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Using deep learning techniques on radiological lung images for detecting COVID-19 is a 

promising technique in shortening the diagnosis time. In this study, we propose a hybrid 

deep learning model, detecting the COVID-19 and Pneumonia virus using Chest X-ray 

images. The proposed model, named SpiCoNET, first runs multiple well-known deep 

learning models combined with Spiking Neural Network (SNN) in order to identify the 

models with higher accuracy rates. Then, SpiCoNET combines the features of the two 

models with the highest accuracy rates among the well-known models and hands the 

combined features over to a different SNN layer as an input. Finally, the features are 

classified by using the SEFRON learning algorithm. The proposed hybrid deep learning 

model takes advantage of the features of the well-known models combined with SNN 

providing the highest accuracy rate. Moreover, the proposed model makes use of the 

SEFRON learning algorithm to provide better classification. The proposed model provides 

an accuracy rate of 97.09% for the classification of images of the COVID-19, Pneumonia 

and Normal, which outperforms AlexNet (91.27%) and DenseNet201 (90.40%). The results 

reveal that deep learning based systems for the identification of COVID-19 and Pneumonia 

can help healthcare professionals control the COVID-19 pandemic in an effective manner.  

Keywords: 

COVID-19, pneumonia, X-ray radiology 

images, spiking neural network, 

convolutional neural network 

1. INTRODUCTION

The COVID-19 virus was first seen at the end of December 

2019, which is spreading rapidly across the World [1, 2]. The 

COVID-19 pandemic goes on to demolish lives of the people 

and economies of countries all over the world, threatening our 

work, social relationship and health. It is stated by the World 

Health Organisation (WHO) that the COVID-19 virus is a 

derivative of the Middle East Respiratory Syndrome (MERS) 

and Severe Acute Respiratory Syndrome Coronavirus (SARS) 

viruses [3]. 

Early diagnosis of COVID-19 can be beneficial for 

countries and for timely referral and treatment of the patient to 

quarantine, as well as for the rapid connection of severe cases 

to the respiratory device and controlling the spread of the 

disease. Methods used to diagnose COVID-19 are real-time 

reverse transcription-polymerase chain reaction (RT-PCR), 

computed tomography (CT), and X-ray methods [4]. Although 

the RT-PCR method does not yield a high success rate in a 

patient’s diagnosis, it is a frequently used method in the 

detection of diseases [5]. CT and X-ray are also commonly 

used in the detection of COVID-19. However, due to a large 

number of harmful radioactive rays of CT scanning compared 

to X-ray method, the X-ray method is more often used in the 

diagnosis of the COVID-19. X-ray method is less harmful than 

CT scanning and is used as an easier and faster diagnostic 

procedure [6]. For these reasons, the use of X-ray images for 

the diagnosis of the COVID-19 is considered a convenient, 

fast and effective solution. Failure to detect the virus early and 

delay in treatment may lead to increased loss of life and an 

increased risk of infection [7]. 

Machine learning (ML) methods are now used as an 

indispensable solution for physicians [8]. Due to the limited 

number of radiologists in hospitals, diagnosis can be made 

with artificial intelligence techniques as a rapid and low-cost 

solution, thus reducing the workload of radiologists. While 

artificial intelligence (AI) methods play an important role in 

the detection of the disease, the existing AI methods need 

significant improvements to provide an accuracy rate similar 

to a radiologist. The development of artificial intelligence-

based diagnosis systems with much higher accuracy rates can 

aid in making well-informed decisions for effective diagnosis 

of COVID-19 in a rapid manner. Additionally, these 

techniques significantly reduce the cost of testing [9-11]. For 

these reasons, the use of X-ray images to diagnose COVID-19 

is considered a quick and effective solution. 

The diagnosis of diseases such as MERS-CoV and SARS-

CoV viruses which emerged before COVID-19 using X-ray 

images and ML techniques has been first studied in reference 

[12]. Many different ML applications have been also 

developed to strengthen the decisions on diagnosis as an 

alternative diagnosis tool [13]. ML techniques developed for 

the classification, recognition, and diagnosis of diseases 

provide promising results [14-17]. Deep Learning (DL), a 

special area of machine learning, provides automatic 

recognition performing end-to-end learning and using pre-

produced weights [18-21]. Compared to ML techniques, DL 

provides higher accuracy rates in addition to the less human 

interference, workload and short time requirement in the 

development phase [22-26]. 

Looking at the existing studies on Chest X-ray images, 

many different DL models have been used to diagnose 
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COVID-19. Transfer learning and fine-tuning methods in 

addition to DL methods, e.g., CNN, are exploited to detect 

COVID-19 [27-32]. Since these studies mainly focus on 

diagnosis of only the COVID-19, their accuracy rates are 

significantly high. However, the studies related to diagnosis of 

multiple diseases on the X-ray images have achieved much 

lower accuracy rates. To give an example, Ozturk et al. 

detected COVID-19 and Pneumonia on X-ray images using 

the DarkNet model with 17 convolutional and different 

filtering layers. The authors achieved a 98.08% accuracy rate 

for two classes (COVID-19, non-COVID-19), but 87.02% for 

multiple classes in their study [32]. Irfan et al. [33] made triple 

classification on both X-ray and CT images employing a 

hybrid method built using LSTM and CNN models. Their 

accuracy rate of 98.7% is much lower than our model’s. 

Almalki et al. [34], using Transfer learning and Random forest 

classifier, performed quadruple classification on the dataset 

containing 284 COVID-19, 310 Healthy, 330 Pneumonia and 

327 Viral-pneumonia images. They achieved the highest 

success rate 97.29% exploiting the Random forest algorithm. 

By using the augmentation method, Brunese et al. classified 

3520 Healthy and 3003 Disease-infected (including COVID-

19) X-ray images using the Transfer learning-Vgg16 model 

with 96% success rate. They also classified 250 COVID-19-

tagged images among 3003 infected images (other images 

were tagged with different infection diseases), and the 

performance was 98% for COVID-19 detection [35]. 

Although an augmentation method is employed, their model’s 

performance was lower than our study. Panwar et al. [36] 

achieved 97.62% accuracy rate in his two-class study on 142 

COVID-19 and 142 Healthy images using the Vgg-16 model. 

Their accuracy result was also lower than the detection success 

of the COVID-19 images using our model. Overall, when we 

look at the state of the art methods about disease detection on 

the x-Ray images, while they have limited success on two 

classes, they have a very low accuracy rate on the three class 

disease recognition. In this work we struggle to fill this gap.  

Toğaçar et al. [37] detect skin cancer by using disease 

images and also [38] make a weather forecast using aerial 

images by employing a method used in this study. Four 

different weather conditions images were exploited with 

GoogleNet and VggNet CNN models. The features are 

combined, then delivered to the SNN method. To achieve a 

higher success rate, a SWAT learning algorithm is employed 

to classify them. The results show that the highest success rates 

are in sunny and cloudy weather images (98.48%). While in 

our work we first run multiple well-known CNN models to 

find the best ones for a dataset, the work of Toğaçar et al. [38] 

runs only fix two CNN methods selected based on the 

experience. Moreover, in our work we prefer the SEFRON 

classifier versus SWAT classifier due to its superiority to 

SWAT according to Jeyasothy et al. [39]. Overall, the 

proposed model is unique in the state of the art both in the 

diseases detection and in other applications. 

It is clearly seen that deep learning-based hybrid studies 

provide higher accuracy rates for the classification of diseases 

on the X-ray images. One of the best examples of these models 

is the work proposed by Toğaçar et al. [38]. 

CNN+SNN+SWAT models were combined, thus providing a 

relatively higher success rate for the classification of the 

diseases [38]. Besides, a SEFRON-based study suggested by 

Jeyasothy et al. produces better results compared to the SWAT 

based learning algorithm and other learning algorithms [39]. 

Inspired by the result of reference [39], we consider that the 

COVID-19 detection studies' relatively low success rates can 

be increased. To this end, we build a hybrid model called 

SpiCoNET, which includes SEFRON-based SNN and CNN 

models. A CNN+SNN model using the SEFRON learning 

algorithm was applied on COVID-19 images for the first time. 

Furthermore, the features obtained from the CNN models with 

the best results were combined and delivered to the SNN layer, 

thus enabling the successful use of SNNs + SEFRON learning 

models. Such two techniques showing their success in the 

different areas are employed together to enhance the accuracy 

rate for the COVID-19 detection on the X-ray images for the 

first time in our work, which shows the uniqueness of the 

proposed model. 

In this study, since traditional CNN models and existing 

hybrid models provide a limited accuracy rate in recognition 

of the diseases on the X-ray images, we propose a hybrid deep 

learning model, named SpiCoNET, providing a much better 

accuracy rate in the classification of multiple disease classes. 

SpiCoNET first acquires the features produced by well-known 

CNN models combined with SNN. The features of the most 

successful two models among the well-known models are 

combined with a different SNN layer. Finally, to provide a 

better classification, SpiCoNET exploits the Synaptic Efficacy 

Function-based leaky-integrate-and-fire neuRON (SEFRON) 

learning algorithm. The extensive experimental results denote 

that SpiCoNET provides a considerably higher accuracy rate 

compared to well-known CNN methods combined with SNN. 

While the proposed method achieves 97.09% accuracy rate, 

the AlexNet and DenseNet201 provide 91.27% and 90.40% 

accuracy rates, respectively. In this study, COVID-19 and 

Pneumonia disease is diagnosed for the first time by using 

CNN + SNN + SEFRON method on X-ray images achieving 

high performance values. Analysis results show that the 

proposed model achieved 99.91% (COVID-19), 97.39% 

(Pneumonia), and 97.48% (Healthy) test success results for 3 

different classes. 

The remainder of the paper is organized as follows. 

Information about the dataset, model, method, and the 

proposed approach are given in Section 2. Experimental 

results are presented in Section 3. The Section 4 consists of the 

elaborated discussions. The paper is concluded in Section 5. 

 

 

2. BACKGROUND 

 

In this section, we will present the required information 

about technologies employed in construction of the proposed 

model. 

 

2.1 Convolutional neural network models 

 

Deep learning has become a popular method nowadays, 

especially in biomedical data classification [40]. CNNs are a 

specific type of deep neural network (DNN), which focus on 

image recognition. CNN models generally consist of 

convolutional, pooling, activation, normalization, flattening 

and classification layers. A convolutional layer with different 

properties (e.g., stride, size) is used to extract features from the 

images in the input layer. Pooling layers with different features 

(e.g., max, avg.) are used to reduce the enormous amount of 

numerical data and to obtain the most meaningful ones. 

Pooling layers not only reduce the data size but also reveal data 

blocks with different features. After the pooling layer, 

different activation methods (e.g., ReLU, Leaky ReLU, 
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sigmoid, linear, tanh) are exploited to reduce the numerical 

characteristics of the data. AlexNet [19], GoogLeNet [41], 

DenseNet201 [42], ResNet [43], InceptionNet [44], VggNet 

[45], ShuffleNet [46] are the best known methods with 

successful recognition results. However, the successes of these 

models vary depending on the data types and number and 

quality of the datasets. Using transfer learning techniques, 

CNN model could provide much better results and the training 

time could sharply decrease. 

 

2.2 Spiking neural network 

 

Spiking Neural Network (SNN) is an artificial neural 

network model, working like natural neural networks and 

mimicking synaptic states over time. The neurons in the SNN 

do not transmit data; instead, they enable other neurons to 

manipulate the value of the data. SNN triggers the propagation 

cycles of neurons and directly affects the increase and decrease 

of signal potentials of other neurons near these neurons [47]. 

 

 
 

Figure 1. Working principle of SNN 

 

If the triggering values of the neurons exceed the specified 

threshold value, triggering occurs; otherwise, the neuron is 

terminated. Upon exceeding the determined threshold value, 

the signal is processed, and a change in the signal value 

increase or decrease is observed. The SNN is shaped according 

to the increase or decrease in the signals. Sudden decreases and 

increases in neuron frequencies are seen as events, and these 

values are calculated as seen in Eq. (1) [48]. 

 

𝐼(𝑡) −
𝑉𝑚(𝑡)

𝑅𝑚

= 𝐶𝑚

𝜕𝑉𝑚(𝑡)

𝜕𝑡
 (1) 

 

In Eq. (1), 𝐼 is the current, 𝑉𝑚  is the voltage, 𝐶𝑚  is the 

capacitor, 𝑅𝑚  is the resistance, and 𝑡  represent time. SNN 

model has few outputs, and the data coming with these outputs 

are correlated. Each neuron deals with neurons close to it and 

takes into account its value. SNNs use the time concept for 

triggering. The values of dominant neurons become apparent 

with nearby neurons, and these neurons resemble the process 

of filtering windows in convolutional layers in CNN models. 

Generally, SNN architecture consists of input layer, gabor 

filters, spike coding, maxPooling and fully connected layers as 

seen in Figure 1 [48]. A linear Gabor filter is used to identify 

lesions found in x-ray images taken from the relevant dataset. 

Thus, edges extending in a certain direction are detected. 

Edges with similarity and proximity are combined with Spike 

coding to identify areas of regional lesions. These steps are 

repeated, resulting in growth in unrelated areas. The 

maxPooling layer is used to reduce areas that do not contain 

lesion information. Finally, the different parameters obtained 

are combined to be classified by the fully connected layer. 

SNNs produce new values based on time intervals instead 

of generating continuous values like artificial neural networks 

[49]. SNN uses different methods except for the Softmax 

classifier, which serves to classify the triggered neurons in the 

output layer. This study uses a new, time-varying, long-term 

Synaptic Activity Function-based leak-integrated and firing 

neuRON model (SEFRON) and spike-time plasti (STDP) 

learning rule [39]. The parameters used in the SNN model are 

given in Table 1. 

 

Table 1. Parameters and values of the determined spiking 

neural network model 

 
Parameter Value 

Number of receptive field neurons in the population 

encoding scheme 
6 

Presynaptic spike interval in milliseconds 3 

Postsynaptic spike interval in milliseconds 4 

Desired postsynaptic firing time in milliseconds 2 

Precision of time-step 0.01 

Learning rate of weight update 0.63 

Sigma of time-varying weight kernel in milliseconds 0.5 

The time constant of spike response function in 

milliseconds 
3 

Number of maximum epochs 100 

Time-constant of STDP learning window 1.7 

 

2.3 Synaptic efficacy function-based leaky-integrate-and-

fire neuRON (SEFRON) learning algorithm 

 

The synapse model needs different attributes and stimuli to 

generate both excitatory and inhibitory features and to model 

the data distribution in the feature space. The selection of 

synapses is fulfilled by looking at the ignition and warning 

value [39]. In Eq. (2),  𝑖.  mathematical calculation of the 

presynaptic jump time of the synapse is shown. 

 

𝐹𝑖 = {𝑡𝑖
𝑘; 1 ≤ 𝑘 ≤ 𝑛𝑖} (2) 

 

where, 𝑛𝑖: the total number of presynaptic jump fired by the 

𝑖𝑡ℎsynapse, 𝑘: firing order, 𝑡𝑖
𝑘: defined as the kth presynaptic 

firing time fired by the ith input neuron. Eq. (3) is used to 

calculate postsynaptic firing neurons as well as the presynaptic 

firing neuron of SEFRON [39]. 

 

𝑣(�̂�) = ∑ ∑ 𝜔𝑖(𝑡𝑖
𝑘) ∙ 𝜖(�̂� − 𝑡𝑖

𝑘)

𝑛𝑖

𝑘=1

𝑚

𝑖=1

 (3) 

 

where, the parameters used to calculate the postsynaptic 

potential of SEFRON; 𝜔𝑖𝑡: product of instantaneous weights 

in the network, 𝜖(𝑡) : immediate response function. The 

SEFRON neuron is determined by evaluating the sum of all 

instantaneous weights formed by the Eqns. (2) and (3). 

The postsynaptic spike is correctly classified by SEFRON, 

if the spike is within the desired firing range. Correctly 

classified instances are not used for the weight update of the 

network [39]. Removing unnecessary new information during 

the training phase improves generalization in data distribution 

between the classes.
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3. IMAGE DATASET 

 

The X-ray images used in this study were obtained from 

different sources to detect COVID-19 and Pneumonia diseases. 

Most of these images were obtained from open-access datasets 

derived by Cohen et al. [50, 51]. These images have different 

sizes (i.e., between: 240x320 px and 800x880 px), quality and 

features. There are also randomly selected images of COVID-

19, pneumonia and disease-free images of men and women. 

The created dataset has 162 COVID-19, 650 Pneumonia, and 

682 non-infection X-ray images. Since these images were 

collected from different countries and different health 

institutions, they have a lack of standard. However, they were 

converted to the same standards with image processing 

techniques. Images with different depth characteristics were 

converted to different (between 8-32) bit depth and gray 

formats. When the transformation phase of the images is done 

quickly, it does not cause any delay in real-time detection 

systems. After the necessary labeling process was done in the 

chest X-ray dataset, the images for the training and test stages 

of the proposed model were randomly converted into datasets 

to be used for 70% training and 30% testing. All images were 

labeled and converted into random datasets. Figure 2 shows 

preparation steps of the proposed method. 

As seen in Figure 2, images collected from different 

environments are left in a database and then pre-processed. 

Images with various sizes and properties are formatted to equal 

size with resize. Images are cropped at the edges that are 

irrelevant and affect performance. 

 

 
 

Figure 2. The preparation steps of the proposed model consisting of image processing, preprocessing dataset preparation and 

comparison stages 

 

 
 

Figure 3. The workflow of the proposed approach 

 

 
 

Figure 4. The block diagram of SpiCoNET built for the chest X-ray dataset 
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Table 2. Analysis of the results (%) obtained in the first step of the proposed model (CNN models and SNN model) 

 

CNN Models 
1000 Features 

Layers Name 
Num. of Features 

CNN 

Acc. 

SNN 

Acc. 
RoI Contribution of SNN (Up-Down) 

AlexNet FC8 1,000 88.95 91.279 2.62 Up 

DenseNet-201 FC1000 1,000 87.79 90.407 2.98 Up 

GoogLeNet Loss3-classifier 1,000 77.03 87.209 13.21 Up 

Inceptionv3 Predictions 1,000 70.64 89.244 26.34 Up 

NasNetMobile Predictions 1,000 65.7 86.628 31.85 Up 

ResNet-50 FC1000 1,000 86.63 86.337 -0.34 Down 

ShuffleNet Node_202 1,000 79.94 87.5 9.46 Up 

VGG-16 FC8 1,000 93.6 87.209 -6.83 Down 

 

 

4. PROPOSED MODEL 

 

In this proposed study, X-Ray images with different 

qualities are resized to provide single images. The proposed 

method consists of two steps. In the first stage, it runs the well-

known CNN models (e.g., AlexNet, DenseNet etc.) combined 

with SNN to see their accuracy rate results on the dataset. 

SpiCoNET selects two models with the highest accuracy 

rates to build a model used in the classification of chest 

diseases on the X-ray images. SpiCoNET employs the features 

of the selected well-known models to benefit from their feature 

extraction layers. By doing so, the proposed model exploits the 

feature extraction power of the well-known models. After that, 

by combining the features of the selected models, SpiCoNET 

hands them over a new SNN layer. The SNN model improves 

the feature extraction capability of the SpiCoNET by spiking 

the extreme features on the images. After the SNN layer, the 

proposed method makes use of a classifier method (SEFRON), 

which efficiently picks the neurons for better classification. 

The design of SpiCoNET is illustrated in Figure 3. 

In the proposed model, we aim at increasing classification 

performance by obtaining the features with high 

distinctiveness. To do this, in the first stage, accuracy results 

of multiple well-known models are obtained to select two 

models with highest accuracy rates. After finding the best two 

models for such images, SpiCoNET employs well-known two 

models permanently. The structure of the proposed SpiCoNET 

is demonstrated in Figure 4. 

The images contained in the dataset are used as input 

parameters of well-known models. The results of using these 

CNN models with SNN are examined. The selected well-

known models have two different fully connected layers 

containing 1,000 features. By combining these features, a new 

feature set with 2,000 features was created. In this way, 

efficient features are provided to contribute to the training of 

models by aiming to increase the success of the classification 

process. 

 

 

5. EXPERIMENTAL RESULTS 

 

In this study, a CNN & SNN-based hybrid model 

(SpiCoNET) is proposed for early detection of COVID-19 

disease using Chest X-ray images. The success of the proposed 

model is evaluated with performance metrics, i.e., recall, 

precision, F1-score. These metrics are calculated using the 

parameters True-Positive (TP), False-Negative (FN), True-

Negative (TN), and False-Positive (FP) [52-54]. 

The entire study is carried out on a system with a computer 

with an NVIDIA GeForce 8 GB graphic card, Intel© i5 - Core 

@3.2 GHz processor and 8 GB of memory. In addition, 

MATLAB is used as a simulation software. 30% of the dataset 

was used for the analysis of the study. 

 

5.1 Efficiency of the SNN on the CNN models 

 

The features derived from the two CNN models providing 

the highest accuracy results are fed to the SNN model in one 

dimension. Rate of Increase (RoI) is computed using the 

(𝐴𝑐𝑐𝐶𝑁𝑁) and (𝐴𝑐𝑐𝑆𝑁𝑁) according to Eq. (4). 

 

𝑅𝑎𝑡𝑒 𝑜𝑓 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒(𝑅𝑜𝐼) =
𝐴𝑐𝑐𝑆𝑁𝑁 − 𝐴𝑐𝑐𝐶𝑁𝑁

𝐴𝑐𝑐𝐶𝑁𝑁

· 100 (4) 

 

In the first step of the study, the dataset is trained and 

classified by CNN models (GoogLeNet, AlexNet, DenseNet-

201, ResNet, InceptionNetv3, VGGNet, NasNetMobile, and 

ShuffleNet). Then, the features obtained with the CNN 

modelsare used as the input parameters of the SNN model. 

While some CNN models present an increase in the success 

rates, the others introduce a decrease in the accuracy rates. All 

classification performance and parameters are shown in Table 

2. 

As seen in Table 2, pre-trained well-known CNN models 

are classified using different-named layers that provide 1000 

features. The VGG-16 and AlexNet models achieve 93.6% 

and 88.95% accuracy, respectively, in the FC8 layer. In the 

FC1000 layer, the DenseNet-201 and ResNet-50 models 

achieve 87.79% and 86.63% accuracy, respectively. 

Inceptionv3 and NasNetMobile models give the lowest results 

with 70.64% and 65.7% accuracy rates using prediction layers. 

Lastly, while GoogLeNet achieved 77.03% success with the 

Loss3-classifier layer, the ShuffleNet model achieved 79.94% 

success using the Node_202 layer. 

The results of the well-known CNN models are compared 

with the CNN + SNN models. The highest increase is in the 

NasNetMobile model (31.85%), followed by the Inceptionv3 

model (26.34%). The SNN model has a negative effect of 

6.83% on the VGG-16 model, although it has the highest 

accuracy itself. It also negatively affects the success of the 

ResNet-50 model by 0.34%. In this study, AlexNet and 

DenseNet-201 models introduced the highest success when 

used with the SNN models, 2.62% and 2.98%, respectively. 

According to the results, the features of AlexNet and 

DenseNet-201 CNN models give the highest success when 

used with the SNN model, 91.279%, 90.407%, respectively. 

In the light of the obtained results, we prefer employing the 

features of only two models with the highest success versus 

exploiting the features derived from all models in order to 

avoid the complexity. 2,000 features are acquired by 

combining the two models’ features before handing them over 

the SNN model. Thus, more efficient features were selected to 
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increase the success of the classification process and to 

contribute to the training of the models. Combined features are 

used as an input to a new SNN model. The classification 

results of COVID-19, Pneumonia and Healthy are denoted in 

the confusion matrix results shown in Figure 5. 

 

 

 
 

Figure 5. Confusion matrix representation of the results obtained with the CNN & SNN method (1. COVID-19, 2. Healthy, 3. 

Pneumonia); a) AlexNet & SNN, b) DenseNet201 & SNN, c) GoogLeNet & SNN, d) InceptionNet & SNN, e) NasNetMobile & 

SNN, f) ResNet-50 & SNN, g) ShuffleNet & SNN, h) VGG-16 & SNN 

 

 
 

Figure 6. Accuracy rate of examined CNN & SNN models; (a) AlexNet & SNN, (b) DenseNet-201 & SNN, (c) GoogLeNet & 

SNN, (d) InceptionNet & SNN, (e) NasNetMobile & SNN, (f) ResNet-50 & SNN, (g) ShuffleNet & SNN, (h) VGG-16 & SNN 
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Table 3. Detail analysis results (%) of CNN & SNN models of the experiment 

 
Method Classes Accuracy Precision Recall F1 Score 

AlexNet & SNN 

COVID-19 98.84 0.89 1.0 0.94 

Healthy 91.86 0.97 0.87 0.92 

Pneumonia 91.86 0.86 0.95 0.90 

DenseNet-201 & SNN 

COVID-19 96.51 0.68 1.0 0.81 

Healthy 90.99 0.97 0.85 0.91 

Pneumonia 93.31 0.89 0.95 0.92 

GoogLeNet & SNN 

COVID-19 95.93 0.62 1.0 0.77 

Healthy 88.37 0.98 0.81 0.89 

Pneumonia 90.12 0.82 0.95 0.88 

InceptionNet & SNN 

COVID-19 96.22 0.65 1.0 0.79 

Healthy 90.12 0.97 0.84 0.90 

Pneumonia 92.15 0.87 0.94 0.91 

NasNetMobile & SNN 

COVID-19 97.97 0.81 1.0 0.90 

Healthy 87.79 0.92 0.83 0.87 

Pneumonia 87.50 0.82 0.88 0.85 

ResNet-50 & SNN 

COVID-19 95.35 0.57 1.0 0.72 

Healthy 87.21 0.92 0.82 0.87 

Pneumonia 90.12 0.87 0.81 0.89 

ShuffleNet & SNN 

COVID-19 97.67 0.78 1.0 0.88 

Healthy 88.66 0.98 0.81 0.89 

Pneumonia 88.66 0.79 0.94 0.86 

VGG-16 & SNN 

COVID-19 98.34 0.89 1.0 0.94 

Healthy 85.47 0.90 0.80 0.85 

Pneumonia 86.05 0.79 0.88 0.83 

 

 

 
 

Figure 7. Performance graph of the proposed approach 

(SpiCoNET) on CNN & SNN architectures; (a) accuracy 

performance graph, (b) loss performance graph 

 

The confusion matrix of eight different analysis results is 

denoted in Figure 5. While class one and two contain images 

of lungs infected with COVID-19 and non-COVID-19, class 

three includes Pneumonia-infected lungs images. The test data 

includes 37 COVID-19-infected chest X-ray images, 157 

healthy chest X-ray images, and 150 Pneumonia-infected 

chest X-ray images. Table 2 shows that the highest success 

rates are achieved by AlexNet & SNN and DenseNet & SNN 

models. As seen in Figure 5 (a), while AlexNet & SNN model 

correctly detects 33 COVID-19-infected images, it incorrectly 

classifies two images, in which one of them is healthy and the 

other one is pneumonia-infected. Only five of 157 healthy 

Chest images were misclassified as pneumonia-infected. 

Twenty-one of the 150 Pneumonia-infected images were 

incorrectly predicted as healthy. As demonstrated in Figure 5 

(b), the DenseNet & SNN model introduces low success by 

misclassifying ten of the COVID-19-infected images as 

healthy, the other two as pneumonia-infected. Sixteen 

pneumonia-infected images were incorrectly detected as 

healthy. Also, only five of 157 healthy chest images were 

misclassified as pneumonia-infected. 

In Figure 6, accuracy results of the well-known CNN 

models combined with SNN model are denoted. Figure 6 

shows that in all models, the training phase is almost 

completed in the 50th epochs, and achieves a stable state after 

the 40th epoch. The test and training accuracy rates go up in 

parallel. In Figure 6 (a), It is seen that the AlexNet & SNN 

model achieves the highest success in the 9th epoch at 91.27%. 

In Figure 6 (b), In the DenseNet201 & SNN model, an increase 

was observed in test performance and achieved in the 41st 

epoch at 90.40%. Detailed analysis results of this study are 

given in Table 3. 

Considering the analysis results, the SNN model 

significantly contributes to the success of the CNN models. 

Figure 7 shows accuracy and loss graphs of the model 

according to 50 epochs during the train and test stages of the 

proposed model (SpiCoNET). 

 

5.2 The comparison of SpiCoNET performance values 

 

Figure 7 shows the classification performance and loss 

performances of combined features of AlexNet and DenseNet-

201 CNN & SNN models, namely SpiCoNET. Figure 7 (a) 

demonstrates that the accuracy in the training and test stages 

increase in parallel. The increase in performance stops after 

the 20th epoch and achieves a stable value. In Figure 7 (b), the 

loss graph demonstrates that the error rate in the classification 

of the images decreases during the progress of the training 

phase. Successful completion of the training phase of the 

proposed model can be seen on both the accuracy and the loss 

graph. 
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The comparison of performance values of the SpiCoNET, 

single CNN, and CNN & SNN models are shown in Table 4. 

Confusion matrix results of the proposed SpiCoNET are 

shown in Figure 8. In Figure 8 (a), the training of 125 COVID-

19 images is completed in the training stage of the proposed 

model. However, 11 of the 525 healthy images are incorrectly 

classified as Pneumonia-infected. 18 of 500 Pneumonia-

infected images are wrongly classified as healthy, and one is 

as COVID-19-infected. In Figure 8 (b), all COVID-19 images 

are correctly classified in the testing phase, achieving high 

success by inaccurately classifying only 4 of 157 health 

images as pneumonia-infected. 6 of 150 Pneumonia-infected 

images are falsely diagnosed as healthy. 

 
 

Figure 8. Confusion matrix of proposed combined model 

 

Table 4. The accuracy rate of single CNN&SNN and combined features & SNN models 
 

Models Feature Size Single CNN models Accuracy CNN&SNN Accuracy Combined Features & SNN Accuracy 

AlexNet 1000 89.00% 91.27% 97.39% (Train) 

97.09% (Test) DenseNet-201 1000 87.80% 90.40% 

 

Table 5. Detail analysis results AlexNet & DenseNet & SNN combined method performance values 
 

Step Classes Accuracy Precision Recall F1 Score 

Train 

COVID-19 100% 1.0 1.0 1.0 

Healthy 97.09% 0.97 0.96 0.97 

Pneumonia 97.09% 0.96 0.97 0.97 

Test 

COVID-19 99.91% 1.0 0.99 1.0 

Healthy 97.48% 0.98 0.97 0.97 

Pneumonia 97.39% 0.96 0.98 0.97 

 

Table 6. Comparison of the proposed approach with the COVID-19 detection studies made with the X-ray image dataset 
 

Reference Model/Method Data Type Number/Dataset Class Number Accuracy (%) 

[27]  
Transfer Learning Models  

CNN 
X-ray images 

224 / COVID-19 

504 / Healthy 

700 / Pneumonia 

2 / 3 

MobilNet v2 

94.72(3 class) 

96.78 (2 class) 

[28] 

ResNet-50 + SVM 

Wavelet transform 

Contourlet transform 

Shearlet transform 

SVM 

X-ray images 
361 / COVID-19 

200 / Healthy 
2 

95.71 

92.85 

96.07 

85.39 

99.29 

[29] 
Transfer Learning Models 

& SVM, BSIF 
X-ray images 

180 / COVID-19 

200 / Healthy 
2 94.70 

[30] CovidNet X-ray images 

183 / COVID-19 

5521 / Pneumonia 

7766 / Healthy 

3 93.90 

[31] Transfer Learning Models X-ray images 
50 / COVID-19 

50 / Healthy 
2 99.70 

[32] DarkNet & YOLO X-ray images 

127 / COVID-19 

500 / Healthy 

500 / Pneumonia 

2 / 3 
98.08 (two class) 

87.02 (multi class) 

[33] 
HDNNs 

(LSTM + CNN) 

CT images and X-ray 

images 

1200+1000 / COVID-

19 

500+600 / Healthy 

1000+700 / Pneumonia 

3 

98.7 (COVID-19) 

89 (Healthy) 

96.5 (Pneumonia) 

[34] 

CoVIRNet 

(Inception-ResNet model) 

+ Random Forest 

X-ray images 

284 / COVID-19 

310 / Healthy 

330 / Pneumonia 

327 / Viral-pneumonia 

4 

95.7 (Avg.) (CoVIRNet) 

97.29(Avg.) (CoVIRNet 

+ RF) 

[35] 
Transfer Learning VGG-

16 

X-ray images + data 

augmentation 

(rotation) 

3520 / Healthy 

3003 / Disease 

(COVID-19 included) 

2753 /Disease 250 / 

COVID-19 

2 

Model 1: 

96 (Avg.) 

Model 2: 

98 (Avg.) 

[36] 
nCOVnet 

CNN - VGG-16 
X-ray images 

142 / COVID-19 

142 / Healthy 
2 97.62% (COVID-19) 

Proposed 

Approach 

SpiCoNET 

Transfer Learning Models 

& SNN 

X-ray images 

162 / COVID-19 

682 / Healthy 

650 / Pneumonia 

3 
97.09 (Avg.) 

99.91 (COVID-19 type) 
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The accuracy results of the SpiCoNET are given in Table 5. 

The detailed analysis results denote that the proposed model 

significantly contributes to disease detection in all 

performance values. Table 6 shows the comparison of the 

proposed model with the existing studies conducted to detect 

COVID-19 disease on the X-ray images. 

It is noteworthy that most of the studies take advantage of 

transfer learning and fine-tuning techniques. To the best of our 

knowledge, the combination of feature technique and SNN 

method are used for the first time in our study. Using these two 

techniques together enables the SNN model to spike additional 

neurons’ extreme features, which highlights the characteristic 

features for better classification of COVID-19 and Pneumonia 

disease. Thus, it has been proven in this study that spiking 

networks integrated with CNN models outperform their stand-

alone use. As a result, we observed that the classification 

process of spiking networks contributes to the overall success 

of the CNN models. 

Table 6 represents that the classification studies on COVID-

19 datasets include different numbers of classes. Using 

different Transfer Learning Models, Apostolopoulos et al. [27] 

conducted studies on 224 COVID-19, 504 Healthy and 700 

Pneumonia X-ray images (both for two and three-class 

diseases). They achieved the highest success using the 

MobilNet-v2 model (96.78-two class, 94.72-three class). 

Despite the high number of images, lower success rate was 

achieved in both binary and triple classification compared to 

our model. Ismail et al. made binary (361 COVID-19 / 200 

Healthy images) classification (99.29%) using Transfer 

learning, SVM, Wavelet transform, Contourlet transform and 

Shearlet transform methods in their studies [28, 29]. Despite 

the use of many complex techniques, their accuracy rate was 

lower than our study. Narin et al. [31] made binary 

classification using Transfer Learning Models on an equal 

number of 50 COVID-19, 50 Healthy X-ray images, and their 

success rate was 99.70%. Despite using a near equal number 

of images and Transfer Learning models, its performance was 

lower than the proposed study. By increasing the number of 

images using the augmentation method, Brunese et al. 

classified 3520 Healthy and 3003 Disease (COVID-19 

include) X-ray images using the Transfer learning-Vgg16 

model with 96% success rate. They also classified 250 

COVID-19-tagged images among 3003 disease images (other 

images were tagged with different infection diseases), and the 

performance was 98% for COVID-19 detection [35]. 

Although the same images were increased by an augmentation 

method, its performance was lower than the proposed study. 

Panwar et al. [36] achieved 97.62% accuracy rate in his two-

class study on 142 COVID-19 and 142 Healthy images using 

the Vgg-16 model. This result was also lower than the 

detection success of the COVID-19 images found in the 

proposed study. 

When we look at the studies focusing on multiple 

classification, we see the following prominent studies: Luz et 

al. [30] achieved 93.90% accuracy rate in the classification of 

183 COVID-19, 5521 Pneumonia and 7766 Healthy X-ray 

images with the CNN method they developed. Despite using a 

high number of unbalanced images, their study achieved a 

lower success rate compared to our study. Ozturk et al. [32] 

made both binary and triple classification using Darknet - Yolo 

Algorithms on 127 COVID-19, 500 Pneumonia and 500 

Healthy images. While the success of binary classification was 

98.08%, their study achieved a very low result (87.02%) in 

triple classification. Irfan et al. [33] made a triple classification 

on both X-ray and CT images with the hybrid method built 

using LSTM and CNN models, and their success rate for 

COVID-19 detection was 98.7%. In triple classification, our 

model outperforms their hybrid model. Almalki et al. [34], 

using Transfer learning and Random forest classifier, 

performed quadruple classification on the dataset containing 

284 COVID-19, 310 Healthy, 330 Pneumonia and 327 Viral-

pneumonia images. They achieved the highest success rate 

using the Random forest algorithm, 97.29%. 

In this study, the SpiCoNET model developed based on 

CNN and SNN was used. This model is used for analysis of 

Chest X-ray images. Analysis results show that SpiCoNET 

achieved 99.91%, 97.39%, and 97.48% test success results for 

3 different classes (COVID-19, Pneumonia and Healthy), 

respectively. These results denote that the proposed model 

outperforms all existing approaches classifying multiple 

diseases using similar datasets. The result indicates that the 

features derived from AlexNet and DenseNet-201 enable 

SpiCoNET to provide the highest accuracy rates for the 

COVID-19 and Pneumonia diseases. 

 

 

6. DISCUSSION 

 

In the proposed approach, deep learning models, i.e., CNN 

and SNN models, are employed for the classification of the 

diseases on X-ray images. This study shows that when SNNs 

are used together with CNN models, they significantly 

contribute to increase of accuracy rates in the recognition of 

the diseases. Pneumonia symptoms are hard to distinguish 

from other COVID-19 symptoms, as they are so similar to 

COVID-19. However, this method was able to detect both 

these infections with high accuracy rates. 

Figure 9 shows that the proposed model running on a cloud 

based mobile application can help the doctors to easily access 

and assess the patient's X-ray images. Using this application, 

the doctors spend less time to recognize the COVID-19 and 

Pneumonia diseases, enabling identification of the COVID-19 

diseases in a short time. In hospitals where the proposed 

system is used, x-ray images of patients (upon permission) are 

uploaded to the cloud-based system. These images can be used 

for the ongoing training process of the proposed model. Thus, 

disease information in a patient's x-ray image can be detected 

with higher accuracy over time. 

 

 
 

Figure 9. Application of the proposed model in the real 

world hospital system 

 

Advantages of the proposed approach; 

(1) By employing the CNN and SNN methods together, X-

ray images of both COVID-19 and Pneumonia patients 
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detected for the first time, thus correctly classifying all images 

with COVID-19 infection. 

(2) For the detection of COVID-19 diseases, SEFRON in 

addition to the CNN+SNN model tried for the first time in this 

study. 

(3) This method can diagnose X-ray images on the web or 

using smartphones with high performance without the risk of 

contamination. 

Disadvantages of the proposed approach; 

(1) The lack of sufficient X-ray images and balanced 

distribution may have affected the results. 

(2) Resizing the small size pictures could result in loss of 

accuracy. 

The proposed approach enables SNNs to use successfully 

with deep learning techniques, combining the features of CNN 

models with SNN. The usability of different CNN models in 

the SpiCoNET provides the flexibility for adaptation to 

different classification. The featured structure of the proposed 

method is that it provides efficient features to SNNs 

employing CNN models. 

Contribution to the society of the proposed approach: 

(1) The proposed approach can be used to assist medical 

professionals and radiologists. 

(2) It will not be possible to carry out this process correctly 

with personal expertise examinations. Thanks to the proposed 

approach, the system can process many incoming images at 

the same time and give analysis results in a short time. 

(3) With the proposed approach, it will be possible to 

perform the diagnosis-treatment process of many COVID-19 

cases quickly and accurately, to save time and low cost. 

(4) Doctors will be able to reach the diagnosis process of the 

patient in a short time with high performance. 

(5) It would be useful in local hospitals without the need for 

specialist radiologists to quickly analyze X-ray images of 

patients with suspected COVID-19. 

In the future, analyzes will be made with the proposed model 

(SpiCoNET) using images of other organs affected by the 

virus by interviewing experts working on COVID-19 disease. 

In order to increase the usability of the proposed model, we 

plan to make it accessible to health institutions. Doctors will 

be able to make free and fast diagnosis using this model. 

 

 

7. CONCLUSION 

 

The lungs of people with COVID-19 infection can be 

permanently damaged resulting in death if not treated early. 

People with lung damage caused by COVID-19 should be also 

isolated from other healthy individuals or those suffering from 

Pneumonia. In this study, to detect the COVID-19 diseases in 

the early stage, COVID-19 images are classified employing a 

deep learning based disease detection tool for X-ray images. 

For this purpose, in the first stage, the proposed model 

employs well-known CNN + SNN methods to obtain features 

of the two models with the highest success rates. The features 

of the two models are combined and delivered to a new SNN 

layer to improve the features quality. In addition, to provide an 

enhanced classification, the SpiCoNET exploits SEFRON 

learning algorithm. By using SpiCoNET, X-ray images with 

COVID-19, Pneumonia, and infection-free images are 

correctly classified with 99.91%, 97.39%, and 97.48%, 

respectively, which demonstrates that the proposed method 

provides remarkably higher accuracy than the existing works, 

which classify multiple diseases such as COVID-19, 

Pneumonia. To provide higher quality features of the COVID-

19 and Pneumonia, in this work, we exploit well known 

models with the highest success rates together with a spiking 

network, which significantly help the proposed model. In 

addition, the spiking network is used with convolution models 

for COVID-19 analyses for the first time. 
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