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The identification of faults in machinery is a very emerging trend. In the last few decades, 

regenerative tool chatter and its adverse effects have been explored by many researchers. 

However, a lot of work has to be done within this domain. A new methodology has been 

presented in the present work to determine the chatter severity while machining. The 

methodology has three stages. In the first stage, numerous experiments have been carried 

out, and associated signals have been captured. Thereafter, in the second stage, 

preprocessing of the recorded signals have been done using “ensemble empirical mode 

decomposition” to filter out the contaminations from the signals. The intrinsic mode 

functions have been further evaluated using statistical indicators viz. chatter index and 

absolute mean amplitude. In the third stage, these statistical indicators have been examined 

concerning the input parameters to identify the variation in the responses and chatter 

severity. The proposed methodology seems helpful for the researchers to identify the chatter 

features concerning variation in input parameters. 
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1. INTRODUCTION

Mechanical systems and signal processing techniques have 

been together for the last decade. The signal processing 

techniques help in identifying faults in machinery. Various 

researchers have adopted signal processing techniques to 

identify faults in machinery [1-7]. A crucial stage in the 

diagnosis of any defect is the choice of signal processing 

methods. The technique chosen often depends on the signal 

type and features we are trying to extract [8]. The signals are 

categorized into two main forms viz. “stationary signals” and 

“non-stationary signals” [9]. To record these signals 

researchers have used various contact and non-contact type 

devices [10]. However, one of the researchers compared 

various available contact and non-contact type of devices and 

found that the noncontact type of microphone is best suitable 

for recording the signals [11]. Moreover, he has also added 

that the signals recorded from any such devices are 

contaminated by unwanted noise. These contaminations 

hinder the identification of exact features. Hence, it is essential 

to sieve these contaminations precisely so that the exact chatter 

features can be extracted. The features to be extracted can be 

associated with anything like, wear, breakage, chatter, cracks, 

etc. depending on the process that we aim to monitor. The 

turning procedure of the current work was carried out using a 

“CNC lathe”. For understanding the need for feature extraction 

and monitoring of the system, it is required to understand the 

regenerative chatter phenomenon. A single point cutting tool 

is used to manage the workpiece during turning operations. 

Throughout the process, the workpiece is rotated with the 

desired speed and the tool is fed forward as shown in Figure 1. 

Figure 1. “Turning operation with acquisition setup” 

The cutting is assumed to be orthogonal and the tool is much 

harder than the workpiece. Now, talking about the quality of 

the workpieces, numerous researchers have reported that the 

composition of the work product can never be homogeneous 

[12]. This variation in the composition results in regenerative 

chatter [13]. The wavy profile generated due to this 

regenerative chatter increases the surface roughness as shown 

in Figure 2. Figure 1 also consists of a workpiece that is placed 

inside a chuck the workpiece rotates clockwise. Moreover, the 

tool is placed in such a way that the single-point cutting tool 

can machine the workpiece successfully. In the machining 

vicinity, a microphone has been placed. The microphone is 

further attached to a laptop for recorded and processing of the 

signals. 
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Figure 2. “Mechanism of chatter regeneration” 

 

 
 

Figure 3. Proposed methodology 

 

This chatter obstructs the surface finish of the workpiece. In 

the present work, the signals resembling the regenerative 

chatter have been taped using the microphone. These recorded 

signals can be of four types; “stationary and linear”, 

“stationary and non-linear”, “non-stationary and linear”, and 

“non-stationary and non-linear”. In the past, most researchers 

have considered these recorded signals as either stationary and 

linear [14-17] or non-stationary and linear [18-20]. Only a few 

researchers have considered these signals as non-stationary 

and nonlinear [21-23]. From the literature, it has also been 

reviled that in real working conditions the recorded signal can 

never be stationary. Hence, the signals are always non-

stationary and nonlinear. In the case of non-stationary and 

non-linear signals, the most frequently used methods are 

“Hilbert Huang Transform (HHT)” [24-26], “Empirical Mode 

Decomposition (EMD)” [24, 27-29], and “Ensemble 

Empirical Mode Decomposition (EEMD)” [30-32]. It has been 

already reported by the researchers that among these three 

techniques EEMD is the most suitable one [8]. Despite the 

effort done in this field, there are still many unexplored angles. 

The work done regarding the use of EEMD for chatter signals 

is concentrated on the evaluation of either chatter frequency [8, 

32] or focused on the identification of a “stable cutting zone” 

[9]. To the authors' knowledge, no research on the assessment 

of chatter severity based on EEMD has been reported. 

In the current work, turning operations were carried out on 

a CNC lathe, and signals were captured using a “microphone”. 

The captured signals are then decomposed in filtered using 

EEMD. The obtained “intrinsic mode functions” have been 

analyzed and used statistical indicators to identify the “chatter 

severity”. Moreover, a flow chart has been drawn 

demonstrating the proposed methodology as shown in Figure 

3. In Figure 3 the process starts from the selection of the 

machine/tool and the machining parameters. Thereafter, the 

experiments have been performed by selecting the levels and 

design of experiments. While performing the experiments the 

signals have been recorded. These “recorded signals” have 

been decomposed using EEMD. The “decomposed signals” 

have been evaluated using a statistical approach through which 

the chatter severity has been obtained. 
 

 

2. MATERIALS AND METHOD 
 

2.1 Materials 

 

In the present work, AISI 1018 “low carbon steel in the form 

of a bar” has been used. The dimension of the bars is, Length: 

90 mm, Diameter: 30mm. These bars have been machined 

using CNC trainer lathe MCL10 (operation used is turning 

operation). Table 1 shows the cutting condition. Table 2 shows 

the specification of the tool. Moreover, the specification of the 

microphone has been shown in Table 3. Figure 4 shows the 

actual machining setup. 

 

Table 1. Cutting conditions [33] 

 
S.no. Machining Parameters Level one Level two Level three 

1. “Depth of cut (d) mm” 0.5 1 1.5 

2. “Cutting speed (s) m/min” 150 200 250 

3. “Feed rate (f) mm/rev” 0.15 0.20 0.25 

 

Table 2. Tool specification [33] 

 
Cutting insert “Tungsten carbide” 

Insert dimensions “3/4″, 3/4″,1/4″ with 1/16″ nose radius” 

Tool holder “Carboloy MSDNN85-6, neutral shank with 450 

Side cutting edge angle” 

 

Table 3. Microphone specification [33] 

 
“Model” “AHUJA-AGN-480” 

“Specialty” “Unidirectional Microphone (dynamic)” 

“Frequency Response” “50-10,000 Hz.” 

“Sensitivity” “2.0 mV/Pa” 

“Impedance” “600 Ω” 

“Overall Length” “470mm” 

 

 
 

Figure 4. Actual machining setup 
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2.2 Methods 

 

In the present work, EEMD has been adopted in place of 

empirical mode decomposition [8]. In this method, the 

recorded signal (X) is first prepared by adding a known quality 

of noise to limit the riding waves and restrict the mode mixing 

phenomenon [8, 32]. The prepared signal has been named (Y). 

Thereafter the upper and lower extrema of the signal (Y) have 

been identified. These extremes have been used to identify the 

mean and the mean is then subtracted from the signal (Y). The 

obtained result has been termed (Z), which is also termed the 

first intrinsic mode decomposition (IMF 1). Now, this signal 

(Z) will be treated as (Y) and the same process will be repeated 

till the signal meets the criteria [34], to identify several (IMFs). 

These number of IMFs may vary from signal to signal 

depending upon the length of the signal and its associated 

pattern. The obtained IMFs have been further evaluated using 

statistical indicators viz. chatter index and absolute mean 

amplitude. 

Chatter index (CI) [33]:  

“Chatter index (CI)” refers to the deviance of amplitude 

from the mean [35]. The CI can be calculated using Eq. (1).  

where, N = length of the signal, μ = amplitude components. 
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Absolute mean amplitude (AMA) [3]: 

“Absolute mean amplitude (AMA)” is the average of the 

absolute value of chatter amplitudes. The AMA value has been 

calculated using Eq. (2). 
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where, ‘x(t)’ = signal. 

 

 

3. EXPERIMENTATION 

 

For recording the signals, some experiments were 

conducted. Different combination of input cutting conditions 

has been developed using the full factorial design. The 

developed full factorial design has been shown in Table 4. 

During each experiment, a microphone has been used to record 

audio signals. Thereafter, EEMD has been used to preprocess 

these recorded signals. The visualizing of the process, a 

preprocessed signal, and its IMFs have been shown in Figures 

5 and 6. Figure 5 shows the frequency transformation of the 

recorded signal. From the figure, it has been noted that the 

maximum amplitude is around 60 Hz. However, this peak can 

be due to chatter or other contaminations. Hence, to extract the 

chatter features and to sieve out the contaminations, EEMD 

has been used. Figure 6 shows the processed signal using 

EEMD, from the 13 IMFs any one of the modes may be 

responsible for chatter. Hence, to identify the mode. 

Frequency transform has been used. The IMFs have been 

transformed into the frequency domain.  

The transforms with maximum amplitude have been 

marked as these peaks resemble only chatter, The 

contaminations have already been sieved out using EEMD. In 

the same way, 27 different IMFs have been marked [35]. 

These amplitudes have been used to calculate the CI and AMA 

as listed in Table 4. Further, these responses (CI and AMA) 

have been analyzed to calculate chatter severity. 

 

Table 4. “Full factorial design and associated responses” 

 

Experiment 

No. 

Depth of 

cut, d 

(mm) 

Cutting 

speed, s 

(m/min.) 

Feed rate, f 

(mm/rev.) 
CI AMA 

1. 0.5 150 0.15 1.151 1.578 

2. 0.5 150 0.20 1.998 2.852 

3. 0.5 150 0.25 1.127 1.782 

4. 0.5 200 0.15 0.847 1.343 

5. 0.5 200 0.20 1.467 1.851 

6. 0.5 200 0.25 0.593 0.819 

7. 0.5 250 0.15 0.916 1.197 

8. 0.5 250 0.20 2.457 3.573 

9. 0.5 250 0.25 2.971 4.132 

10. 1.0 150 0.15 0.972 1.236 

11. 1.0 150 0.20 1.399 1.660 

12. 1.0 150 0.25 0.799 1.052 

13. 1.0 200 0.15 3.760 1.693 

14. 1.0 200 0.20 1.110 1.349 

15. 1.0 200 0.25 1.857 2.660 

16. 1.0 250 0.15 1.390 1.650 

17. 1.0 250 0.20 1.516 2.091 

18. 1.0 250 0.25 2.279 3.208 

19. 1.5 150 0.15 1.155 1.618 

20. 1.5 150 0.20 1.866 2.701 

21. 1.5 150 0.25 1.435 2.016 

22. 1.5 200 0.15 1.116 1.341 

23. 1.5 200 0.20 0.720 0.932 

24. 1.5 200 0.25 0.728 1.002 

25. 1.5 250 0.15 3.970 6.422 

26. 1.5 250 0.20 4.433 6.740 

27. 1.5 250 0.25 4.341 6.306 

 
 

Figure 5. Recorded signal and its frequency domain at depth of cut (d) 0.5 mm, feed rate (F) 0.15 mm/rev. and cutting speed (S) 

150 m/min 
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Figure 6. EEMD of the signal recorded at depth of cut (d) 

0.5 mm, feed rate (F) 0.15 mm/rev. and Spindle speed (S) 

150 rpm 

 

 

4. RESULTS AND DISCUSSION 

 

From the calculated data it has been found that both the 

responses CI and AMA follow a similar trend. Hence, anyone 

of the statistical indicator can be used for predicting the chatter 

severity. Moreover, to identify the trend of the responses a plot 

has been drawn as shown in Figure 7. 

 

 
 

Figure 7. CI versus AMA 

 

From the plot, it has been inferred that both the statistical 

indicators are resulting in the same trend. Moreover, to 

determine chatter severity, any statistical indicator can be used. 

Hence, in the present work, AMA has been used to identify the 

chatter severity. For evaluating chatter severity the calculated 

values of AMA have been sorted from higher to lower as 

shown in Table 5. The experimental run with the maximum 

value of AMA has been marked as maximum chatter or most 

severe chatter and the experimental run with a minimum value 

of AMA has been marked as least severe. 

From the table, it has been inferred that the experimental run 

26 has a maximum value of AMA. One of the reasons for such 

a trend is, that at experimental run 26 the value of depth of cut 

is maximum with the maximum value of cutting speed. This 

combination leads to inappropriate machining due to enhance 

power and excessive cutting force. Similarly, the lower value 

of AMA has been observed when the depth of cut is minimum 

with moderate cutting speed. Table 5 shows a severity chart 

for chatter. Through this, the combination of cutting 

parameters can be selected without calculating the surface 

roughness. Although the analysis is limited to the selection of 

the best cutting combination from the 27 experimental runs. 

Hence, to identify the best range of parameters concerning the 

minimum value of AMA, “response surface methodology 

(RSM)” has been used. A mathematical model has been 

constructed using the RSM. The developed model has been 

shown in Eq. (1). The developed model has been used to 

identify the trend for the entire range of input parameters from 

level 1 to level 3 as mentioned in Table 1. To identify the 

variations contour plots have been drawn as shown in Figures 

8-10. 

 

Table 5. Chatter severity 

 

Experiment No. 

Depth of 

cut, d 

(mm) 

Cutting 

speed, s 

(m/min.) 

Feed rate, f 

(mm/rev.) 
AMA 

26 1.5 250 0.2 6.74 

25 1.5 250 0.15 6.422 

27 1.5 250 0.25 6.306 

9 0.5 250 0.25 4.132 

8 0.5 250 0.2 3.573 

18 1 250 0.25 3.208 

2 0.5 150 0.2 2.852 

20 1.5 150 0.2 2.701 

15 1 200 0.25 2.66 

17 1 250 0.2 2.091 

21 1.5 150 0.25 2.016 

5 0.5 200 0.2 1.851 

3 0.5 150 0.25 1.782 

13 1 200 0.15 1.693 

11 1 150 0.2 1.66 

16 1 250 0.15 1.65 

19 1.5 150 0.15 1.618 

1 0.5 150 0.15 1.578 

14 1 200 0.2 1.349 

4 0.5 200 0.15 1.343 

22 1.5 200 0.15 1.341 

10 1 150 0.15 1.236 

7 0.5 250 0.15 1.197 

12 1 150 0.25 1.052 

24 1.5 200 0.25 1.002 

23 1.5 200 0.2 0.932 

6 0.5 200 0.25 0.819 

 

AMA = 25.8 -10.75 d-0.2700 +45.3 f 

+3.34 d d+0.000574 s s-143 f f+

0.0348 d s-8.9 d f+0.132 s f

s  

     

     

 (3) 

 

Table 6. Safe machining range 

 

Parameters d versus f d versus s s versus f 

Safe 

Machining 

Range 

d 0.75-1.20 0.50-1.30 - 0.75-1.20 

s - 150-225 150-225 150-225 

f 0.15-0.225 - 0.15-0.25 0.15- 0.225 
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Figure 8. Variation in AMA concerning the depth of cut and 

feed rate 

 
 

Figure 9. Variation in AMA concerning the depth of cut and 

cutting speed 

 

 
 

Figure 10. Variation in AMA concerning cutting speed and 

feed rate 

 

The obtained safe machining range resembles the best range 

of input parameters for the minimum value of chatter has been 

shown in Table 6. To verify the results the obtained safe 

machining range has been fed into the developed model. Some 

of the obtained validation results have been shown in Table 7. 

From the results, it has been found that the proposed 

methodology is significant. 

 

Table 7. Validation of safe machining range 

 
S.No. d s f AMA 

1. 0.75 150 0.15 1.492 

2. 1 175 0.20 0.988 

3. 1.20 225 0.225 2.647 

 

 

5. CONCLUSIONS 

 

The proposed methodology deals with the evaluation of 

regenerative chatter. In the present work, experiments have 

been performed and audio signals have been recorded. The 

recorded chatter signals have been preprocessed using EEMD. 

Thereafter, the preprocessed signal has been evaluated to 

calculate chatter severity. In view of the strengths of the 

present work. The present work deals with the identification 

of a suitable safe cutting zone which is essential to be 

identified considering the regenerative chatter, which is very 

essential for increasing the productivity of the system. 

Moreover, there are certain limitations of the present work 

which include, regressive experimentation and wastage of 

material while identifying the suitable range of input 

parameters. Furthermore, while performing the 

experimentation, if any error occurs the repetition rate should 

be increased which again invites the wastage of resources. 

The key outcomes of the works are: 

1. The audio signals of regenerative chatter can be processed 

successfully using EEMD. 

2. The calculated values of CI and AMA follow the same 

trend. 

3. From the 27 experiments, AMA is minimum for 

experimental run 6. The corresponding value of AMA is 

0.819. 

4. For the given range of input parameters, the preferable 

range of depth of cut is 0.75-1.20 mm; cutting speed is 

150-225 m/min.; and feed rate is 0.15-0.225 mm/rev. 
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