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In response to challenges in liver occupancy such a variety of types and manifestations and 

difficulties in differentiating benign and malignant ones, this paper takes liver images of 

enhanced MRI scan as the research object, targets on the detection and identification of liver 

occupancy lesion areas and determining if it is benign or malignant. Accordingly, the paper 

proposes an auxiliary diagnosis method for liver image combining deep learning and MRI 

medical imaging. The first step is to establish a reusable standard dataset for MRI liver 

occupancy detection by pre-processing, image denoising, lesion annotation and data 

augmentation. Then it improves the classical region-based convolutional neural network (R-

CNN) algorithm Faster R-CNN by incorporating CondenseNet feature extraction network, 

custom-designed anchor size and transfer learning pre-training. This is to further improve 

the detection accuracy and benign and malignant classification performance of liver 

occupancy. Experiments show that the improved model algorithm can effectively identify 

and localise liver occupancies in MRI images, and achieves a mean average precision (mAP) 

of 0.848 and an Area Under the Curve (AUC) of 0.926 on the MRI standard dataset. This 

study has important research significance and application value for reducing manual misses 

and misdiagnosis and improving the early clinical diagnosis rate of liver cancer. 
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1. INTRODUCTION

Liver cancer is a common malignant tumour in clinical 

practice, with the 5th highest mortality rate among malignant 

tumours worldwide. China has about half of the world's liver 

cancer cases, with a significantly higher incidence and 

mortality rate than the world level, with the 4th highest 

incidence rate and the 3rd highest cause of cancer-related 

deaths [1-3]. Medical data of hepatobiliary surgery indicates 

that liver cancer is often found to be progressive or mid to late 

stage once detected, and the effective treatments that can be 

carried out are limited. At present, the radical cure with 

definite efficacy are mainly liver resection and transplantation, 

etc. Although surgery can effectively control the cancer 

development, reports [4-6] say that the five-year recurrence 

rate of patients after radical resection is as high as 40%-70%, 

resulting in a prognosis below desired level. Other studies 

have shown that the five-year survival rate for people with 

small hepatocellular carcinoma (a single nodule less than 3 cm 

in diameter) can reach 80% after surgical resection and 

radiofrequency ablation [7-10]. Therefore, early detection of 

small intrahepatic occupancies has great significance for the 

treatment and prognosis of liver cancer. 

Among the liver occupancy diagnostic techniques, dynamic 

contrast-enhanced CT or MRI examinations are recommended 

by the American Association for the Study of Liver Diseases 

(AASLD) for the non-invasive diagnosis of hepatocellular 

carcinoma (HCC), and the American College of Radiology 

updated the Liver Imaging Reporting and Data System (LI-

RADS v2018) in 2018, which aims to unify the imaging signs 

and imaging diagnostic process for HCC. For the detection of 

earlier stage liver cancer, such as the previously mentioned 

small hepatocellular carcinoma (small HCC), a medical expert 

[11] compared the diagnostic value of CT and MRI imaging

respectively based on LI-RADS v2018 for HCC that is less

than 3 cm in diameter, and demonstrated that MRI imaging

was overall superior to CT examination for diagnosis of both

obvious cancer-caused liver occupancy and early small HCC,

MRI imaging has higher enhanced sensitivity and imaging

saliency. In view of this, to improve the diagnostic rate of liver

occupancies, this paper uses MRI-enhanced scans to study the

data.

With the advent of big data in healthcare, there is an urgent 

need for computer-aided diagnosis (CAD) techniques that can 

quantitatively analyse medical images and give proactive 

references. In recent years, deep learning algorithms (e.g., Fast 

R-CNN, Deep Convolutional Neural Network and Faster R-

CNN) have achieved good results in liver tumour detection

and recognition. Meng et al. [12] proposed a 3D dual path

multi-scale convolutional neural network that used pairwise

paths to balance the performance of segmentation and reduce

the computational resource requirements for robust

segmentation of the liver and liver tumours. Tang et al. [13]

used Faster R-CNN to detect the approximate location of the

liver and then fed into DeepLab to segment the liver. Li et al.

[14] proposed a Hybrid-DenseNet (H-DenseNet), which

effectively aggregated the 2D DenseUNet extracted intra-slice

features into a 3D DenseUNet to perform 3D segmentation of

the liver and tumour simultaneously. Bousabarah et al. [15]

used a deep convolutional neural network with radiological
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capabilities to automatically detect and characterise 

hepatocellular carcinoma on contrast-enhanced MRI. Kim et 

al. [16] used a deep learning-based classifier to detect HCC on 

contrast-enhanced MRI. Zhao et al. [17] combined adversarial 

learning ideas with Fast R-CNN to improve the detection 

capability of the network using the three-way adversarial idea. 

While the above studies have demonstrated the feasibility of 

deep learning techniques for tumour target detection, there are 

fewer studies related to image-aided diagnosis for the lesion 

classification of liver occupancy and determination of benign 

and malignant liver occupancies. In addition, the problems of 

uneven intensity, noise interference, weak contrast and 

irregular appearance and size of tumour lesions in MRI [18] 

pose challenges for CAD research of liver occupancy images 

based on deep learning techniques. 

To address the above issues, this paper proposes an 

auxiliary diagnosis algorithm for detecting lesion types and 

identifying benign and malignant liver occupancies using 

image segmentation and deep learning techniques. The paper 

demonstrates the efficacy of this technique through 

experiments in predicting benign and malignant liver lesions, 

clarifies the efficacy of this improved algorithm in 

distinguishing different categories of liver occupancies after 

confirming liver lesions, and explores the feasibility and 

application value of this improved algorithm for the 

identification and detection of liver lesions in MRI liver 

images, so as to assist physicians in analysing MRI images of 

liver cancer and making further diagnostic measures. 

2. CONSTRUCTION OF A STANDARD DATASET FOR

MRI-BASED LIVER OCCUPANCY DETECTION

Deep learning and CAD algorithms require a large amount 

of training data, but there is a lack of standard MRI image 

datasets for liver occupancy. In response, we decided to 

construct a standard MRI dataset for liver occupancy detection 

in this paper, including both benign and malignant 

occupancies, for training and testing of deep learning 

algorithms. The images that dynamic contrast-enhanced MRI 

(DCE-MRI) acquire are mostly multimodal data of the liver 

depending on the time of contrast agent injection [19], 

including iso-inverted phase T1WI, pressurised lipid/non-

pressurised lipid T2WI, unenhanced scan, diffusion-weighted 

imaging (DWI) and enhanced scan sequence images (arterial 

phase, portal phase, equilibrium phase, hepatobiliary phase). 

A hepatocyte-specific contrast agent is used during the 

hepatobiliary phase.  

2.1 Image pre-processing 

The main tasks during the data pre-processing stage were: 

(1) the raw MRI data in DICOM format acquired from the

hospital PACS system were converted to JPEG images that

could be processed for deep learning analysis by using Matlab

R2018a to transcode the DICOM files [20]; (2) by

collaborating with physicians with years of radiology

experience at the partner hospital, we analysed the JPEG

images of liver occupancy patients admitted to the hospital in

the last year, and included 93 liver occupancy patients in the

cases who met the following two criteria: (1) DCE-MRI

performed within seven days before biopsy or treatment; (2)

patients with a diagnosis of benign or malignant liver

occupancy confirmed by surgery or puncture biopsy. A total

of 93 liver occupancy patients aged 30 to 80, including 35

women and 58 men, were finally included in this study (Table

1).

Table 1. The current main MRI benign and malignant liver occupancy types and MRI signs 

Occupancy type Major MRI signs 

Benign 

liver 

occupancy 

Hepatic 

hemangioma 

Prevalent in women aged 40-50. MRI shows moderate to high signal on T2WI and low signal on T1WI. 

Enhanced scans show nodular discontinuous enhancement and contrast agent retention at the edges. Central 

necrosis is seen in large hepatic haemangiomas. If hepatocyte-specific contrast agent is used, there may be 

an artifact of contrast agent outflow. 

Focal nodular 

hyperplasia 

(FNH) 

Prevalent in young women. MRI shows isosignal T1WI and mild high-signal T2WI. The central necrosis 

may have low signal on T1WI and moderate to high signal on T2WI. On enhancement, the arterial phase is 

homogeneous, the portal phase is isosignal to the liver parenchyma, and the central necrosis is seen as 

delayed enhancement. FNH shows no rapid contrast washout. 

Hepatic adenoma 

(HCA) 

Prevalent in patients using oral estrogen. MRI shows mild/moderate high signal on T2WI with arterial-

phase intensification. Pathologically, HCA is classified into the following three types with different imaging 

features: 1. Inflammatory type, with marked high signal at the margins on T2WI and delayed enhancement 

on enhancement scans. 2. HNF-1α-activated HCA with diffuse fatty component, i.e., high signal on T1WI 

and antiphase signal decrease. 3. Beta-chain protein-activated type, with indistinct irregular margins and 

high signal on T2WI. This type tends to malignant transformation. Note: HCA is sometimes not easily 

distinguished from FNH, but there is usually no necrosis within an HCA. The use of a hepatocyte-specific 

contrast agent can help to differentiate them. FNH shows contrast uptake, but generally HCA does not. 

Cystic lesions 
The cysts are usually benign. MRI shows uniform low signal on T1WI and significant high signal on T2WI, 

with clear margins and no intensification after enhancement. 

Malignant 

liver 

occupancy 

Hepatocellular 

carcinoma (HCC) 

The main signs include "envelope", significant enhancement in the non-circular arterial phase, and non-

circular "contouring". MRI shows high signal in the arterial phase, contrast agent outflow in the portal 

phase, low signal in T1WI, mildly high signal in T2WI and high signal in DWI. The signal is heterogeneous 

in the early enhanced arterial phase, with contrast agent outflow and pseudo-envelope patterns seen in the 

late enhanced phase. 

Intrahepatic bile 

duct cancer 

MRI shows low signal on T1WI and high signal on T2WI, with heterogeneous continuous enhancement at 

the edges and retraction of the hepatic tegument. 

Metastatic cancer 

of the liver 

MRI presentation shows multiple lesions of variable size with low signal on T1WI and high signal on T2WI. 

Most of the metastases have rich blood supply, with circumferential enhancement seen in segment VII 

lesions and contrast agent outflow in lesion’s late enhancement. 
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2.2 Image denoising 

For building a well-performing CAD system, it is essential 

to improve the image quality of DCE-MRI through reasonable 

image denoising. What MRI images generate is mainly 

thermal noise and sometimes physiological noise [21]. Many 

studies have suggested that it belongs to Rician noise [22], 

which is strongly correlated with signal [23]. Traditional 

denoising methods are only suitable for filtering certain types 

of noise, but not for filtering Rician noise, while wavelet 

transform has better filtering effect on Rician noise. Therefore, 

this paper chooses a wavelet transform-based denoising 

method [24] to denoise the image samples. The main process 

has three steps: firstly, we input the original MRI liver image 

with noise and added additive Gaussian noise to the original 

signal in the data; secondly, we performed wavelet change to 

obtain the wavelet coefficient matrix; and finally, the matrix 

was processed by hard and soft thresholding functions. After 

setting a threshold, we reduced and zeroed coefficients larger 

and smaller than ϕ respectively. Then, we obtained the 

denoised image based on the new coefficients. The soft and 

hard thresholding methods add absolute value judgement to 

the above, and the equations are expressed as follows: 

, , ,

,

( ) ( ),
( )

0,

i j i j i j

i j
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 
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= 
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,

,
( )
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i j

  
 

 

     
= 

          

where, i is the number of decomposition layers and j represents 

the wavelet coefficients in different directions. After soft and 

hard thresholding methods for wavelet denoising, we found 

that the images obtained by the soft thresholding method were 

smoother, while the image texture by the hard thresholding 

method had more visible jitters, hence we finally chose the 

denoised images obtained through soft thresholding.  

Figure 1 below shows the denoising effect of this research 

(some areas are presented in enlargement). 

(a) Partial original image

(b) After denoising

Figure 1. Denoising effect of MRI images through soft 

thresholding 

2.3 Lesion labeling 

The annotation of the dataset in this study was performed 

under the guidance of a specialist radiologist at the partner 

hospital. We determined the location of the liver occupancy 

and the nature of the case after taking account of the patient's 

diagnostic history. The liver cancer in this dataset was 

classified as benign or malignant. The lesion location was 

annotated using the minimum coverage matrix that could 

completely cover the lesion, using the target detection 

annotation software LabelImg [25]. After manual annotation 

of the images, the software converts the annotation 

information into an XML format file for storage, which is 

flexible enough to store the location and category-structured 

data of the masses for the deep learning algorithm to read 

during training. As shown in Figure 2, (a) is the original image, 

(b) is the physician's manual annotation of the lesion location,

and (c) is the software representation in terms of a minimum

coverage matrix.

(a) Original MRI image (b) Annotation of lesion location by

physician (c) Annotation by software 

Figure 2. Image annotation 

2.4 Image data augmentation 

In deep learning, an adequate number of samples is required 

to ensure the effectiveness of the training model and the 

generalization ability of the model [26]. Therefore, to obtain 

sufficient training data, this study increases the data volume of 

the dataset by means of data augmentation, in the expectation 

that the image texture and pathological features of the limited 

base images will be expressed in the augmented images to 

increase the sample space. In this paper, we mainly adopted 

the geometric transformation of image rotation and flip for 

data augmentation, for which we rotated each image 

counterclockwise by 60°, 90°, 180°, and 270° as well as 

horizontal and vertical flips. Here, rotation of an image means 

that each pixel point is rotated by an equal angle at the same 

origin. Its affine transformation formula is 

0

0

cos sin

sin cos 0

1 0 0 1 1

xx

y y

 

 

           
    

= −         
                  

Calculation formula for coordinates after horizontal flip: 

1 1 0 0

0 0

1 0 0

[ 1] [ 1] 0 1 0

0 1

[ 1]

x y x y

width

width x y

 

−          
 

   =           
 
          

= −       

Calculation formula for coordinates after vertical flip: 
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After counterclockwise rotation in the four angles and flips 

in the two directions, the original, rotated and flipped MRI 

images of the liver formed the training data for subsequent 

deep learning. Figure 3 below shows the sequence map of one 

case’s T2 image after image augmentation: (a) is the original 

image, (b) is the image after rotating 60 degrees 

counterclockwise, (c) is the one after rotating 90 degrees 

counterclockwise, (d) is the one after rotating 180 degrees 

counterclockwise, (e) is the one after rotating 270 degrees 

counterclockwise, (f) is the image after horizontal flip, and (g) 

is the one after vertical flip. 

Figure 3. MRI image data augmentation 

3. UNET FOR LIVER SEGMENTATION

MRI images are scanned in the abdominal region, so each 

MRI image of the data covers four organs—spleen, liver, left 

kidney and right kidney. Our goal is to segment the liver area 

to facilitate subsequent classification and identification of the 

target of interest. Segmentation of the liver area is a 

prerequisite for subsequent feature extraction and accurate 

classification, as well as an important step in the quantitative 

analysis of tumours by physicians. 

UNet is widely used in medical image segmentation [27]. 

Its advantages are: (1) multi-scale information extraction: both 

details and coarser abstract information are effectively 

extracted and retained; the gradient information of fuzzy 

boundaries is maximally retained while reducing the impact of 

noise. (2) skip connection: the more accurate information on 

gradient, point and line of the encoder at the same layer is 

directly concatenated into the decoder at the same layer, which 

is equivalent to adding detailed information to the general area 

of the target to make UNet obtain more accurate segmentation 

results. Considering that the UNet structure is not only smaller 

in model but also higher in accuracy [28], this paper uses UNet 

to finish liver segmentation from abdominal MRI data with the 

following network architecture diagram: 

In Figure 4, the left side is repeated 

downsampling->convolution, and the right side is repeated 

upsampling->convolution. The first part of the figure is feature 

extraction, where there is a scale for each passing through a 

pooling layer. In the upsampling part, each upsampling is 

fused with the same scale of the channel corresponding to the 

feature extraction part (labelled copy and crop in the figure). 

But it is cropped before the fusion. The fusion here is stitching. 

The blue arrow represents a 3x3 convolution operation with a 

stride of 1 and valid padding, so that after each convolution, 

the feature map size is doubled. The red arrows represent a 2x2 

max pooling operation. Since the 2*2 max-pooling operator is 

suitable for images of even pixel length and width, it is 

important to choose the right input size. The green arrows 

represent a 2x2 convolution plus upsampling operation, which 

multiplies the feature map size by 2. The grey arrows represent 

a copy and cut operation, where it can be noticed that the last 

layer on the left side of the same layer has a slightly larger 

resolution than the first layer on the right side, which leads to 

some cutting if you want to make use of the features in the 

shallower layers. The last layer of the output is classified using 

a 1x1 convolutional layer, and the two layers of the output are 

foreground and background. A comparison of the 

experimental segmentation results and physicians’ annotation 

result in this paper is shown in Figure 5. 

Figure 4. UNet architecture 
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(a) Original image (b) segmentation result annotated by

physicians (c) Experimental segmentation result

Figure 5. Results of liver segmentation 

4. MRI LIVER IMAGE ASSISTED DIAGNOSIS BASED

ON IMPROVED FASTER R-CNN

Target detection of liver MRI images refers to the 

localisation and diagnosis of liver occupancy targets from 

MRI image data. Accurate localisation of liver occupancy is 

the fundamental basis for assisting physicians in surgical 

planning, interventional surgery, and tumour definition. The 

detection results are integrated with patient age, clinical 

comorbidities, and biochemical results for guiding the post-

operative treatment of patients. In terms of deep learning target 

detection, the R-CNN algorithm Faster R-CNN integrates 

image feature extraction, pre-selected box extraction, target 

regression, and target classification into a single network to 

achieve an efficient and unified end-to-end target detection 

algorithm [29]. It delivers superior performance in terms of 

both detection speed and accuracy. Therefore, this paper uses 

the Faster R-CNN framework as the basis, and proposes an 

improved Faster R-CNN algorithm for the integration of 

recognising and classifying benign and malignant occupancy 

from MRI liver images, given the multiple types of liver 

occupancies with complex and varied size and morphology. 

4.1 Network model design 

There are 3 steps for Faster R-CNN to detect the input liver 

segmentation images: firstly, the target features in the input 

images are extracted by the pre-trained feature extraction 

network; then the region proposal network (RPN) uses the 

extracted features to find a certain number of regions of 

interest (ROI) to estimate the class and location of the target 

that may contain the lesion. The image features and ROI are 

input to the ROI pooling unit in the Faster R-CNN to extract 

features, and Softmax regression is used to classify the ROIs 

and determine the class of liver occupancy, while fine-tuning 

the positions of these ROIs using bounding box regression to 

obtain the final accurate position of the detection box, i.e., to 

localize the lesion. The network architecture of the Faster 

RCNN is as follows Figure 6 shows. 

4.2 CondenseNet feature extraction network 

Some scholars have demonstrated that for small target 

detection in medicine, if DenseNet is employed as a feature 

extraction network for Faster R-CNN, the experimental 

performance outperforms the VGG16 as well as the ResNet 

structure employed in the original Faster R-CNN [30]. 

However, one of DenseNet’s biggest drawbacks is the large 

video memory consumption, mainly due to the generation of 

more extra feature layers. To reduce the memory consumption 

of the model during training, Gao Huang at Cornell University 

[31] optimized the DenseNet network in 2018 by using

convolutional group operations and pruning during training to

reduce memory and increase speed, making it more

computationally efficient and storing fewer parameters. Hasan

and Linte [32] used CondenseUNet in 2020 for biventricular

blood pooling and myocardial segmentation in cardiac cine

MRI (CMR) imaging. Experiments demonstrated that the

CondenseUNet architecture can be used in the Automated

Cardiac Diagnostic Challenge (ACDC) dataset, using half

(50%) of the memory requirements of DenseNet and one-

twelfth (approximately 8%) of the memory requirements of

UNet, while still maintaining excellent cardiac segmentation

accuracy. Accordingly, this study uses the CondenseNet

network architecture for feature extraction of the dataset to

obtain better network performance, while being suitable for

MRI images and ensuring memory requirements. The

CondenseNet network architecture is characterised by: (1) the

introduction of convolutional group operations, with an

improvement during the introduction of group operations in

1*1 convolution. (2) Pruning of weights is done at the

beginning of training, instead of pruning the trained model. (3)

Introducing cross-block dense connectivity on top of

DenseNet. The CondenseNet network configuration used in

this dataset is shown in Table 2.

Figure 6. Faster R-CNN architecture 
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Table 2. CondenseNet network architecture table 

 
Feature map size structure 

112   112 3   3 Conv, stride 2 

112   112 1 1 -
4 ( 8)

3 3 -

L conv
k

G conv

      
       = 

     
 

56   56 2   2 average pool, stride 2 

56   56 1 1 -
6 ( 16)

3 3 -

L conv
k

G conv

      
       = 

     
 

28   28 2   2 average pool, stride 2 

28   28 1 1 -
8 ( 32)

3 3 -

L conv
k

G conv

      
      = 

     
 

14   14 2   2 average pool, stride 2 

14   14 1 1 -
10 ( 64)

3 3 -

L conv
k

G conv

      
      = 

     
 

7   7 2   2 average pool, stride 2 

7   7 1 1 -
8 ( 128)

3 3 -

L conv
k

G conv

      
      = 

     
 

1   1 7   7 global average pool 

 1000D fully-connected, softmax 

 

4.3 RPN and anchor design 

 

The function of RPN is to generate candidate regions for 

liver occupancy detection. For any feature map received, RPN 

can compute a series of candidate regions and a corresponding 

score between 0 and 1, indicating the confidence level that the 

candidate region is predicted to be a foreground target. To 

generate candidate regions, RPN uses a sliding window of size 

3×3 to obtain n×n anchor locations based on the shared feature 

map. RPN also uses k different shapes of anchors in the 

process to enrich the prediction range for each sliding window 

location. One anchor position yields k candidate regions, so 

that for an input feature map of size W×H, RPN obtains 

W×H×k anchors with translation invariance. In this study, the 

size of the lesion occupancy was statistically analysed for 93 

patients in the constructed dataset, and the size of the 

occupancy ranged from 8mm to 80mm. Based on the 

proportion of this statistic on the original MRI image and the 

corresponding perceptual field size of the shared convolutional 

feature map mapped to the CondenseNet output, we designed 

three different scales and three different aspect ratios, which 

were combined into nine different shapes of anchors, namely 

722, 2882 and 5122, with aspect ratios of 1:1, 2:1 and 1:2 

respectively. 

 

4.4 Transfer learning model training 

 

To obtain good prediction performance, we also had to 

employ transfer learning to train the network model while 

addressing the problem of insufficient data volume. This is 

because although we have performed data augmentation, the 

data volume of the MRI liver target detection dataset we 

constructed is still relatively too small compared to the number 

of neural network parameters, which tends to cause overfitting 

of the network parameters during training and poor 

recognition results. Therefore, we need to pre-train the 

improved network model on a natural image open dataset with 

a large data volume beforehand, so that the network learns 

certain natural image texture patterns in advance to obtain the 

model parameters to initialize our model, and then fine-tune 

the network on the liver occupancy dataset afterwards. 

The commonly used open datasets for natural images 

include ImageNet, an image classification dataset, and 

PascalVOC, a target detection dataset. ImageNet contains 

more than 1.5 million annotated natural images covering over 

1000 item categories. Pascal VOC consists of Pascal VOC 

2007 and Pascal VOC 2012, together containing a total of 

more than 30,000 images, 70,000 detection targets and 20 

categories [33]. Transfer learning can be divided into partial 

transfer learning and full transfer learning. Partial transfer 

learning refers to loading some of the network architecture 

parameters from a pre-trained model, such as loading only a 

few specific convolutional layers; full transfer learning refers 

to loading the complete network parameters from the pre-

trained model. In the Faster R-CNN training in this study, we 

used both. 

(1) Pre-training CondenseNet on ImageNet by first 

performing partial transfer learning of the feature extraction 

network. 

(2) Full transfer learning was then performed, with the 

Faster R-CNN structure pre-trained on the Pascal VOC 

2007+2012 dataset and finally fine-tuned on the MRI liver 

occupancy dataset based on the obtained network parameters. 

 

 

5. EXPERIMENTAL RESULTS 

 

To demonstrate the effectiveness of the Faster R-CNN 

optimisation and improvement in this paper, two evaluation 

metrics are used to assess the detection and classification 

performance of the Faster R-CNN model trained in this paper. 

The first evaluation metric is the Mean Average Precision 

(mAP), which is commonly used in target detection, and the 

other is the Free-response Receiver Operating Characteristic 

(FROC) curve. A comparison was made between the detection 

and classification performance of a model trained using the 

original Faster R-CNN network and the improved model in 

this paper. The original Faster R-CNN refers to the model 

obtained by using VGG16 as the backbone network and 

trained based on the original anchor size and without using 

transfer learning. 

The experimental evaluation was performed on the MRI 

liver dataset constructed in this paper, which was derived from 

the MRI-enhanced liver scans of 93 patients, among whom 15 

were with benign occupancies and 78 with malignant 

occupancies. The dataset contained a total of 3,906 original 

MRI liver images and data augmented images, of which 558 

were original MRI liver images. Among the 558 images, 90 

were benign occupancies and 468 were malignant occupancies. 

 

5.1 Mean average accuracy 

 

The accuracy of the liver occupancy detection algorithm for 

a given liver occupancy category A is calculated by the 

following formula: 

 

( )

( )

A

A

A

N TruePositivesTP
precison

TP FP N GroundTruths
= =

+

 

 

The average accuracy AP value refers to that under the 

assumption that each MRI image on the test set contains true 

annotations for all categories, the average accuracy of category 

A is the sum of the accuracies of all MRI images on the test 

set for category A over the number of all images containing 
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true annotations for category A. Following is the equation. 

( )

A

A

A

precision
average precision

N total images
  =

  



The mean average precision is then the expectation of the 

AP value for all categories, expressed by the following 

formula: 

( )

A

average precision

mean average precision
N classes

  

    =


(a) The original Faster R-CNN

(b) The improved model in this paper

Figure 7. PR curves for evaluating the performance of Faster 

R-CNN on MRI liver datasets

In addition, the magnitude of the mAP value is often 

calculated by plotting the precision-recall (PR) curve during 

the actual calculation. Figure 7 and Table 3 show the 

comparison of the evaluation results between the improved 

Faster R-CNN model and the original Faster R-CNN model in 

this paper on the constructed MRI liver occupancy dataset. 

As shown in (a) of Figure 7, the original Faster R-CNN did 

not detect and classify benign occlusions well (AP=0.648) 

because the benign occupancies themselves had a small 

dataset and were not easily identified due to their small size. 

The original model, however, had a high detection accuracy 

for the majority of malignant tumours (AP=0.842), suggesting 

that the original Faster R-CNN was more impacted by inter-

class imbalance. The improved model ((b) in Figure 7) used 

data augmentation to improve the interclass imbalance, used 

CondenseNet to improve the feature extraction performance, 

custom designed anchors to match the lesion size, and did 

transfer learning pre-training. After these, the improved model 

achieved a more balanced detection and classification 

performance for benign and malignant tumours, with the mAP 

value improving from the original 0.745 to 0.848 (see Table 

3). 

Table 3. Comparison of the mAP of the original Faster 

RCNN model and the improved model in this paper 

Models 
Benign 

occupancy (AP) 

Malignant 

occupancy (AP) 
mAP 

Original Faster R-

CNN model 
0.648 0.842 0.745 

Improved Faster R-

CNN model 
0.823 0.873 0.848 

5.2 Receiver operating characteristic (ROC) curve 

(a) FROC curve of the original Faster R-CNN model

(b) FROC curve of the improved Faster R-CNN model

Figure 8. FROC curves of the original Faster R-CNN model 

and the improved model in this paper 

The ROC Area Under the Curve (AUC) is an evaluation 

metric frequently used in target detection classification. Due 

to the specificity of medical tasks, it is often necessary to 

obtain a high recall and sensitivity in prediction to avoid 

missing malignant patients, hence false positive predictors can 

be tolerated to some extent. Therefore, for the target detection 

problem on medical images, FROC, a variant of the ROC 

curve [34], is commonly used to evaluate the predictive 

performance of the model. FROC replaces the false positive 

rate on the horizontal axis with the mean number of false 

positives in the image, allowing the FROC curve to represent 

the level of recall and sensitivity that can be obtained at what 

level of false positives. Figure 8 shows the FROC curves and 

their AUC values for the original Faster R-CNN model and the 

improved model in this paper. 

The FROC curves in Figure 8 above and the results in Table 

4 are the prediction results based on a uniform distribution of 

100 threshold points between 0 and 1 as IoU thresholds on the 

dataset of this paper. Compared with the original Faster R-

CNN model (Sen = 0.912 when FP = 0.432), the improved 

model can obtain a higher sensitivity peak at a lower false 

positive rate (Sen = 0.948 when FP = 0.402), and the 

sensitivity of the improved model is higher than that of the 
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original Faster R-CNN model at the same false positive level. 

The sensitivity of the improved model was higher than that of 

the original Faster RCNN model at the same level of false 

positives. In addition, we extended the maximum value of the 

horizontal coordinate of the above FROC curve to 1 and kept 

the maximum value of the vertical coordinate unchanged to 

calculate the AUC value of the FROC curve. The 

corresponding AUC values of the original Faster R-CNN 

model and the improved model in this paper were 0.848 and 

0.926, respectively. The above findings suggest that the 

improved Faster R-CNN model can help improve the 

performance of the Faster R-CNN model for liver occupancy 

detection and benign and malignant classification on MRI 

liver images. 

 

Table 4. Comparison of the sensitivity of the original Faster 

R-CNN model and the improved model 

 

 
Original Faster R-

CNN model 

Improved Faster 

R-CNN model 

Sensitivity of liver 

occupancy detection 

(FP=0.125) 

0.846 0.891 

Sensitivity of liver 

occupancy detection 

(FP=0.25) 

0.879 0.928 

Highest sensitivity for liver 

occupancy detection 
0.912 (FP=0.432) 0.948 (FP=0.402) 

 

 

6. SUMMARY 

 

With the development of medical big data and MRI imaging 

technology, liver MRI has a higher sensitivity and cancer 

detection rate than CT examination, making early detection 

and diagnosis of liver cancer possible. Based on this, this paper 

first constructs a standard dataset for early detection and 

diagnosis of liver cancer in collaboration with relevant 

hospitals to overcome the current lack of MRI liver datasets in 

the field for carrying out research work on a computer-aided 

detection and diagnosis system for MRI of liver cancer. 

Wavelet-based soft threshold denoising is then used in the 

image pre-processing work to remove imaging thermal and 

physiological noise from the MRI images. The dataset is then 

annotated with the location of the lesion and its benignity or 

malignancy on each image, under the guidance of a specialist 

radiologist. In addition, to increase the data volume of the 

dataset, this paper uses an image geometric transformation to 

augment the original data, increasing the image texture 

information embedded in each image and the overall dataset 

data volume. The paper then proposes a computer-aided 

detection and diagnosis system based on the improved Faster 

R-CNN algorithm. The experimental comparison with the 

detection results of the original Faster R-CNN model 

demonstrates that the method in this paper achieves higher 

detection sensitivity on the constructed MRI standard dataset. 

This research paper provides a second suggestion to improve 

the efficiency of radiologists, meet the radiologists' need for 

reading images, and helps physicians for early diagnosis of 

liver cancer. 
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