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Deep convolutional neural networks (CNNs) have presented amazing performance in the 

task of semantic segmentation. However, the network model is complex, the training time 

is prolonged, the semantic segmentation accuracy is not high and the real-time performance 

is not good, so it is difficult to be directly used in the semantic segmentation of road 

environment images of autonomous vehicles. As one of the three models of deep learning, 

the auto-encoder (AE) has powerful data learning and feature extracting capabilities from 

the raw data itself. In this study, the network architecture of auto-encoder and convolutional 

auto-encoder (CAE) is improved, supervised learning auto-encoder and improved 

convolutional auto-encoder are proposed, and a hybrid convolutional auto-encoder model is 

constructed by combining them. It can extract low-dimensional abstract features of road 

environment images by using convolution layers and pooling layers in front of the network, 

and then supervised learning auto-encoder are used to enhance and express semantic 

segmentation features, and finally de-convolution layers and un-pooling layers are used to 

generate semantic segmentation results. The hybrid convolutional auto-encoder model 

proposed in this paper not only contains encoding and decoding parts which are used in the 

common semantic segmentation models, but also adds semantic feature enhancing and 

representing parts, so that the network which has fewer convolutional and pooling layers 

can still achieve better semantic segmentation effects. Compared to the semantic 

segmentation based on convolutional neural networks, the hybrid convolutional auto-

encoder has fewer network layers, fewer network parameters, and simpler network training. 

We evaluated our proposed method on Camvid and Cityscapes, which are standard 

benchmarks for semantic segmentation, and it proved to have a better semantic segmentation 

effect and good real-time performance. 
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1. INTRODUCTION

With the rise of artificial intelligence, the research of 

autonomous vehicles has become a hot research topic of major 

scientific research institutions and automobile manufacturers 

in recent years. Visual perception, as an extremely important 

perception method in the environment perception of 

autonomous vehicles, uses on-board cameras to obtain the 

image information of the surrounding environment of the 

vehicle, and then perceives the driving environment of the 

vehicle through image analysis and recognition technology. In 

the application of autonomous vehicles, the semantic 

segmentation of road environment images is mainly used to 

achieve the basic semantic description of road scenes, 

providing necessary environmental information for the 

understanding of the scene of autonomous vehicles, so as to 

ensure the safety of autonomous vehicles. 

The deep convolution neural networks are constructed to 

complete semantic segmentation in the existing road 

environment image semantic segmentation framework [1-6]. 

The layer number of the networks is as high as dozens or even 

hundreds of layers, a few days or even weeks are still needed 

to train the networks even on the high performance GPU, and 

the training is complex and difficult. In addition, the deep 

convolution and pooling operations in the full convolutional 

neural network will lose the location information and the 

relevant information between different regions in the road 

environment image, which is not conducive to solving the dual 

tasks of accurate classification and accurate positioning that 

must be completed in semantic segmentation, and affects the 

accuracy of semantic segmentation. For this purpose, 

researchers [7-10] improved the feature extraction capability 

of the network by improving convolution and pooling methods 

in deep architecture, and generated more accurate semantic 

segmentation results through multi-scale convolution, feature 

fusion, pyramid pooling and other methods. These improved 

methods not only improve the performance of network 

semantic segmentation, but also make the semantic 

segmentation model more complex, increase the difficulty of 

network training and affect the real-time performance of 

model running. Although researchers improve the real-time 

performance of semantic segmentation by streamlining the 

network or designing some lightweight network models [11-

15], it is difficult to guarantee the accuracy of semantic 
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segmentation at the same time. 

As one of the three models of deep learning, auto-encoder 

[16] has outstanding feature extraction and data reconstruction 

capabilities. Auto-encoders contain rich structural forms, such 

as sparse auto-encoders [17], denoising auto-encoders [18, 19], 

convolutional auto-encoders [20], stacked auto-encoders, etc. 

These different structural forms have different characteristics, 

which make them have different feature learning capabilities. 

Using auto-encoder to extract effective semantic features of 

road environment image can provide more information for 

semantic segmentation of road environment image. 

A semantic segmentation method for road environment 

image based on hybrid convolutional auto-encoder is put 

forward in this paper. Due to the introduction of semantic 

feature enhancement and expression layer, the network can 

still have better semantic feature extraction ability and achieve 

better semantic segmentation accuracy even with fewer 

convolution and pooling layers. 

The rest of this paper is organized as follows. Section 2 

reviews recent semantic segmentation methods. Section 3 

introduces our methods of semantic segmentation. 

Experiments are discussed and evaluated in Section 4. A 

summary in Section 5 concludes this paper. 

 

 

2. RELATED WORK 

 

Since deep learning has made great achievements in 

multiple tasks in the field of computer vision, deep neural 

networks are used to complete image semantic segmentation 

in most semantic segmentation methods. 

The FCN [3] network proposed in 2015 was successfully 

applied to image semantic segmentation by replacing the full 

connection layers of CNN with the convolution layers, and 

realized pixel-level prediction through end-to-end training, 

establishing the subsequent semantic segmentation framework. 

Segnet [4] network constructed a deep convolution encoder-

decoder architecture, and verified that the network improved 

the segmentation accuracy and achieved pixel-level semantic 

segmentation in CamVid [21] and KITTI [22] semantic 

segmentation data sets of road environment. Since then, many 

semantic segmentation networks, such as PSPnet [8] and 

RefineNet [9], are mostly based on encoder-decoder structure. 

Current approaches for semantic segmentation focus on 

optimizing the encoders that extract features and the decoders 

that outputs semantic segmentation results to improve 

segmentation accuracy. Such large models cannot be directly 

used in the autonomous vehicles due to the limited GPU 

memory. Further, most of these approaches are relatively 

complex and therefore do not meet the real-time requirements 

of autonomous vehicles. Therefore, improving the existing 

semantic segmentation model to have good real-time has 

become a research focus of semantic segmentation of road 

environment images. RTSEG [13] designed two different 

networks, Skipnet-Mobilenet and UNet-Mobilenet, to reduce 

the computing cost of network operation and built a real-time 

semantic segmentation network for road environment images. 

Similarly, E-net [14] and ERFnet [15] have also simplified and 

modified existing semantic segmentation networks to meet 

real-time requirements. 

The deep neural networks are trained in the above methods 

with massive data and the network models are tremendous. 

Even if they run on high-performance GPUs, the training time 

is very prolonged, which affects the application of road images 

semantic segmentation. 

Auto-encoder is a method of data dimension compression 

and feature expression based on unsupervised learning. In 

essence, it is a neural network to reconstruct input data and 

express features. Hamza et al. [23-25] shows that auto-encoder 

has strong feature extraction capability and rich structural 

forms, and it consists of encoding and decoding parts, which 

is similar to the semantic segmentation method based on full 

convolutional neural network framework. However, the auto-

encoder continuously abstracts features through identity 

mapping to obtain a simple and effective representation of 

image features. Obviously, this unsupervised self-learning 

method cannot be used directly to complete semantic 

segmentation. However, by adding a supervised layer to the 

auto-encoder, the supervised learning AE can be forced to 

learn semantic features which are beneficial to semantic 

segmentation to complete semantic segmentation task. In Song 

et al. [26], the single-layer supervised learning sparse auto-

encoder and supervised learning denoising auto-encoder 

models are stacked to form a supervised learning deep auto-

encoder model to complete the semantic segmentation task of 

road environment images. This method shows powerful 

feature extraction and reorganization ability of the supervised 

learning AE, but on account of the connection structure, the 

computing data is too big, the memory needed in the model is 

also too big. So the images are down-sampled to reduce the 

data dimension in the training process. However, the down-

sampling could cause the loss of original data and affect the 

accuracy of segmentation.  

In order to solve the problem, a hybrid convolutional auto-

encoder model is proposed to complete semantic segmentation. 

In this method, the supervised learning auto-encoder is 

combined with the convolutional auto-encoder model, and a 

hybrid convolutional auto-encoder model is constructed, 

forming a semantic segmentation method for high-precision 

images. It can extract low-dimensional abstract features of 

road environment images by using convolutional layer and 

pooling layer in front of network, and supervised learning 

auto-encoder are used to enhance and express semantic 

segmentation features, and finally de-convolutional layers and 

un-pooling layers are used to generate semantic segmentation 

results. This network architecture can avoid the information 

loss caused by excessive convolutional layers and pooling 

layers in the original full convolutional neural network 

framework. Because the semantic feature enhancement and 

expression layer are introduced into the network, the semantic 

feature extraction ability can be enhanced when there are 

fewer convolutional layers and pooling layers in the network, 

and better semantic segmentation accuracy is achieved. 

 

 

3. THE PROPOSED METHOD 

 

3.1 Supervised learning auto-encoder 

 

In order to utilize auto-encoder directly for semantic 

segmentation, a supervised learning auto-encoder model was 

constructed by adding a supervised layer to the classical auto-

encoder model. The objective function of the auto-encoder is 

to minimize the average reconstruction error between input 

data X and output data Z, while the objective function of the 

supervised learning auto-encoder model is to minimize the 

average error between supervised label Xlabel and output data 

Z, shown as follows. 
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where, m is the number of training samples, Zi represents the 

ith reconstruction sample, 𝑋𝑙𝑎𝑏𝑒𝑙
𝑖  is the road segmentation 

result of the ith training sample, W is the connection weight 

and b is the bias term. 

The supervised learning AE model learns the useful features 

for segmentation and completes the semantic segmentation for 

road environments by minimizing the mean reconstruction 

error between the supervised label Xlabel and reconstructed 

sample Z. The architecture of the supervised learning AE 

model is shown in Figure 1. 

 

 
 

Figure 1. Architecture of supervised learning auto-encoder 

 

The feature learning ability of classical unsupervised AE is 

restricted, because it can only learn the inherent features of the 

input samples. Nevertheless, by adding supervised learning 

layer, under the guidance of the supervision layer, the model 

can learn more relevant features conducive to semantic 

segmentation, so as to directly complete the semantic 

segmentation of the image. Auto-encoder has many variants 

corresponding to various applications, such as denoising auto-

encoder, sparse auto-encoder. Different forms of auto-encoder 

have different characteristics, and the features extracted from 

the original data have different characteristics. By adding 

supervised layer to different auto-encoders, different models 

of supervised learning auto-encoders can be attained. 

(1) Supervised learning sparse auto-encoder 

The structure of the supervised learning sparse auto-encoder 

is similar to the basic model structure of the supervised 

learning auto-encoder. The sparse regular term is added to the 

objective function of the supervised learning auto-encoder, 

shown as follows. 
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The first term of the objective function is similar to the 

objective function of the supervised learning auto-encoder, the 

second term is sparse regularization term which makes most 

neurons in the hidden layer of the network in a suppressed state. 

Therefore, it can extract sparse features of the image, which 

are sensitive to the contour or edge of the object in the image, 

and these features are helpful to the semantic segmentation. 

Therefore, supervised learning sparse auto-encoder can be 

used for semantic segmentation of road environment image to 

optimize the precision of semantic segmentation. 

(2) Supervised learning denoising auto-encoder 

Supervised learning denoising auto-encoder introduces 

supervised layer based on the model of denoising auto-encoder, 

and uses "clean" semantic segmentation label to guide the 

model to learn the most essential features of the input data, so 

as to obtain higher-level and more abstract feature expression 

of the input data. By minimizing the average reconstruction 

error between the supervised label Xlabel and the 

reconstructed sample Z, the feature extraction ability of the 

data in the noise environment is enhanced and the robustness 

of the network is improved. The objective function is the same 

as formula (1). 

For unmanned vehicles, the on-board camera images will be 

affected by various factors such as weather, illumination, etc. 

To a certain degree, the supervised denoising auto-encoder can 

eliminate these interference factors, extract more robust image 

feature extracting and enhance the anti-interference ability of 

semantic segmentation and the accuracy of semantic 

segmentation. 

In general, when various forms of supervised learning auto-

encoders are used for semantic segmentation, the processes are 

divided into encoding and decoding. The main task of 

encoding is to extract image features which are favorable to 

semantic segmentation, while the task of decoding is to re-

express the extracted features to generate semantic 

segmentation results. Therefore, its network structure is 

similar to the semantic segmentation method based on the full 

convolutional neural network framework. Nevertheless, in the 

semantic segmentation method based on the full convolutional 

neural network framework, the inherent convolution, pooling, 

de-convolution and un-pooling operations in the full 

convolutional neural network limit the form of network 

extraction feature and recombination feature. Under the 

operation of alternating convolution, pooling, de-convolution 

and un-pooling, the location information and the relevant 

information between different regions of the image are highly 

depleted. The supervised learning auto-encoder model with 

multiple structures can extract richer semantic segmentation 

features and automatically recombine these features to 

generate semantic segmentation maps. The loss of location 

information and inter-region correlation information is less 

and the semantic segmentation can be better completed. 

 

3.2 Convolutional auto-encoder 

 

The network structure of the Convolutional Auto-Encoder 

(CAE) is illustrated in Figure 2, which mainly comprises 

convolution, pooling, de-convolution and un-pooling. The 

first two parts are equivalent to the coding process used mainly 

for feature extraction, which is the same as the CNN feature 

extraction process. The latter two parts are equivalent to the 

decoding process through de-convolution and un-pooling to 

reconstruct the image. The training of CAE is similar to that 

of classical auto-encoder. The input samples are compared 

with the final reconstructed results, and the back propagation 

algorithm is used to minimize the error function to modify the 

training parameters. The error function of CAE is similar to 

that of traditional auto-encoder, which can be expressed as: 

 
2

2
( ) ( , )CAE

x S

J L x y W 


= +  (3) 

 

where, S is training sample set, parameter λ is coefficient of 

regularization term, W is the weight. 
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3.3 Improved convolutional auto-encoder 

 

The original convolutional auto-encoder structure only 

contains the convolutional layer, pooling layer, de-

convolution layer and un-pooling layer, but does not contain 

the full connection layer. The supervised learning auto-

encoder network designed in section 3.1 is a fully connected 

structure. In order to combine with the supervised learning 

auto-encoder, this paper improves the structure of the 

convolutional auto-encoder by adding a fully connected layer 

between the encoding part and decoding part of the network, 

and its basic structure is shown in Figure 3. 

 

 
 

Figure 2. Architecture of convolutional auto-encoder 

 

 
 

Figure 3. Architecture of improved convolutional auto-encoder 

 

The original convolutional auto-encoder network extracts 

the features that represent the nature of the data through the 

alternation of convolution and pooling, but the operation of 

convolution and pooling also causes the loss of useful 

information in the image. By adding a full connection layer 

between the encoding part and the decoding part of the 

network, the features extracted from the encoding part can be 

further enhanced and effectively integrated through nonlinear 

mapping relationship, and then the enhanced and integrated 

features are added to the decoding part, so it has better image 

reconstruction capability. Obviously, the basic structure of the 

improved convolutional auto-encoder can only be used to 

reconstruct the image, but not for semantic segmentation of the 

image. 

 

3.4 Convolutional hybrid auto-encoder 

 

In order to complete semantic segmentation of road 

environment images, supervised learning auto-encoder is 

introduced into convolutional auto-encoder training, and a 

hybrid convolutional auto-encoder model is established. The 

design idea of this model is as follows. 

Firstly, road environment images and its semantic 

segmentation labels are used to train two improved 

convolution auto-encoder models which can extract the 

characteristics of road environmental images and semantic 

segmentation labels respectively. Secondly, a supervised 

learning auto-encoder is built, in which the characteristic of 

road environment image is the input layer and the 

characteristics of the semantic segmentation tags is the 

supervised layer. Abstract features that can be used for image 

semantic segmentation are extracted by this supervised 

learning auto-encoder. Finally, two improved convolutional 

auto-encoder models and supervised learning auto-encoder are 

combined to generate a convolutional hybrid auto-encoder 

model. 

Figure 4 shows the structure and training method of the 

hybrid convolutional auto-encoder model. The training 

process of the whole model is divided into four parts. 

Firstly, the sample images are used to build a sample 

improved convolutional auto-encoder model, and its main 

purpose is to compress the road image sample, extract the 

representative data of the road images and obtain the encoding 

parameters of road images; Second, semantic segmentation 

labels are used to construct a label convolutional auto-encoder 

model. The main purpose of this model is to extract the data 

features of semantic segmentation tags and obtain the 

decoding parameters of semantic segmentation tags; Third, a 

supervised learning model automatic encoder is built to 

enhance and express the characteristics of semantic 

segmentation. In this model, the extracted road image 

characteristics in the first part is used as the input layer, the 

extracted semantic segmentation tags in the second part are 

used as the supervised layer and the better characteristics of 

the segmentation information can be obtained in this model. 

Finally, the sample improved convolutional auto-encoder, 

the supervised learning auto-encoder and the label 

reconstruction convolutional auto-encoder model are stacked 

to form the hybrid convolutional auto-encoder model. The 

encoding part of the sample improved convolutional auto-

encoder, the full connection layer of the sample improved 

convolutional auto-encoder, the middle layer of the supervised 

learning auto-encoder, the full connection layer of the label 

improved convolutional auto-encoder, and the decoding part 

of the label improved convolutional auto-encoder are stacked 

up in sequence. In the training process of this stage, a 

supervised layer is introduced into the convolutional hybrid 

auto-encoder model, and semantic segmentation labels are 

used as supervised information to fine-tune and optimize the 

parameters of the network. 
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Figure 4. The structure and training method of the hybrid convolutional auto-encoder 

 

As shown in Figure 4, the hybrid convolutional auto-

encoder model is divided into sample feature encoding part, 

semantic feature enhancing and representing part, and 

semantic segmentation results generating part. Compared with 

the traditional semantic segmentation networks which only 

have encoding and decoding parts, the hybrid convolutional 

auto-encoder we established can extract features of the road 

samples to complete data reduction by convolution and 

pooling operation in the beginning of the model, enhance and 

reorganize the features with the supervised learning auto-

encoder in the middle of the model, and generate the semantic 

segmentation results by de-convolution and un-pooling 

operations at the end of the model. The sample feature 

encoding part effectively compresses the original data to get a 

low-dimensional full connection vector, so the parameters of 

the supervised learning auto-encoder are greatly reduced. 

Even if the full connection structure is used in the model, the 

network parameters will not be exploded. Due to the addition 

of semantic feature enhancing and representing part, the 

network can obtain better semantic segmentation accuracy 

with fewer convolution and pooling layers, thus the network 

model is reduced and the real-time performance are improved. 

 

 

4. EXPERIMENTS AND ANALYSIS 

 

In order to evaluate the semantic segmentation performance 

of the hybrid convolutional auto-encoder model proposed in 

this paper, a series of experiments are conducted using Camvid 

and Cityscapes data sets. The image size is adjusted to 

360×360 for the convenience of the experiment. Since the 

semantic segmentation object is the road environment image 

of unmanned vehicles in which the on-board memory is 

limited and the requirement of real-time is relatively high, the 

parameters of the hybrid convolutional auto-encoder model 

are reasonably set as follows. 

In the sample feature encoding part, we set three 

convolutional layers and three pooling layers. The number of 

convolutional kernels at each layer of the convolutional layer 

is 64, 128 and 64 respectively, and the size of the 

convolutional kernels is 5×5. The pooling layer adopts max-

pooling and the size is 2×2. The structure of semantic 

segmentation results generating part is symmetric with the 

sample feature encoding part, and the number of convolution 

kernels of the corresponding de-convolution layer is 64, 128 

and 64. Other parameters are also the same as the encoding 

part. The semantic feature enhancing and representing part, 

namely the fully connected part in the model, has 500, 400 and 

500 nodes respectively. The activation function of the hybrid 

convolutional auto-encoder is ReLu function except for the 

last layer, and the last layer is Sigmoid function. 

Compared to the semantic segmentation model based on the 

Fully Convolutional Networks framework, the model 

proposed in this paper contains only three convolution layers, 

three full connection layers and three de-convolution layers. It 

is markedly smaller than the fully convolution framework of 

semantic segmentation model and the network parameters are 

highly reduced. It not only improves the real-time of the 
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semantic segmentation, but also reduces the memory 

requirement of the GPU in unmanned vehicles. 

Since the hybrid convolutional auto-encoder model is 

constructed by stacking two improved convolutional auto-

encoder models and one supervised learning auto-encoder, the 

accuracy of each sub-model will directly affect the 

performance of the hybrid convolutional auto-encoder model. 

Therefore, we evaluate the feature extraction ability of 

convolutional auto-encoder model, semantic transformation 

method of supervised learning auto-encoder model and 

semantic segmentation performance of hybrid convolutional 

auto-encoder. 

 

4.1 Feature extraction ability of improved convolutional 

auto-encoder model 

 

Table 1. Correlation coefficients of some sample images 

 
Model R Chanel G Chanel B Chanel Average 

1 0.9810 0.9964 0.9964 0.9912 

2 0.9974 0.9990 0.9982 0.9982 

3 0.9845 0.9959 0.9968 0.9924 

4 0.9954 0.9976 0.9981 0.9970 

5 0.9942 0.9975 0.9973 0.9963 

6 0.9856 0.9920 0.9923 0.9900 

7 0.9955 0.9981 0.9977 0.9971 

8 0.9809 0.9969 0.9968 0.9915 

9 0.9952 0.9979 0.9972 0.9968 

10 0.9933 0.9976 0.9973 0.9961 

 

The two groups of improved convolutional auto-encoder 

models extract the features of sample images and semantic 

segmentation labels respectively through unsupervised 

learning, and reconstruct the sample images and semantic 

segmentation labels using the extracted features. Obviously, if 

the errors between original images and reconstructed images 

are big, it shows that the extraction ability of the two improved 

convolution encoder automatically model of feature is not 

good, or the features extracted by the network are not 

representative and cannot reflect the essence of the original 

samples and labels. Only when the difference between the 

reconstructed images and the original input images is small, it 

indicates that the features extracted from the network are 

representative and can represent the original image. Therefore, 

we can evaluate the feature extraction ability of the two 

improved convolutional auto-encoder by assessing the 

performance of the reconstructed images. In this paper, the 

correlation coefficient is selected to measure the correlation 

between the original image and the reconstructed image, and 

the formula is as follows. 

 

( )( )

2 2( ( ) )(( ( ) )

A A B Bmn mn
m nr

A A B Bmn mn
m n m n

− −

=

− − 

 (4) 

 

where, m and n are rows and columns of image data 

respectively, �̄� and �̄� represent the average pixel value of two 

image matrices, and r is the correlation coefficient of images. 

The closer r is to 1, the more similar the two images are, and 

the closer r is to 0, the less similar the two images are. 

As the images in the data set are color images and have RGB 

three channels, the evaluation of its correlation is divided into 

three channels respectively, and its values are averaged to 

obtain the final correlation coefficient. In this paper, the 

correlation of all training samples are measured, and the 

average correlation coefficient between sample reconstructed 

image and sample image is 0.9923, and that between label 

reconstructed image and label image is 0.9951. This indicates 

that the similarity of images is very high and it further 

indicates that the feature extraction ability of the improved 

sample convolutional auto-encoder and the improved label 

convolutional auto-encoder is very strong, and the models can 

obtain the most representative features of the data itself, which 

can be used to represent the data sample image and semantic 

label. Table 1 offers the correlation coefficients of some 

sample images. 

When the training of the two improved convolutional auto-

encoders is accomplished, we can extract road image features 

and semantic segmentation label features respectively using 

the encoding parts of the two models, shown as Figure 5. The 

training sample images and their semantic segmentation labels 

are added to the front end of the trained network, the features 

of road images and semantic segmentation labels can be 

extracted and compressed by the forward propagation of the 

network, which can be used for subsequent supervised 

learning AE. 

 

4.2 Semantic transformation of the supervised learning 

auto-encoder model 
 

The road image feature and semantic segmentation label 

feature extracted by the two improved convolutional auto-

encoders are used to construct supervised learning auto-

encoder in which road images feature is used as input layer 

and semantic segmentation label feature is used as supervised 

layer. Its main purpose is to extract the image semantic 

segmentation features and realize the transformation from road 

image features to semantic segmentation features. In this paper, 

we design three types of supervised learning auto-encoders, 

which are the supervised learning auto-encoder, supervised 

learning sparse auto-encoder and supervised learning 

denoising auto-encoder. By studying the training process of 

the three models, the final semantic transformation model is 

determined. 

Figure 6 shows the error function curves of the training 

process of the three models. It can be seen from the figure that 

the error of the supervised learning sparse auto-encoder 

reduces fastest, and the final error is the smallest with the same 

number of iterations. Therefore, in the process of constructing 

a convolutional hybrid auto-encoder network, supervised 

learning sparse auto-encoder is selected to realize the 

transformation from road image features to semantic 

segmentation features. 
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Figure 5. The features extracting process of improved convolutional auto-encoders 

 

 

 
 

Figure 6. Error curves of different types of supervised 

learning auto-encoders 

 

4.3 Semantic segmentation performance of hybrid 

convolutional auto-encoder 

 

When the training of two improved convolutional auto-

encoders and supervised learning sparse auto-encoder is 

accomplished, the hybrid convolutional auto-encoders are 

created according to the stacking method specified in section 

3.4. Subsequently, the hybrid convolutional auto-encoder 

network is optimized again by adding a supervised layer 

(semantic segmentation label is used as the supervised layer) 

to generate the final model. 

We divide the testing process into two steps. First, the test 

samples are added to the improved label convolutional auto-

encoder model to assess its image reconstruction ability, and 

then the test samples are added to the final hybrid 

convolutional auto-encoder model to assess its semantic 

segmentation performance. 

Figure 7 shows the results of some test samples. As can be 

seen from the comparison between the second and third lines 

in Figure 7, the reconstructed images of semantic labels in the 

first three images are nearly the same as the original label, 

while the reconstructed images of the last image are not similar 

enough to the original label image. The average similarity 

between the whole test sample and its reconstructed image is 

0.9843. In general, the improved label convolutional auto-

encoder can well complete the extraction of semantic label 

features. 

According to the comparison between the second and fourth 

lines in Figure 7, it can be seen that the semantic segmentation 

results have clear object boundaries and the classification of 

each object is accurate. But some regions in the fourth image 

in Figure 7 are misclassified, and the reason is that when the 

sample labels are reconstructed ineffectively, the 

corresponding segmentation results of hybrid convolutional 

auto-encoder would also be affected. It shows that the hybrid 

convolutional auto-encoder will be affected by the accuracy of 

each early training model. In order to construct a more 

accurate semantic segmentation model, each sub-model must 

be carefully trained to improve the accuracy. 

Then, we compare the hybrid convolutional auto-encoder 

proposed with SegNet based on the full convolutional network 

framework. Figure 8 shows the results of semantic 

segmentation. 

As can be seen from Figure 8, compared with the results of 

SegNet, object boundaries in the results of hybrid 

convolutional auto-encoder are clearer and more accurate, 

misclassified regions are fewer and classification accuracy is 

higher. It shows that the hybrid convolutional auto-encoder 

can reasonably extract more accurate semantic segmentation 

features and generate semantic segmentation results. The main 

reason is that hybrid convolutional auto-encoder not only 

contains convolution, de-convolution, pooling and un-pooling 

layers, but also contains the semantic feature enhancing and 

representing layer, which use supervised learning to enhance 

and express road environment image features extracted by 

early convolution and pooling layers. 

In this paper, the performance of hybrid Convolutional 

Auto-Encoder (H-CAE for convenience) on data set CamVid 

is quantitatively evaluated. The evaluation indexes are 

Precision Accuracy (PA) and Intersection-over-Union (IoU). 

The comparison results are shown in Table 2. Compared with 

SegNet, H-CAE improves its average PA and IoU by 18.3% 

and 17.1% respectively. Compared with E-Net, they are 12.9% 

and 26.9% higher, respectively. Therefore, H-CAE has higher 

semantic segmentation accuracy compared to other road image 

semantic segmentation methods. The results show that the H-

CAE can extract semantic segmentation features better and 

complete the classification of different objects more accurately. 

It can be seen from the IoU that the H-CAE can achieve both 

accurate classification and accurate localization, which can 

better complete the dual tasks of object classification and 

accurate localization in semantic segmentation. 
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Figure 7. Results of some test samples on CamVid dataset 
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Figure 8. Results of different methods on CamVid dataset 

 

Table 2. Comparison with other methods on CamVid dataset 

 
Method Bui. Tre. Sky Car Sig. Roa. Ped. Fen. Pol. Sid. Bic. Class Avg. mIoU 

SegNet 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 65.2 55.6 

E-Net 74.7 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 68.3 51.3 

H-CAE 90.4 89.5 96.7 94.4 53.5 99.1 72.3 55.4 42.6 90.4 63.6 77.1 65.1 
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Table 3. Comparison with other methods on Cityscapes dataset 

 
Method Roa Sid Bui Wal Fen Pol TLi TSi Veg Ter Sky Ped Rid Car Tru Bus Tra Mot Bic Class Cat 

Segnet 96.4 73.2 84.0 28.4 29.0 35.7 39.8 45.1 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.1 35.8 51.9 57.0 79.1 

E-net 96.3 74.2 75.0 32.2 33.2 43.4 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4 58.3 80.4 

H-CAE 98.7 89.4 88.5 59.7 55.6 48.7 46.8 50.3 94.8 78.6 96.8 66.8 54.9 97.2 48.6 63.3 58.6 55.5 60.8 69.1 89.5 

 

Input

Images

Labels

Results

 
 

Figure 9. Semantic segmentation results on Cityscapes dataset 

 

Table 4. Performances of different methods on Cityscapes dataset 

 
Method Conv-H AE SegNet E-net PSPNet DeepLabV3 

Class IoU 69.1 57.0 58.3 81.2 81.3 

Category IoU 89.5 79.1 80.4 91.2 91.6 

Inference time(s) 0.008 0.054 0.014 0.33 0.41 

 

In order to prove the effectiveness of the model, we also 

evaluate our model on Cityscapes. Figure 9 shows the results 

of some samples. We can see that we still achieve good 

semantic segmentation results on Cityscapes data sets and we 

can detect and classify the image objects such as road, cars, 

sidewalks, pedestrians accurately. Small targets in the images 

of the road environment, such as traffic lights, light poles can 

also be detected, but the object boundary is not accurate. This 

is because such samples occupy a small area in the images and 

the number of training samples is fewer, and it conforms to the 

expected law. 

Meanwhile, the semantic segmentation performance of the 

H-CAE in Cityscapes is also quantitatively evaluated, and 

comparison with other methods is shown in Table 3. 

Compared with SegNet, the average IoU and average category 

IoU are improved 21.4% and 10.6% respectively, while the 

corresponding values are improved 18.6% and 11.4% 

respectively, compared with E-Net. These data indicate that 

the H-CAE model greatly improves the accuracy of semantic 

segmentation. H-CAE achieves the best results on all classes 

of Cityscapes data set, indicating that compared with the other 

two methods, this method can extract various semantic 

features more precisely and accomplish semantic 

segmentation accurately. 

Since the application scenario of this paper is unmanned 

vehicles, real-time performance is very important. Therefore, 

the running time of H-CAE is evaluated to determine its real-

time performance. Based on the same hardware environment, 

we compare the semantic segmentation methods, namely, H-

CAE, SegNet and E-Net, and the two classical semantic 

segmentation models, namely PSPNet and DeepLabV3. The 

results are shown in Table 4. In Table 4, the average IoUand 

average class IoU of various methods are also provided. As 

can be seen from Table 4, compared with SegNet and E-Net, 

the running time of H-CAE is shorter and the accuracy is 

higher. Comparing with the two classical semantic 

segmentation models PSPNet and DeepLabV3, the accuracy 

of H-CAE is slightly lower, but the real-time performance is 

better. The main reason is that compared with PSPNet and 

DeepLabV3, the model built in this paper is smaller. However, 

PSPNet and DeepLabV3 models with large scale have higher 

requirements on model operating environment, memory and 

performance of the on-board GPU. However, due to the small 

model and short running time, the proposed method is more 

suitable for the road environment images of unmanned 

vehicles. 

 

 

5. CONCLUSION 

 

In this paper, the convolutional auto-encoder and supervised 

learning auto-encoder are combined to construct a hybrid 

convolutional auto-encoder model. It can extract features of 

the road images to complete data dimension reduction by 

convolution and pooling operation in the beginning of the 

model, enhance and reorganize the features with the 

supervised learning auto-encoder in the middle of the model, 

and generate the semantic segmentation results by de-

convolution and un-pooling operations at the end of the model. 

Compared with the existing semantic segmentation model, the 

model we constructed has fewer layers, fewer parameters and 

simpler training. Experimental results on CamVid and 
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Cityscapes datasets prove that our model not only has a good 

semantic segmentation effect, but also has good real-time 

performance. 
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