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In recent years, the healthcare sector has seen an increase in the use of medical images and 

videos. However, storage and transmission of this huge volume of data remain a challenging 

task, requiring the use of compression techniques. In this paper, the authors propose an 

algorithm to improve the visual quality of compressed medical video for lower bitrate 

without modifying the content of information such as edges and textures, this is a unique 

way for doctors to store and share medical data over the internet. The algorithm has not yet 

been sufficiently explored in medical video coding. In this study, the performances of the 

quincunx wavelet transform (QWT) combined with the set partitioning in hierarchical trees 

(SPIHT) encoder are discussed. The QWTs were chosen due to their limited number of 

wavelets family and reduced dilatation factor. The high efficiency of the suggested 

algorithm is checked against the coding standard based on the discrete cosines transform 

(DCT) or discrete wavelet transform (DWT). The assessment of the quality of the decoded 

video is based on the use of the peak signal to noise ratio (PSNR), the mean structural 

similarity (MSSIM) and the visual information fidelity (VIF). The results prove that the 

QWT+SPIHT provide competing performance where the PSNR reached 33 dB value for 

lower bitrate (137.408 Kbps) against previous standards. 
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1. INTRODUCTION

The advancement of communications technology has been 

substantial in recent years, and this will rapidly saturate 

transmission systems through a network with limited 

bandwidth. Camastra and Vinciarelli [1] have illustrated that 

this problem is primarily caused by the repetitive and 

unnecessary data in image and video which are presented as 

spatial and temporal redundancies. Challapali and Nocture [2] 

proved that the compression of information is the only real 

solution to significantly reduce the voluminous of information, 

and was firstly applied in video compression for digital 

television, based principally on the minimization of the 

redundancy of data as much as possible without being obvious 

to the human eye.  

The coding of frames can be either in the INTRA encoding 

mode where exploits spatial redundancy without making any 

connection to previous frames in the video frame or in the 

INTER coding mode where exploits temporal redundancy 

based on motion estimation techniques. Each mode can be 

used in the lossless compression and lossy compression. 

Alzahir [3] proved that the lossless compression is the only 

type of compression tolerated for textual data. This is because 

lossless compression can guarantee the integrity of the data 

and avoid errors. However, this type of compression does not 

offer any significant reduction of the data. In this context, Chai 

and Bouzerdoum [4] have successfully demonstrated that the 

lossy compression may be the most appropriate response, 

provided that the losses do not damage the content of the frame. 

In general, lossy compression which is based on transform, 

thresholding/quantization and entropy coding has known an 

importance by several international video coding standards, 

for example, the first is the International Telecommunications 

Union (ITU) where are responsible for publishing the H.26x. 

The second is the International Organization for 

Standardization (ISO) publishes the MPEG (Motion Picture 

Experts Group) a set of requirements. 

Figure 1 shows the direct general video compression 

scheme. The transformation is a linear, decorrelating and 

spatial transformable to cancel spatial redundancies. Allows 

information to be concentrated in a reduced number of 

coefficients. The choice of transformation is crucial; 

especially that it is principally responsible for the 

computational complexity. Usually is based on the use of the 

discrete cosine transformation (DCT) which generates 

matrices of 8 × 8 size. The thresholding and quantization 
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process involves zeroing out the coefficients that fall below a 

preset threshold and quantizing the ones that remain. This 

reduces the perceivability of the blocks on the recreated frame, 

as the eye, although not very perceptive to subtleties, it is 

extremely sensitive to slight brightness variations in consistent 

zones. The entropy coding based on selection the of the best 

possible part of the lengthy series of zeros created by 

quantization and zigzag scanning; the zeros are coded first, 

followed by the non-zero value, thus reducing the statistical 

redundancies in the amount of information to be transmitted. 

 

 
 

Figure 1. The general direct video compression scheme 

 

Motion estimation and compensation has an important part 

in reducing temporal redundancy for the video coding systems. 

The current frames are predicted based on the previous or 

future frame known as references frames. Each frame is 

divided into macroblocks (MBs). The search for similar MBs 

is done between current and reference frames. The distance 

between the MB of the current frame and the most probable 

position of the MB of the reference frame represented by a 

motion vector (MV), this distance reflects the exact 

coordinates of the reference MB to be encoded. 

In this work, the three-step search algorithm (TSS) [5] is 

used for mobility estimation of video sequences. 

On the other hand, the medical video has been attracted 

attention of doctors to diagnose incurable diseases based on 

the various advanced technologies that we can find for 

example in hospitals, medical imaging centers, telediagnostic 

systems, etc. However, this rapid evolution can be led to a 

considerable increase in the medical data, which can cause 

saturation in transmission and storage systems. In order to 

avoid this problem, the standard coders were considered as a 

good solution to guarantee data integrity. However, the above 

norms are not significantly desired in the reduction of the 

volume of medical data. The only explanation is due to the 

transformation type. 

To eliminate duplication, the most common coders are often 

based on the DCT. However, due to the quantization the DCT 

introduces annoying ringing artifact around the edges where 

are can be clearly visible for lower bitrate values. This can 

affect directly the quality of the medical diagnosis. Tsai et al. 

[6] have confirmed that DCT is not suitable for medical video 

compression. 

The discrete wavelet transform has been used as an 

alternative to the DCT (DWT) which is known as the Mallat 

Pyramid scheme [7]. By using the DWT, smooth regions of 

the frame can be approximated very well with coarse 

approximation and detail wavelet coefficients. In the field of 

video coding, wavelets have been established as a very useful 

and effective tool. Ho et al. [8] have applied the DWT. The 

authors of this paper are used DWT in order to compress 

angiographic video rather than the DCT. This transform can 

drastically improve the compression efficiency. Haouam et al 

[9] have developed a method based on the active contour 

geometric model and a biorthogonal wavelet transform in 

order to get the best possible decrease in medical picture size 

without sacrificing quality. Hellel et al. [10] study the 

performance of video coding based on the second-generation 

wavelet transform. 

In general, all complexes geometrics in the frame of video 

present the most important information which are represented 

with high-valued detail coefficients. Nonetheless, despite the 

prominence of wavelets in a variety of sectors, weaknesses 

were found in their use for detecting and representing curve-

singularities. The cause is that its isotropic support is not 

optimal in the approximation of geometrical regularity. Theses 

basis are just dedicated to vertical, horizontal and diagonal 

directions and the other directions are killed. These 

characteristics are common to the majority known wavelet 

bases. 

For this, the recognition of the geometric regularity with an 

adapted transform in frame representation is a major challenge 

to improve state-of-the-art video coding. Recent work shows 

that it is possible to define multi-scale representations known 

as the second generation of wavelets (or X-let families) more 

suitable for extracting intrinsic complex geometrical structures 

and devoted to enhancing the quality of videos. In particular, 

the ridgelet transform [11]. Unfortunately, the ridgelet 

transformation is only effective for characterizing straight 

contours rather than contours in an image, which are rarely 

straight. Candès and Donoho [12] have proposed a new 

representation in 2D space called curvelets, which provides a 

very elegant mathematical solution to adapt to the regularity 

of the images. The image support is first partitioned into 

squares of variable size. These squares are then decomposed 

by a discrete ridgelet analysis. The contourlet transform [13] 

was introduced by Do and Vetterli. The Laplacian pyramid 

with non-separable directional filter banks is applied on image. 

Then, a bank of directional filters is used on each level of the 

pyramid, which allows multi-directional analysis. 

Recently, other adaptive approaches have been introduced, 

these approaches have greater flexibility than the non-adaptive 

approaches mentioned above. This is called adaptive 

geometric wavelets. For example, the bandelet transform were 

exploited for the first time by Le Pennec and Mallat [14] to 

detect all complex geometric in the image. The transform, 

known as the first-generation wavelet, is based on the 

wrapping of a wavelet basis to make horizontal (respectively 

vertical) directions along with the geometrical flow of frame 

gradients. However, the deformation leads to the appearance 

of the effect of boundary artifacts. In addition, the same 

authors have defined in the study of Peyré and Mallat [15] the 

second generation of bandelet where the 2D wavelet 

coefficients are reordered and followed by a 1D wavelet 

transform. The bandletization is used to remove the 

redundancy caused by wavelet and geometrical regularity. 

This type of transformation has known other applications not 
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only on images but is also extended to video compression. In 

particular, Habchi et al. [16] have extended the bandelet basis 

to deal with medical videos. Beladgham et al. [17] have 

investigated the lifting bandelet transform for medical video 

compression. 

The transform described above has proven its effectiveness 

in the precision encapsulation of complex geometries with 

non-redundant representation when it comes to objective 

measures and visual quality. However, this type of 

transformation is based on several complicated steps, among 

which we can mention in particular the quadtree 

decomposition where the difficulty of parameterization leads 

to a very high computation time and therefore a high 

algorithmic complexity. To overcome the above cited 

constraints, we present in this research, a novel multi-

resolution decomposition that is relied on local adaptive 

transform prior to video coding. 

The type of transformation where we would like to suggest 

is known by quincunx wavelet transform (QWT) where it is 

especially interesting, offer more freedom and can be adapted 

to the local properties of the of video. 

The novelty in the proposed approach is the enhancement 

of visual quality of reconstructed medical video for lower 

bitrate across the combining of the QWT with SPIHT encoder 

(QWT+SPIHT). 

The following is how this document is structured. In Section 

(2), the separable wavelet transform is described. The 

quincunx wavelet transform is discussed in Section (3). 

Section (4) briefly comments on the encoder processing. 

Sections (5) and (6) describe the suggested algorithm in depth, 

it includes the outcomes of the coding performance 

comparison. 

 

 

2. NON-SEPARABLE WAVELETS 

 

Basically, each rectangular dyadic blocks of wavelet 

decomposition for n-level is called the subband coefficients. 

The finest level represents the highest frequency subbands 

(LH1, HL1, and HH1). On the contrary, the coarsest wavelet 

level represents the lowest frequency subbands (LLn, LHn, 

HLn, and HHn). Obviously, the edge and texture are shown 

for high frequency subband. 

The specific features that characterize the wavelet such as 

the support size, the regularity, the symmetry, orthogonality, 

biorthogonality, etc., have made it required in many 

applications. 

However, despite the huge success of wavelets, weaknesses 

were found in their use for contour detection. In order to 

overcome this problem, we suggest using the non-separable 

wavelet known as the quincunx wavelet transform (QWT) 

more adapted to the content of frames. Figure 2 illustrates this 

type of transform compared to the wavelet decomposition. 

Beladgham et al. [18] have proved the efficiency of this lattice 

in the enhancement of medical image compression. 

The success of the QWT is due to its characteristics for 

example the value of the dilatation factor is √2 instead of 2 

between two subsequent resolutions. Then, the only one 

wavelet is used instead of three wavelets. 

The typical two-dimensional discrete wavelet transform's 

rectangular sampling matrix is substituted with the quincunx-

sampling matrix, where the dilatation matrix is defined by:  

 

1 1

1 1
M

 
=  

−   

(1) 

 

This dilatation matrix is the composition of rotation by 
4


 

with multiplication by √2. The quincunx lattice defined by a 

number of vectors d0, d1, …, dn. For this lattice the two 

defining vectors used are [19]: 
1

0 1
d

 
 
 
 

=  and 
1

1 1
d

 
 
 
 

=
−

. 

We note that [ ]x n  with 2( , )1 2
Tn n n=    is the discrete 

signal on the initial grid. Where, 
11,
2

TD D D D−= = , the 

quincunx decimated version of [ ]x n , is defined as 

x[n]=x[Dn]. 

The two-dimensional Z-transform of [ ]x n  is denoted by 

2( ) [ ] nX z x n zn
−=   , where 1 2

n nnz z z= . 

The continuous 2-D Fourier transform is then given by 
( , )2( ) [ ]

j j n
X e x n en

 −
=     with ( , )1 2  = . 

The discrete 2-D Fourier transform for [ ]x n  given on an N 

× N grid (n1, n2=0, 1, …, N-1) by: 

2 ( , )/2[ ] [ ]
j k n N

X k x n en
−

=   , with (k1, k2=0, 1, …, N-

1). 

 

 
 

Figure 2. The third hierarchical wavelet decomposition and quincunx iterations 

1193



The quincunx sampled version of [ ]x n  is given by: 

 

[x] [n] x[M n]
M

=
  

(2) 

 

The down-sampling matrix M is such that M2=2I, where I is 

identity matrix. The relation in the Fourier domain is given by: 

 

T T1 jM j(M )
[x] [n] X (e ) X (e )

M 2

− −  + 
 +     

(3) 

 

where ( , )  = . The up-sampling is defined by: 

 

1x[M n], when n n is even1 2[x] [n]
M 0 elsewhere

−    +      
 = 

  

(4) 

 

An example of the quincunx lattice sub-sampling for 2 

iterations is shown in Figure 3. 

 

 
 

Figure 3. The quincunx lattice sub-sampling for two 

iterations 

 

Therefore, based to the previous formula of the down-

sampling and up-sampling we get in the Fourier domain: 

 

( ) ( )1 j jX e X e
2

[x] [ ]
M M

   ++  
  

  =
   

(5) 

 

The quincunx filter bank structure consists of low-pass 

analysis filter H0, high-pass analysis filter H1, low-pass 

synthesis filter G0, high-pass synthesis filter G1, M  down-

samplers, M  up-samplers and M is the quincunx 

decimation [20] where are typically applied in a recursive 

manner as shown in Figure 4. 

The frequency responses of quincunx low-pass analysis 

filters are illustrated in Figure 5. 

On the basis of Eq. (5) we define the conditions for a perfect 

reconstruction as follows: 

 

H(z)H(z) G(z)G(z) 2

H( z)H(z) G( z)G(z) 0

 + =


− + − =  

(6) 

 

Thus, the quincunx filter is given by the following 

formula: 

 

( )

( ) ( )

2
2 2 cos cos1 2jH e

2 cos cos 2 cos cos1 2 1 2

 
 
 



+  +  =  
+  +  + −  − 

 

(7) 

 

α: the order parameter. 

 

 
 

 
 

Figure 4. The quincunx filter bank structure for L-level. (a) 

The quincunx analysis side, (b) The quincunx synthesis side 

 

 
 

Figure 5. The frequency responses of quincunx analysis filter 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 6. Contour plots of the low-pass filter: (a) 2α = , 

(b) α=2.5, (c) α=π, (d) α=7 

 

The contour plot of the scaling filter is shown in Figure 6. 

As showed by this figure, the shape of the contour are clearly 
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centered, dilated around the centre and get smoother when the 

parameter order α increases. Therefore, the isotropy prove that 

no separable direction is given [21]. 

The orthogonal scaling function ( )x  that corresponds, 

is defined as  

 

( ) ( )2
2

x h k Dx k

k
  

 
  

= −

  
(8) 

 

And the formula of the orthogonal quincunx wavelet 

( )x  is: 

 

( ) ( )2
2

x g k Dx k

k

   
 
  

= −



 (9) 

 

 

3. SPIHT ALGORITHM 

 

Several sub-band encoders, such as the embedded zero-tree 

wavelet (EZW) [22] and set partitioning in hierarchical trees 

(SPIHT) [23], have recently been suggested. One of the most 

efficient lossy image coding techniques is the SPIHT 

algorithm. The SPIHT's performance can be attributed to the 

outstanding establishment of wavelet coefficients into spatial 

orientation trees. Essentially, the major advantages of SPIHT 

are: (i) the ability to provide high picture quality; and (ii) the 

ease of storing and progressive transmissions of significant 

coefficient. The transformation, quantization, and entropy 

coding are the principal basis of the SPIHT. 

Firstly, the DWT is applied to the image to generate the 

wavelet coefficients. The quantization and encoding are 

successively applied on the wavelet coefficients to produce the 

bitstream.  

In a finer level, all coefficients represent the descendants but 

in the coarse level are named parent. The four coefficients in 

the next level are referred to as children (or offspring). 

The SPIHT employs the following coordinate systems: 

O(i, j): a set of coordinates for each node's offspring (i, j). 

D(i, j): list of all node's descendants' coordinates (i, j). 

L(i, j): collection of all descendants omitting the node's first 

four offspring (i, j). Where L(i, j)= D(i, j)- O(i, j).  

The c(i, j) is called significant wavelet coefficient when c(i, j) 

≥T (T=2n
 is threshold at resolution n); otherwise, it is called 

insignificant wavelet coefficient. 

The significance is given by the following formula: 

 

( ) ( ) ( ) 1 max , 2
,

0 otherwise

nC i j
i j T

S Tn

  
= 

  

(10) 

 

The SPIHT arranges information into three arranged lists: 

A list of inconsequential pixels (LIP), a list of salient pixels 

(LSP) and a list of insignificance sets (LIS) with their type A 

set if it represents D(i, j) and type B set if it represents L(i, j). 

At the beginning, the LSP list of SPIHT is considered empty. 

In the coarsest level, the LIP list contains the all wavelet 

coefficients and its descendants are classified as type A in the 

list LIS. Respectively, the significant test is performed on the 

LIP, LIS and LSP list. In the sorting pass, the LSP list received 

the coded significant coefficients from the LIP list and LIS list. 

The LIS list's significant set is partitioned on the sets D(i, j) 

and L(i, j), which are progressively coded, and those that 

become significant are divided into subgroups. The following 

are the set partitioning rules: 

If D(i, j) is significant, then it is partitioned into the four 

single-element sets L(i, j) with (k,l) ∈ O(i, j).  

If L(i, j) is significant, then it is partitioned into four sets 

D(k,l) with (k,l) ∈ O(i, j). 

We accept that at the highest and lowest pyramid levels, we 

have O(i, j)={(2i, 2j), (2i, 2j+1), (2i+1, 2j), (2i+1, 2j+1)}. 

The end of the LIS list is filling with the coded sets L(i, j) 

and D(k,l). 

Finally, the refinement pass is performed for each 

coefficient in LSP list. In the next resolution, the algorithm 

repeats the above procedure. 

In this paper, the SPIHT is used to encode efficiently the 

produced quincunx coefficients. 

 

 

4. PROPOSED ALGORITHM 

 

The video is transferred from its source to its destination and 

it must be done in such a way that the quality of the video 

received is as close as possible to the quality of the video 

transmitted. For this, the high quality of the recovered medical 

video coding for low bitrate lies basically in the used transform. 

The QWT tries to achieve this goal. 

The principle of our proposed algorithm is to reduce both 

types of information redundancy in the data as much as 

possible, without of course being obvious to the human eye. 

The video coding can be divided into two main modes: The 

intra mode and the inter mode. 

In the proposed algorithm, the first and the last frame of 

medical video are coded in intra-coding mode, exploiting only 

spatial redundancy.  

The QWT is used as an alternative transform to the DCT in 

H.264 standard as is shown in Figure 7 that allows the 

information to be concentrated in a reduced number of 

coefficients at the cost of a loss that must be controlled and 

qualified. For each frame, the order parameter and the number 

of iterations are fixed. 

In order to control the bitrate, the quantization is applied. It 

is defined as the non-conservative compression step that 

reduces the amount of data contained in the transformed 

coefficients. The step consists on dividing each of the 

coefficients in a block by a quantization step and retaining 

only the entire part. The quantized coefficients are then 

rearranged and reordered in a one-dimensional vector by 

zigzag scanning to increase the efficiency of the next step 

(entropy coding). Finally, the quantized coefficients are 

entropy coded with SPIHT encoder and the generated bit-

stream is stored or transmitted. At the same time, the encoder 

constructs the frame to be used as a reference for the next 

frame. 

Once the first frame (frame I) is compressed, the predicted 

frames (frames P) are coded in inter-coding mode, exploiting 

only temporal redundancies.  

Based on the motion estimation and compensation, the idea 

is to predict the current or future frames from already coded 

frames. Usually, video frames are divided into smaller blocks 

non-overlapping. That is, motion estimation and prediction is 

applied at a block level rather than on the whole frame. It 

consists in coding frame in relation to the previous frame. For 

each instance we take the current image (target) block by block 

and we look for identical blocks in the previous image.
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(a) 

 
(b) 

 

Figure 7. The suggested quincunx lattice-based medical 

video compression block diagram. (a) H.264 standard, (b) 

Proposed algorithm 

 

The closest block is utilized as the predictor block. The sum 

of absolute difference (SAD) criteria is used to evaluate the 

match between blocks. There are others criteria such as 

maximum cross-correlation (MCC), mean squared error (MSE) 

and sum of squared difference (SSD) [24].  

The difference in position between the two blocks (target 

and reference) is called the motion vector (MV) obtained by 

motion estimation and then is coded as an intra frame. The 

location of the prediction block with respect to the current 

block is recorded through MV. 

The search is limited by a search window with a search 

parameter P which represents the maximum value of the 

displacement to be estimated. Thereafter, a scan of the search 

area is performed until the search is converged. Convergence 

is defined by the minimization of the above criteria. 

A comparison is made between the pixels of each macro-

block position in the search area; this operation is called Block 

matching. This procedure is repeated until all the macro-

blocks in the frame have been tested. 

Finally, a vector field is then obtained. The block matching 

methods can be classified according to the scanning strategy 

in the search window or according to the size of the block and 

the size of the search window. 

The search strategy and the dimensions of the search 

window and the block influence the computation cost. A large 

search window implies long calculations and a high risk of 

confusion of the searched block with a similar block. But as 

the size of the search window decreases, the estimated 

maximum displacement decreases. In the same way, when the 

blocks are large, the calculation cost is high, the spatial 

resolution is low and a block may contain pixels belonging to 

different objects. Conversely, a block that is too small may not 

contain enough discriminating information. 

The latter is another problem arises. In this context, several 

search algorithms have been proposed in order to ensure a 

better estimation of motion between blocks. There are many 

methods of Block matching that seek to optimize the 

efficiency and speed of these algorithms. Motion estimation 

based on full search (FS) is always preferable in video 

compression, but the complexity of calculation and the time 

consumed in this technique is so immense, so the search and 

exploitation of other fast search algorithms is necessary. 

In our algorithm, we have opted for the iterative algorithm 

named as Three Step Search (TSS) algorithm, which is one of 

the fast motion estimation methods proposed in the literature. 

The principle is to perform the search in several estimation 

steps. The point with the minimum SAD is used to calculate 

the new points to be tested. 

Note that the pixel differences between two blocks are then 

transformed, quantized and entropy coded. These frames are 

reconstructed and stored for future motion estimation purposes.  

The decoder works in the same way as the encoder, by 

executing the inverse actions of the encoder (entropy decoding, 

inverse quantization, inverse quincunx wavelet transform, etc.) 

to produce a decoded video sequence as close as possible to 

the initial sequence. 

Finally, an objective evaluation is made between the 

original and reconstructed video. 

The algorithm for enhanced compression of medical video 

is summarized in the following steps (Table 1): 

The additional steps required for the proposed method are 

shown in bold. 

 

Table 1. Proposed algorithm 

 

I. For each frame of medical video. 

I.1 Apply Intra-prediction mode.  

I.1.1 Apply the direct quincunx wavelet 

transform (DQWT). 

▪ Set the decomposition level, order parameter, 

the number of iterations and bitrate value. 

• Quantify the generated coefficients. 

• Apply SPIHT encoder.  

• Storing the reconstructed frame as a reference. 

I.2 Apply Inter-prediction mode.  

I.2.1 Based on DQWT, performs motion 

estimation and compensation.  

▪ Perform block matching algorithm (BMA).  

 Apply three step search algorithm (TSS). 

o Each frame is partitioned into smaller blocks. 

- Select the best matching block (prediction block).  

 Calculate sum of absolute difference (SAD). 

• Apply DQWT to the differences between 

current and predicted block. 

• Apply SPIHT encoder.  

• Storing the reconstructed frame for future 

estimation. 

I.3 Based on QWT and SPIHT, apply the inverse 

operations to the steps (1.1) and (1.2).  

II. Use objective assessment parameters (PSNR, 

MSSIM and VIF). 
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5. RESULTS AND DISCUSSION 

 

We investigate the performance of a suggested method 

based on lossy coding techniques at data rates ranging from 

137.408 to 300.936 Kbps to encode set medical videos on 

grayscale. Each sample is quantized at eight bits per pixel 

(bpp). 

The first and last frames are classified "I," and following 

frames are coded "P." All tested medical videos are taken from 

[25] where the variable characteristics are listed in Table 2. 

 

Table 2. Characteristics of all standards tested videos 

 
Medical Sequences The Number of Clips Clips Per Second (Hz) Width*Height Video Size 

Coronary angiography 

MRI brain  

Bladder cancer  

MRI-4chamber 

594 

144 

511 

87 

29.9700 

29.9700 

29.9700 

29.9700 

360*360 

240*240 

704*384 

340*336 

AVI  

AVI 

AVI 

AVI 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

 

Figure 8. Quincunx and wavelet decomposition example of 

the tested medical frames (Coronary angiography):  

(a) Original frame, (b) QWT for 2 iterations, (c) QWT for 4 

iterations, (d) QWT for 6 iterations, (e) QWT for 8 iterations, 

(f) DWT for 1 level, (g) DWT for 2,  

(h) DWT for 3 level, (i) DWT for 4 level 

 

Coronary angiography is a process based on the use of a 

special contrast product and X-rays to see how blood flows via 

the heart's arteries. 

Magnetic resonance imaging (MRI) creates precise images 

of the brain by using a high frequency sound wave. 

Bladder cancer affects the tissues of the bladder abnormally.  

MRI-4 chamber, characterized by its chambers of the heart 

(the atria and the ventricles). 

In Figure 8, the coronary angiography video is dissected for 

the maximum number of iterations via performing a quincunx 

transformation, presenting all quincunx coefficients. The key 

observation of this study is the prospect of lowering rates 

while maintaining acceptable video quality. 

The performance of the quincunx algorithm is proven with 

the biggest values of PSNR, MSSIM and VIF compared to the 

conventional algorithm for a low bitrate. 

 

5.1 The peak signal-to-noise ratio (PSNR)  

 

The PSNR is used to assess visual quality. The following is 

its definition [26]: 

 

( )
2

2 1
10 10

n -
PSNR = log

MSE

 
 
 
 
 

 (11) 

 

where, (2n-1) is the signal’s dynamic. In the typical situation 

of a picture, A pixel's components are saved on n=8 bits/pixel. 

MSE denotes the average squared distortion over image 

sequences, Specifically, the original frame f(i,j) and the 

recovered frame fr(i,j) of size M × N are provided by: 

 

( ) ( )( )
2

1 1

M N1
MSE = f i, j - f i, jr

MN i = j=
 

 

(12) 

 

5.2 The mean SSIM (MSSIM) 

 

Three major aspects are introduced by the SSIM index: 

luminance l, contrast c, and structure s  [27]. 

 

( ) ( ) ( ) ( )SSIM f,f = l f, f c f, f s f, fr r r r  
(13) 

 

The following equation defines the luminance comparison 

function l: 

 

( )
2 1

2 2
1

M M +Cx y
l x, y =

M + M +Cx y

 (14) 

 

where, Mx and My represent the signal's average intensity x and 

y defined by 
1

N1
M = xx iN i =

  and 
1

N1
M = yy iN i =

  

respectively. ,
2 2 1 2C = K D i = , ,i i  and Ki is a constant, 

such as Ki<<1 and D is the dynamic range. The following is 

the syntax for the contrast comparison function c: 

 

( )
2 2
2 2

2

σ σ +Cx y
c x, y =

σ +σ +Cx y

 (15) 
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where ( )( )
1 2

22

1 1

N1
σ = x - Mx xiN - i =

 
 

 
. 

The function s is a framework reference formulated as 

below: 

 

( )
( )+ +3 3

+ +3 3

σ C cov x, y Cxy
s x, y = =

σ σ C σ σ Cx y x y
 (16) 

 

2
3 2

C
C =  and cov(x,y) = Mxy-MxMy with 

1 1

N1
M = x yxy i iN - i =

 . 

As a result, the structural similarity (SSIM) index is 

expressed explicitly: 

 

( )
( )( )

( )( )
2 + 2 +1 2

2 2 2 2+ + + 2

M M C σ Cx y xy
SSIM x, y =

M M C σ σ Cx y x y1

 (17) 

 

where ( ) ( )
1 2

22

1 1

N1
σ = x y - Mi ixy xy

N - i =

  
  

  
. 

The average value of SSIM is needed as Mean SSIM 

(MSSIM): 

 

( ) ( )
1

L1
MSSIM f, f = SSIM f , fr i riL i =

  (18) 

 

where, 

fi: the original frame. 

fri: the recovered frame. 

L: the total of local windows number in frame. 

 

5.3 The visual information fidelity (VIF) 

 

Sheikh and Bovik [28] introduced the VIF for assessing 

picture quality. The VIF measure takes values between 0 and 

1, where 1 means perfect quality and is given by: 

The VIF metric is given a number between 0 and 1, with 1 

indicating ideal quality: 

 

( )

( )

j j j
I C ;F s

j
VIF =

j j j
I C ;E s

j





 (19) 

 

where, I(X;Y/Z) the conditional mutual information between X 

and Y, given z, 

C the arbitrary selection from one of the original image's 

channels, 

sj is a realization of Sj for a particular reference image. The 

realization sj could be thought of as “model parameters” for the 

associated reference image and the index j goes over all of the 

deconstructed image's sub-bands, E the visual signal, and F the 

test image. 

Figure 9 illustrates a comparison between the histograms of 

wavelet and quincunx coefficients number. Obviously, the 

larger coefficients values of complex geometric are shown for 

quincunx coefficients. This confirms that quincunx is a 

suitable transform for medical video coding. The biggest 

number of zero coefficients confirms that the wavelets killed 

all directions that are not horizontal, vertical and diagonal. 

 

 
 

Figure 9. Histograms of quincunx and wavelet coefficients 

number 

 

Figure 10 depict the obtained results for the coding 

Coronary angiography video using the QWT+SPIHT 

algorithm for different values of α (for 1.14, 2.5, 3.14 and 7) 

and levels (for 3, 4, 5 and 6) respectively. The results illustrate 

how the PSNR (dB) varies according to the level and α. The 

best values of objective parameters are for larger values of α 
(equal to 7) and decomposition level (equal to 5). It should be 

noted that the increase in α values over 7 can lead to the 

appearance of the ringing artefacts around the edges. 

 

 
(a) Decomposition level (equal to 3) 

 
(b) Decomposition level (equal to 4) 
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(c) Decomposition level (equal to 5) 

 
(d) Decomposition level (equal to 6) 

 

Figure 10. Coding results using the QWT+SPIHT algorithm 

for different values of order parameter and levels 

 

The suggested algorithm's efficiency has been demonstrated 

through comparison with the DWT+SPIHT algorithm based 

on the wavelet basis. Figure 11 shows the obtained results for 

the fixed values of α=7 and level = 5. 

Clearly, it can be seen that the QWT+SPIHT algorithm 

applied on the Coronary angiography video is outperform 

compared to the DWT+SPIHT. This is proved with the visual 

quality of the reconstructed video, where the objective 

parameters of the proposed algorithm are higher values at all 

bitrates. The gain in PSNR between QWT+SPIHT and 

algorithms DWT+SPIHT exceeds 4dB for all bitrates 

[137.408-300.938] Kbps. For example, the gain reaches 

4.0225 dB, 4.4227dB, 8.3966dB, 8.3413dB and 10.6053dB at 

300.936 Kbps, 238.888 Kbps, 197.304 Kbps, 149.192 Kbps, 

137.408 Kbps, respectively.  

On the other hand, the QWT+SPIHT algorithm is not only 

tested on the Coronary angiography but is tested on the set of 

videos such as Mri brain, Bladder cancer and Mri-4chamber 

(Figure 12). The obtained results show that QWT+SPIHT are 

significant and considerable over a wide range of bitrates for 

all tested videos. For example, at 137.408 Kbps, PSNR reaches 

34.38 dB for Coronary angiography, 17.72 dB for Mri brain, 

22.77dB for Bladder cancer, and 27.94 dB for Mri-4chamber. 

Obviously, in terms of the visual quality, the proposed 

algorithm confirms its improvement on the Coronary 

angiography video as shown in Figure 13 and Figure 14. Also, 

it is very important to note that the values of the objective 

parameters depend on the video type and the bitrate value. 

 
(a) PSNR 

 
(b) MSSIM 

 
(c) VIF 

 

Figure 11. Coding results using the DWT+SPIHT and 

QWT+SPIHT algorithms for the best values of order 

parameter and levels 

 

The all algorithms were established using MATLAB 

R2010a on an Intel(R) Core (TM): 3-5005U CPU@2.00GHz. 

Based on the results obtained above, we can say that the 

QWT+SPIHT algorithm with the adapted decomposition level 

and higher-order parameter α is more efficient for the 

detection of all complex geometries and the improvement of 

the visual quality of the medical videos.  

In the last part, we make a comparison between the 

efficiency of the suggested algorithm QWT+SPIHT and the 
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H.264 standard [29] for the first ten frames of the Coronary 

angiography video. 

 

  
(a) (b) 

  
(c) (d) 

 

Figure 12. Original medical video: (a) Coronary 

angiography, (b) Mri brain, (c) Bladder cancer, (d) Mri-

4chamber 

 

 
(a) 

 
(b) 

 
(c) 

 

Figure 13. (a) PSNR, (b) MSSIM and (c) VIF results based 

on the QWT+SPIHT algorithm tested for a set of medical 

videos 
 

  
(a) (b) 

  
(c) (d) 

 

Figure 14. Visual coding results using the QWT+SPIHT 

algorithm at 300.936Kbps for (a) Coronary angiography, (b) 

MRI brain, (c) Bladder cancer, (d) MRI-4chamber 
 

From Table 3 we can show significantly the outperform of 

QWT+SPIHT over H.264 for all bitrate values in term of 

objectives parameters and the encoding/decoding time. This 

means that QWT+SPIHT algorithm offer significantly higher 

coding quality for local lower bitrates. For example, at 

137.408 Kbps the gain in PSNR reaches 16.3057dB. This 

achieves the desired goal. 

The quality of reconstructed frames using DWT+SPIHT, 

H.264 and QWT+SPIHT are shown in Figure 15. The 

proposed QWT+SPIHT algorithm spends a short time and 

demonstrated its effectiveness in terms of computational time 

(include coding/decoding) compared to the H.264 standard for 

each bitrate values, as shown in the above table. Therefore, it 

is possible to help the doctors in the accurately detecting 

certain regions of specific importance (ROI) compared to the 

other regions. Thus, the QWT+SPIHT is expected to be 

effective for medical video compression applications. 
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(a) (b) (c) (d) 

 

Figure 15. Visual coding results for (a) Original Coronary angiography frames using (b) H.264, (c) DWT+SPIHT, (d) 

QWT+SPIHT at 300.936 Kbps 

 

Table 3. PSNR, MSSIM, VIF and coding/decoding time results based on comparison between the H.264 standard and 

QWT+SPIHT algorithm for the first ten frame of coronary angiography video 

 

Bitrate 

(Kbps) 

H.264 QWT+SPIHT 
Gain 

(dB) 
PSNR 

(dB) 
MSSIM VIF 

Coding/ 

decoding time 

PSNR 

(dB) 
MSSIM VIF 

Coding/ 

decoding time 

300.936 37.4098 0.9672 0.7285 39,152186 34.3843 0.9345 0.6127 6,70346 -3,0255 

238.888 33.7786 0.9464 0.6230 38,956255 33.9797 0.9319 0.5904 6,593523 0,2011 

197.304 30.7203 0.9255 0.5334 39,187627 33.7924 0.9306 0.5873 6,689195 3,0721 

149.192 20.1945 0.8623 0.2830 39,129597 33.5125 0.9246 0.5544 6,610732 13,318 

137.408 16.9791 0.8402 0.2141 39,09806 33.2848 0.9224 0.5477 7,846785 16,3057 

 

 

As a future study, more contributions can be made in 

coordination with various current studies such as Li and Chai 

[30], Zhao [31], etc. 

 

 

6. CONCLUSION 

 

In this paper, a low bitrate medical video coding system 

based on the quincunx wavelet and the SPIHT algorithm is 

proposed, namely QWT+SPIHT has been proposed. The 

redundant data are reduced drastically, and the quality of the 

video is enhanced without altering the content of the video. 

The quincunx wavelet provides additional flexibility and can 

be better tailored to frame content. All created quincunx 

coefficients are encoded using the SPIHT. The efficiency of 

the QWT+SPIHT is tested on the set of medicals videos. The 

results obtained on different bitrate show significant 

improvement compared to the conventional algorithms, 

especially for low bitrate values. The recovered video presents 

a subjective quality that is satisfactory for the medical field. 

Furthermore, our proposed algorithm spends a short time on 

coding and decoding operations. 
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