent 

supervised classifiers were used for classification of the 

tympanic otoendoscopic images. The model proposed in this 

study seems to achieve the highest values for the accuracy. 

Values for the accuracy metric obtained from deep neural 

architecture and intelligent supervised learning methods are 

listed in Table 10. 
 

Table 7. Accuracy values obtained from the proposed model 
 

 Accuracy Values Obtained from the 

Algorithms (%) 

DT DA NB SVM KNN SE 

Proposed 

Model 

83.90 97.80 97.60 98.20 97.40 98.00 
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Table 8. Confusion matrices obtained from the proposed model 

 
Proposed method + SVM Proposed method + SE Proposed method + DA 

1 176 3  

2 3 176  

3 2  94 

 1 2 3 
 

1 173 6  

2 1 178  

3 2  94 

 1 2 3 
 

1 173 6  

2 2 177  

3 2  94 

 1 2 3 
 

 

Table 9. Performance metric values of the proposed model 

 

 Acc.(%) Spc.(%) Sens.(%) Pre.(%) FPR(%) F1(%) FNR(%) FDR(%) 

Effusion 98.32 98.90 97.23 98.32 1.09 97.77 2.76 1.67 

Normal 98.32 98.90 98.32 98.32 1.09 98.32 1.67 1.67 

Tube 97.92 99.44 100.00 97.91 0.55 98.94 0.00 2.08 

 

Table 10. Values of the performance metrics obtained from the deep architectures 

 
 Softmax(%) DA(%) DT(%) KNN(%) NB(%) SVM(%) SE(%) 

Efficientnetb0 85.71 90.50 79.50 89.20 88.50 92.50 90.10 

MobilenetV2 74.73 88.50 70.70 90.50 86.60 89.90 90.30 

InceptionV3 78.02 87.40 72.00 88.30 85.50 89.40 87.00 

Alexnet 84.62 88.30 74.70 86.30 85.70 89.20 88.10 

Resnet50 76.92 85.20 72.90 89.00 89.20 90.50 88.80 

Densenet201 81.32 89.90 74.90 89.60 88.10 91.00 89.60 

Googlenet 79.12 84.40 72.20 88.30 84.80 88.10 86.80 

Shufflenet 80.22 86.10 73.60 87.20 85.00 89.40 89.60 

Proposed Model - 97.80 83.90 97.40 97.60 98.20 98.00 

 

Table 11. Studies on classification of eardrum images 

 
Reference Method Number of 

Images 

Number of 

Class 

Acc(%) 

Wu et al. [10]  Xception 12203 3 97.45 

 MobilenetV2 12203 3 95.72 

Sundgaard et al. [11] InceptionV3 1336 3 85.00 

Crowson et al. [12] Resnet34 338 2 83.80 

Seneras et al. [13] InceptionV3 409 2 84.40 

Eroglu and Yildirim [5] (Efficientnetb0 + Darknet53 + Densenet201) + NCA + SVM 454 3 94.27 

Khan et al. [14] Grad-CAM+Densenet161 2484 3 95.00 

Camalan et al. [15] Inception-Resnet-V2 454 3 80.58 

Proposed Model (Efficientnetb0 + Densenet201) + Gaussian Method + NCA 

+ SVM 
454 3 98.20 

 

 

4. DISCUSSION 

 

Acute Otitis Media (AOM) is defined as a fluid collection 

in the middle ear, in other words, mucositis [35, 36]. It has 

been reported that effusions lasting more than 4 months are 

seen in 1/3 of children with AOM. Thus, the Otitis Media with 

Effusion (OME) situation arises [37]. OME is usually seen in 

children aged 7 months to 6 years without any signs of acute 

infection [38]. OME can cause deafness in children if left 

untreated. Long-term deafness in children also brings speech 

disorders. In some cases, OME can cause pain due to pressure 

in the middle ear of the patient [39]. Since this disease does 

not show serious symptoms, it can sometimes be overlooked 

by specialists. Surgical methods are generally used in the 

treatment of OME. The fluid collected in the middle ear is 

drained by applying myringotomy to the eardrum, that is, by 

opening a small hole. Since this hole opened in the eardrum 

will close very early, a tympanostomy tube is placed in this 

hole. The main task of the tube is to ventilate the middle ear 

cavity by preventing the opening of the hole from closing. 

Another benefit of tympanostomy tube insertion in OME cases 

is to contribute to the development of mastoid cells. It has also 

been demonstrated by some studies that mastoid cell size is 

effective on OME prognosis [40-42]. Early diagnosis of OME 

is extremely important. When otolaryngologists examine 

otoendoscopic images, they can diagnose approximately 70% 

correctly. In addition, pediatricians can make an accurate 

diagnosis of approximately 50%. General practitioners can 

diagnose OME with approximately 45% accuracy [5]. 

Deep learning methods have been widely used in the 

classification of disease images in the biomedical field, 

especially in the last 10 years [43, 44]. Classification of 

tympanic autoendoscopic images is not always easy. Dirty 

middle ear or thick eardrum complicates the classification 

process. It is known that computer-aided systems are 

extremely beneficial to overcome all these negativities. 

When Table 11 is examined, an accuracy value of 98.20% 

was obtained in the hybrid model we proposed. It will be seen 

that this accuracy value is a very competitive value when 

compared with the literature. The results of the experiments 

show that the hybrid deep model we have proposed can be 

used in the classification of otoendoscopic images of the 

eardrum. 

The main benefit of this study is the detection of OME with 

the help of computer-aided systems in rural areas where there 

are not enough otolaryngologists. Thanks to the proposed 
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hybrid model, the workload of otolaryngologists and other 

medical professionals will be alleviated. In this way, 

otolaryngologists will be able to serve more patients. Thanks 

to the proposed hybrid model, the probability of success of the 

treatment process will increase since patients will be 

diagnosed earlier. 

There are some limitations of this study. The most important 

of these is that the number of images in the dataset is not 

enough. In our future studies, it is among our aims to include 

more experts on OME in the study team and to work with 

eardrum images of more patients from different regions. 

 
 

5. CONCLUSION 

 

Because OME is a prevalent disease that can lead to serious 

problems if left untreated, it’s critical to get it diagnosed and 

treated as soon as possible. In addition, during the patient’s 

follow-up, the eardrum and tube should be examined. The 

variations in interpretation between doctors will be avoided 

with the model we have provided for the diagnosis and follow-

up of endoscopic pictures of the eardrum, and the patient’s 

treatment process will begin sooner. 
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