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As a powerful nonlinear control design strategy, feedback linearization provides viable 

design tools for a wide range of nonlinear systems. This paper presents an intelligent 

feedback linearization design using the inverse feedforward control (IFC) scheme to 

control nonlinear dynamical systems. Particularly, the nonlinear autoregressive moving 

average (NARMA-L2) network is trained to reproduce the controlled system's forward 

dynamics. Consequently, the trained NARMA-L2 network can be directly employed in 

the IFC structure. To enhance the approximation ability of the NARMA-L2 structure, two 

wavelet neural networks (WNNs) are utilized to constitute the NARMA-L2 controller. 

Moreover, the RASP1 function was utilized as the mother wavelet function instead of the 

commonly employed Mexican hat function. To avoid the limitations of the gradient 

descent (GD) methods, the genetic algorithm has been used as the training method to 

optimize the NARMA-L2 inverse controller parameters. The simulation results showed 

that the proposed controller was effective in terms of precise control and robustness against 

external disturbances. Furthermore, a comparison study with other control structures 

revealed that the control results of the proposed WNN-based NARMA-L2 controller with 

the RASP1 function are superior to those of the WNN-based NARMA-L2 with the 

Mexican hat function, the multilayer perceptron (MLP)-based NARMA-L2 controller, and 

the PID controller.  
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1. INTRODUCTION

The use of intelligent techniques in dynamical system 

modeling and control has attracted the attention of many 

researchers. These techniques mimic the human ability to 

recognize objects and make decisions, and they are extremely 

beneficial in the design of powerful control structures. In this 

regard, the model structure to be used in the control algorithm 

must acquire major properties of the controlled system. 

However, this model should not complicate the design with a 

heavy processing burden. In particular, a suitable choice of the 

system model results in effective control and high efficiency. 

In this context, the nonlinear autoregressive moving average 

(NARMA-L2) model, introduced by Narendra and 

Mukhopadhyay [1], represents a simple, yet effective method 

to reproduce the dynamics of nonlinear systems. The 

NARMA-L2 model has the ability to transform nonlinear 

system dynamics into linear dynamics by canceling the 

nonlinearities. Therefore, it is most suited for the feedback 

linearization control [2].  

To this end, several studies on NARMA-L2 controllers have 

been reported in the literature. For instance, the authors [3] 

used a NARMA-L2 structure to control a bioreactor and 

demonstrated that the trajectory tracking performance 

obtained was superior to that obtained with the inverse neural 

model control strategy. They employed a backpropagation 

algorithm (BPA) to obtain the optimal NN weights. Hamidi et 

al. [4] proposed a hybrid neural network to construct the 

NARMA-L2 structure using a multilayer perceptron (MLP) 

NN that can be used as a model for controlling a nonlinear 

(multi-input multi-output) MIMO quadcopter system. The 

BPA was used in order to find the best weights for the neural 

network. Moreover, Rashad [5] used the NARMA-L2 to 

control the speed of a permanent magnet DC motor, where a 

dynamic BPA was used to minimize the mean square of errors. 

In this regard, the performance of the NARMA-L2 controller 

is directly linked to the accuracy of the system’s model 

estimation. The BPA has been exploited in the majority of the 

NARMA-L2 applications reported earlier. However, the 

gradient descent-based BPA has a potential to become stuck at 

local minima and stop working. For this reason, evolutionary 

algorithms, such as genetic algorithms (GAs), have attracted 

much attention because of their ability to find the global 

solution to a particular problem. Consequently, several 

researchers used GA to design the NARMA-L2 controller [6, 

7]. 

In the design of the IFC structure, an effective inverse model 

of the system to be controlled should be developed. The neural 

network is one of the best methods for dealing with IFC design 

requirements. The NNs have long been known to be powerful 

universal approximators [8-10]. Following that, the neural 

network-based inverse controller has seen a widespread 

application in the control of nonlinear systems. In this context, 

most researchers employed the MLP and the RBF NNs for the 

IFC structure. For example, Pedro et al. [11] proposed an 

MLP-based NARMA-L2 to control the slip in an anti-lock 

braking system. An internal model control (IMC) scheme 

using MLP has been used to control unknown nonlinear 
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systems [12]. The IMC structure was utilized in this method 

with two filters including a set-point filter and a robustness 

filter. Because these filters use modifiable parameters that 

should be properly chosen, the precision of this approach may 

be limited.  

In recent years, researchers have become increasingly 

interested in wavelet neural networks (WNNs), which 

integrate the wavelet and NN theories into a more powerful 

structure. These networks have the ability to learn and 

generalize like conventional NN, but they also have the ability 

to localize like a wavelet transform [13, 14]. The structure of 

WNNs has been shown to be better than those of other types 

of NNs due to its ability to add new mapping relationships 

between inputs and outputs [15]. To this end, the simulation 

results of this paper will show that the WNN outperforms the 

MLP in the IFC structure. Despite the WNN's appealing 

features, few researchers used the WNN as an inverse 

controller. For example, to control a nonlinear system, two 

WNNs have been used in the IFC scheme [16]. However, there 

were two training phases needed for this control method: one 

phase to identify a forward plant model and a second one to 

develop the inverse controller. Moreover, only few researchers 

used the WNN within the NARMA-L2 structure. For instance, 

Jin et al. [17], the authors applied the WNN based on the 

NARMA-L2 model to predict the thermal characteristics of a 

feed system. Lutfy and Selamat [18], a WNN-based NARMA-

L2 was used for the IMC scheme to control nonlinear systems. 

However, this control method required two NARMA-L2 

structures, which adds an additional computational burden. In 

addition, Alwan [19] employed a WNN-based NARMA-L2 

for the IFC structure using the Mexican hat function as the 

mother wavelet function. The author employed the BPA to 

obtain the optimal NN weights. However, the main drawbacks 

of BPAs are their tendency to become trapped in the local 

minima of their search spaces and the difficulty in deciding the 

optimal setting for the learning coefficient. 

In this paper, a WNN-based NARMA-L2 is proposed to act 

as an inverse feedforward controller to control nonlinear 

systems. The genetic algorithm is used as the training method 

to optimize the WNN weights. This control approach requires 

only one NARMA-L2 for acquiring the forward dynamics of 

the system. Subsequently, the control algorithm can be used 

right away without any more training. From the simulation 

results of controlling three nonlinear systems, the proposed 

control approach achieved the desired control objectives in 

terms of control accuracy and robustness despite the difference 

between the training and the testing signals for all the plants, 

which clearly indicates the remarkable generalization ability 

of the controller. Moreover, the GA has minimized the 

objective function from the early stage of the optimization 

process for the three plants. The organization of this paper can 

be summarized as follows: Section 2 describes the WNN-

based NARMA-L2 network's structure. The genetic algorithm 

is discussed in detail in Section 3. Section 4 presents several 

performance and comparison tests to demonstrate the 

effectiveness of the proposed NARMA-L2 in the IFC scheme. 

Finally, in Section 5, the conclusions are drawn. 

 

 

2. NEURAL NETWORK-BASED INVERSE 

FEEDFORWARD CONTROLLER 

 

The neural network is an extremely powerful mathematical 

tool for solving problems involving nonlinear modeling. As a 

result, the nonlinear IFC structure in this study is designed 

using the NN [18]. Specifically, the NARMA-L2 network is 

used, which is a very effective NN structure [20]. The basic 

concept of this control strategy is to create an inverse 

controller in the IFC structure using a forward WNN-based 

NARMA-L2 model of the system to be controlled. The 

following sections cover the WNN's structure and the design 

process in detail. 

 

2.1 Wavelet neural network structure  

 

The WNN structure used in this work is illustrated in Figure 

1, and it consists of three layers: an input layer, a mother 

wavelet (wavelon) layer, and an output layer. The role of each 

layer is described below [18, 21]: 

 

 
 

Figure 1. Structure of the WNN 

 

Layer 1: It is the input layer that accepts the input variables 

(𝑥1, 𝑥2, … , 𝑥𝑁𝑖) and sends them to the next layer. 

Layer 2: It is the wavelon layer which is composed of 

mother wavelet nodes, also known as the "wavelons". In this 

study, rather than the commonly used Mexican hat function, 

the RASP1 function was used. In this regard, it was found that 

the RASP1 function surpasses other functions in terms of 

approximation performance after multiple experiments with 

other wavelet functions [22]. The following equation 

represents this function [23]: 

 

𝜓(𝑥) =
𝑥

(1 + 𝑥2)2
 (1) 

 

The formula below is utilized to determine the jth wavelon 

node's output in this layer [18]: 

 

𝜓𝑗(𝑥) = 𝜓(𝑧𝑗), with 𝑧𝑗 = 𝑑𝑗(∑ 𝑣𝑗𝑖𝑥𝑖
𝑁𝑖
𝑖=1 ) − 𝑡𝑗, (2) 

 

where, tj and dj denote the wavelet's translation and dilation 

factors, respectively, vji denotes the weight of the ith 

connection between the input layer and the jth wavelon in the 

mother wavelet layer, xi represents the ith input variable, and 

Ni denotes the input layer's node number. The final response 

of wavelon j is: 

 

𝜓(𝑧𝑗) =
𝑧

(1 + 𝑧2)2
 (3) 
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Layer 3: This layer utilizes the following equation to 

compute the WNN's final output [21]. 

 

𝑦 = ∑ 𝑐𝑗𝜓𝑗(𝑥)

𝑁𝑤

𝑗=1

 (4) 

 

where, 𝑁𝑤 is the nodes’ number in the wavelon layer and 𝑐𝑗 

denotes a weight between the jth node and the output node.  

Based on the previous discussion, there are various 

adjustable parameters to be tuned in the WNN structure. More 

specifically, the following set represents these parameters: 

 

𝛭 = [𝑐𝑗 𝑑𝑗 𝑡𝑗  𝑣𝑗𝑖], (5) 

 

where, M denotes the collection of adjustable parameters. It is 

necessary to employ an appropriate optimization approach to 

optimize the parameters in Eq. (5) to obtain the best 

performance possible from the WNN structure. These 

parameters are established in the current study using the 

genetic algorithm, which will be discussed in more detail in 

the next sections. 

 

2.2 The controller design utilizing the NARMA-L2 

structure 

 

The NARMA-L2 structure employed in this study requires 

two steps to be utilized; the system identification stage and the 

controller design stage. The NARMA-L2 network is formed 

by combining two WNN sub-networks that are trained 

utilizing the plant’s input-output data during the system 

identification stage. The purpose is to obtain a NARMA-L2 

model of the system that will be used for control. During the 

stage of controller design, the controller is made by 

rearranging the two sub-networks that were trained in the 

system identification process to make the controller. In order 

to ensure that the plant output follows the reference input, the 

following control input is calculated using a mathematical 

formula [20]. To this end, the controller represents controlled 

plant's inverse dynamics. As a result, the invertibility of the 

plant to be controlled is a major consideration in this design 

approach [18]. 

 

2.2.1 The forward system identification stage of NARMA-L2 

Using the WNN 

The equation below describes the general structure of the 

NARMA-L2 model [20]: 

 

𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘), 𝑦(𝑘 − 1),   .  .  .  , 𝑦(𝑘 − 𝑛

+ 1),   𝑢(𝑘 − 1),   .  .  .  , 𝑢(𝑘 − 𝑚

+ 1))

+ 𝑔(𝑦(𝑘), 𝑦(𝑘 −  1),   .  .  .  , 𝑦(𝑘

− 𝑛 + 1)  ,   𝑢(𝑘 − 1),   .  .  .  , 𝑢(𝑘

− 𝑚 + 1)). 𝑢(𝑘) 

(6) 

 

In this study, two WNNs are utilized to approximate the 

NARMA-L2 network's two functions f and g. As depicted in 

Figure 2, the NARMA-L2 forward system identification stage 

uses a series-parallel identification structure. The modeling 

error 𝑒𝑚(𝑘 + 1)between the output of NARMA-L2 𝑦𝑚(𝑘 +
1)  and the actual system output 𝑦𝑝(𝑘 + 1) is subsequently 

utilized to optimize the NARMA-L2 model. The output of the 

NARMA-L2 is expressed in the equation below [18]: 

𝑦𝑚(𝑘 + 1) = 𝑓 (𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1),   .  .  .  , 𝑦𝑝(𝑘 − 𝑛

+ 1)  ,   𝑢(𝑘 − 1),   .  .  .  , 𝑢(𝑘 − 𝑚

+ 1))

+ �̂� (𝑦𝑝(𝑘), 𝑦𝑝(𝑘

− 1),   .  .  .  , 𝑦𝑝(𝑘 − 𝑛 + 1)  ,   𝑢(𝑘

− 1),   .  .  .  , 𝑢(𝑘 − 𝑚 + 1)) . 𝑢(𝑘) 

(7) 

 

To train the NARMA-L2 model, a quadratic cost function 

is employed in the genetic algorithm. This cost function is 

made up of the following: 

 

𝐽 =
1

𝑁𝑃

∑(𝑦𝑝 (𝑘) − 𝑦𝑚(𝑘))2,

𝑁𝑃

𝐾=1

 (8) 

 

where, ym(k) represents the output of the NARMA-L2, 𝑦𝑝(𝑘) 

represent the plant output, and Np represents the number of 

training patterns. Following a predetermined number of 

generations, the GA adjusts all the weights that can be 

modified in the WNN-based NARMA-L2 by minimizing Eq. 

(8). 

 

 
 

Figure 2. WNN-based NARMA-L2 identification model 

 

2.2.2 Controller design stage 

It is necessary to form an inverse feedforward controller 

after creating the NARMA-L2 model. In this step, all that 

needs to be done is to use the developed NARMA-L2 model 

according to Eq. (7) to implement the controller. As previously 

mentioned, the NARMA-L2 system identification stage 

defined the functions 𝑓  and �̂�  in Eq. (7). Furthermore, to 

ensure that the output of system 𝑦𝑝(𝑘 + 1)tracks the reference 

signal 𝑦𝑟(𝑘 + 1), the following is done: 𝑦𝑝(𝑘 + 1) = 𝑦𝑟(𝑘 +

1) . Consequently, the final NARMA-L2 control action is 

generated as given below [20]. 

 

𝑢(𝑘) =

𝑦𝑟(𝑘 + 1)

−𝑓 [

𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1),   .  .  .  ,

𝑦𝑝(𝑘 − 𝑛 + 1)  ,   𝑢(𝑘 − 1),   .  .  .  ,

𝑢(𝑘 − 𝑛 + 1)

]

�̂� [

𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1),   .  .  .  ,

 𝑦𝑝(𝑘 − 𝑛 + 1)  ,   𝑢(𝑘 − 1),   .  .  .  ,

𝑢(𝑘 − 𝑛 + 1)

]

 
(9) 

 

2.3 The general structure of the WNN-based NARMA-L2 

inverse feedforward controller 

 

Figure 3 illustrates the general WNN-based NARMA-L2 
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IFC scheme [19]. The robustness filter shown in Figure 3 adds 

robustness to the IFC structure to handle the errors made in the 

modeling of the structure. Additionally, it smooths out fast 

changing signals to enhance the IFC controller's transient 

response. The following is the equation for the robustness 

filter [19]: 

 

 
𝑦𝑟𝑒𝑓(𝑧)

𝑦𝑑𝑒𝑠(𝑧)
=

1−𝛼

1−𝛼 𝑧−1 , (10) 

 

where, α is a tuning parameter. 

 

 
 

Figure 3. WNN-based NARMA-L2 IFC structure 

 

 

3. GENETIC ALGORITHMS 

 

In the last few years, artificial intelligence techniques have 

become the most common way to solve many optimization 

problems. Genetic Algorithms (GAs) were utilized to solve 

various problems in the science and engineering fields [24]. 

Many modern evolutionary algorithms are directly based on 

genetic algorithms or have some strong similarities [25]. 

The GA is a random-guided optimization method that 

adopts the idea of survival of the fittest. It became popular in 

the early 1970s because of John Holland's work. The GA is 

part of a group of algorithms called evolutionary algorithms 

(EAs) that try to solve the problems of optimization through 

the use of natural evolution-inspired techniques [26]. The GA 

looks for the best solution in the search space from multiple 

directions, in contrast to classical search algorithms that 

employ local derivatives and progress in a single direction 

towards the optimal solution. There is a good chance that 

classical techniques which use the gradient method will get 

stuck in local minima. The GA, on the other hand, changes the 

genetic information of an offspring randomly to avoid this 

problem. The GA, on the other hand, changes the genetic 

information of an offspring randomly to avoid this problem. 

This means that the GA is always working with a group of 

solutions. This problem has a "fitness value" for each member 

of the group, which is based on the task's objective. Members 

that show better solutions are given more points for fitness, 

which helps them stay alive through the generations. In GAs, 

the first population is chosen at random, and then the genetic 

operator's of reproduction, crossover, and mutation are used to 

make new populations over time. These generations would 

come up with better solutions to the problem, and they would 

get closer and closer to the best solution over time [26]. Figure 

4 illustrates a flowchart of the GA. 

The following procedure illustrates the fundamental steps 

of the GA [25]: 

• Defining the objectives or cost functions 

• Defining a selection criterion or fitness function. 

• Establishing an individual population. 

• Performing the iterations by assessing the fitness of 

all members of the population and establishing a new 

population through crossover and mutation. 

• Switching out the old population and repeating the 

process with the new population. 

• Identifying a solution to a problem by decoding the 

results. 

 

 
 

Figure 4. Flowchart of the GA 

 

 

4. SIMULATION RESULTS 

 

This section examines the control results of the suggested 

WNN-based NARMA-L2 IFC structure optimized by the GA. 

Three nonlinear systems' modeling and control results are 

discussed in detail. Additionally, a disturbance rejection study 

was done to assess how well the proposed intelligent control 

method can handle disturbances. Furthermore, a comparison 

study with other control structures revealed that the control 

results of the proposed WNN-based NARMA-L2 controller 

with the RASP1 function are superior to those of the WNN-

based NARMA-L2 controller with the Mexican hat function, 

the multilayer perceptron (MLP)-based NARMA-L2 

controller, and the PID controller. In the genetic algorithm, the 

maximum number of generations was set to 1000, the 

crossover probability was set to 0.8, and the probability of 

mutation was set to 0.05 for all the controlled systems. Finally, 

for all the simulation tests, the filter’s parameter (α) was 

adjusted to a value of 0.3. In this work, the above settings were 

adequate to give the best control results. 

 

4.1 Performance tests of control 

 

The goal of these tests is to assess the applicability of the 

WNN-based NARMA-L2 IFC scheme to control the nonlinear 

plants below. 

Plant 1: 

The following is the differential equation for this nonlinear 

plant [19] 

 

𝑦𝑝(𝑘)

= 0.35[
𝑦𝑝(𝑘 − 1)𝑦𝑝(𝑘 − 2)(𝑦𝑝(𝑘 − 1) + 2.5)

1 + 𝑦𝑝(𝑘 − 1)2 + 𝑦𝑝(𝑘 − 2)2

+ 𝑢(𝑘 − 1)] 

(11) 
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The controlled plant's WNN-based NARMA-L2 forward 

model must be developed in the first step of designing the IFC 

scheme. For this purpose, a training set of 500 input-output 

data points were produced utilizing a random input signal 

𝑢(𝑘). To minimize the MSE criterion, the GA optimized the 

WNN-based NARRMA-L2 parameters utilizing the series-

parallel identification structure illustrated in Figure 2. The 

training MSE was 7.66 ×  10−5  after 1000 iterations, as 

shown in Figure 5a, which shows the decrease in the MSE 

against 1000 iterations. To illustrate how quickly the GA was 

able to achieve convergence, see Figure 5a, which shows how 

the GA minimized the MSE from the beginning of the 

optimization processes. It has been decided to use a different 

signal for testing in order to assess the accuracy of the trained 

WNN-based NARMA-L2 network's modeling. Particularly, 

the signal of testing is defined according to the following 

equation [18]: 

 

𝑢(𝑘) = 0.5 sin (
2𝜋𝑘

25
) + 0.5sin (

2𝜋𝑘

10
) (12) 

 

The modeling result shown in Figure 5b was obtained using 

the testing signal. The purpose of this testing signal, which is 

different from the random training signal, is to assess the 

generalization ability of the controller. We can see that the 

trained network has done an excellent job in tracking the 

testing signal with a MSE of 3.36 × 10−5 . Given that the 

NARMA-L2 was able to successfully track a signal that 

differed totally from the random signal used during the 

training phase, this modeling result shows that the WNN-

based NARMA-L2 possesses a powerful generalization 

capability. In order to create an IFC controller, you must first 

determine if the plant model can be inverted. A simple way to 

check this is to check the Jacobin plant's signs in the area of 

interest. Figure 5c shows that the plant Jacobin is sign-definite, 

which means that the plant model can be constructed as an 

inverse controller in an IFC scheme. Therefore, the plant 

model is invertible. As shown in Figure 5d, the IFC scheme is 

able to track a step-changing signal with excellent control 

performance, and the resulting control signal is shown in 

Figure 5e. 
 

 
(a) Finest MSE against iterations 

 
(b) Plant and the WNN-based NARMA-L2 outputs 

 
(c) the Jacobian of the plant 

 
(d) the output response 

 
(e) the control signal 

 

Figure 5. (a-e) Simulation graphs for plant 1 

 

Plant 2: 

This plant represents a nonlinear discrete-time system as 

described by the equation below [19]: 

 

y( k +  1) =
1.5𝑦(𝑘)𝑦(𝑘 − 1)

1 + 𝑦2(𝑘) + 𝑦2(𝑘 − 1)

+ 0.1 × sin (y(k) +  y(k −  1))

+  1.2u(k) 

(13) 

 

Controlling Plant 2 was accomplished using the same steps 

described for Plant 1. To begin, we utilized a random input 

signal 𝑢(𝑘) to develop the WNN-based NARMAL2 model. 

Figure 6a illustrates the decrease in the MSE as a function of 

the number of iterations that the genetic algorithm achieves 

after a few initial iterations. Specifically, the training MSE was 

1.38 ×  10−4  after 1000 iterations. In order to evaluate the 

trained NARMA-L2 model, the testing signal of Eq. (12) was 

employed, and the result is shown in Figure 6b, demonstrating 

excellent accuracy for the testing signal with an MSE of 

5.80 ×  10−3 . Once more, the WNN-based NARMA-L2 

showed superior performance because it was able to generalize 

its learning to follow a testing signal that did not exist 

throughout the training process. The plant model is invertible, 

as illustrated in Figure 6c. The IFC's control performance is 
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demonstrated in Figure 6d, which shows excellent control 

accuracy. Figure 6e depicts the control action. 

 

Plant 3: 

This plant represents the Jacketed Stirred Reactor, also 

known as a Continuously Stirred Tank Reactor (CSTR). The 

following nonlinear difference equation shows the dynamics 

of this process [27]: 

 

y (k + 1) =  0.7653 y(k ) −  0.231y(k − 1) 

− 0.6407 𝑦2(k) +  1.014 y(k −  1)y( k) 

− 0.3921 𝑦2(k −  1) +  0.4801u(k) 

+ 0.592 y(k)u(k) − 0.5611y(k − 1)u(k) 

(14) 

 

 
(a) Finest MSE against iterations 

 
(b) Plant and the WNN-based NARMA-L2 outputs 

 
(c) The Jacobian of the plant 

 
(d) The output response 

 
(e) The control signal 

 

Figure 6. (a-e) Simulation graphs for plant 2 

 

 
(a) Finest MSE against iterations 

 
(b) Plant and the WNN-based NARMA-L2 outputs 

 
(c) The Jacobian of the plant 

 
(d) The output response 
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(e) The control signal 

 

Figure 7. (a-e) Simulation graphs for plant 3 

 

The CSTR process is controlled using the same design 

process as the previous plants. Figure 7a illustrates the 

decrease in the MSE as a function of the number of iterations 

that the genetic algorithm achieves after a few initial iterations. 

More precisely, the training MSE was 2.93 ×  10−4 after 1000 

iterations. To validate the generalization ability of the trained 

network, the signal of Eq. (12) was utilized. The resulting 

modeling performance is shown in Figure 7b, which 

demonstrates excellent modeling of the testing signal with an 

MSE of 2.25 ×  10−4. As illustrated in Figure 7c, the plant 

model is invertible. The IFC's control performance is 

illustrated in Figure 7d, which demonstrates remarkable output 

accuracy with just a few overshoots at each reference signal 

change. Figure 7e illustrates the controller output. 

 

4.2 Disturbance rejection tests 

 

To examine how well the proposed IFC scheme could deal 

with outside disturbances, a small-amplitude disturbance was 

injected into each plant's output for two periods; specifically 

20 ≤ 𝑘 ≤  25 𝑎𝑛𝑑 70 ≤  𝑘 ≤ 75  for all controlled plants. 

These disturbances were not applied during the IFC training 

phase. This adds extra difficulty to the IFC structure in 

handling unknown disturbances in the testing phase. As shown 

in Figure 8, the WNN-based NARMA-L2 IFC structure could 

handle the unexpected disturbances for the three plants. 

 

4.3 A comparison study of the WNN and the MLP neural 

networks 

 

In this section, comparison studies were carried out to assess 

the performance of the WNN and the MLP as the primary 

networks in the IFC structure trained by the GA. In this regard, 

the MLP is made with the same IFC structure explained in 

Sections 2.2 and 2.3. With respect to the MLP, two MLP 

networks were used, each of which is composed of three layers: 

the input layer, the hidden layer, and the output layer. Six 

hidden nodes with sigmoid activation functions make up the 

hidden layer and the output layer is made up of a single node 

that employs a linear activation function. 

Owing to the stochastic nature of the GA, the output of a 

particular run may differ from the output of other runs. Thus, 

in order to perform an accurate comparison, ten runs were 

conducted in the NARMA-L2 IFC scheme for each network, 

including the WNN with the RASP1 function, the WNN with 

the Mexican Hat function, and the MLP. After that, the 

average of these ten runs can be used to calculate the 

performance of the three networks. Table 1 summarizes the 

results of the comparisons made in Section 4.1 for Plants 1, 2, 

and 3. Table 1 clearly demonstrates that the WNN with the 

RASP1 function outperforms the WNN with the Mexican Hat 

function and the MLP networks within the IFC scheme. 

Particularly, the WNN with the RASP1 function has achieved 

the lowest MSE values for both training and testing in terms 

of modeling precision. Furthermore, the WNN with the 

RASP1 function has the smallest integral square error (ISEs) 

values in terms of control accuracy. Finally, the WNN with the 

RASP1 function had the shortest processing time of the three 

plants. 

 

 
(a) Plant_1 

 
(b) Plant_2 

 
(c) Plant_3 

 

Figure 8. (a-c) Testing of Plants 1, 2, and 3 for disturbances 

Rejection 
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Table 1. The results of the performance comparison of the MLP, the WNN with the Mexican Hat function, and the WNN with 

the RASP1 function as the primary networks in the IFC structure 

 

Type of networks Criterions (average of 10 runs) 
Controlled plants 

Plant 1 Plant 2 Plant 3 

MLP 

Training MSE 6.60E-04 2.08E-03 3.97E-04 

Testing MSE 2.43E-04 7.58E-03 5.02E-04 

ISE 3.449 3.636 3.46 

Time (s) 71.745 72.039 71.38 

WNN with the Mexican Hat function 

Training MSE 4.98E-04 4.19E-04 3.21E-04 

Testing MSE 1.52E-04 7.05E-03 4.67E-04 

ISE 3.4712 3.4761 3.454 

Time (s) 76.299 76.923 76.31 

 

WNN with the RASP1 function 

Training MSE 1.86E-04 2.03E-04 3.02E-04 

Testing MSE 5.37E-05 4.50E-03 4.43E-04 

ISE 3.425 3.4090 3.453 

Time (s) 67.96 69.70 69.35 

 

Table 2. The results of the comparison of the PID controller and the WNN-based NARMA-L2 with the RASP1 function 

 

Type of networks Criterions (average of 10 runs) 
Controlled plants 

Plant 1 Plant 2 Plant 3 

PID ISE 4.553 5.587 4.989 

WNN with the RASP1 function ISE 3.425 3.409 3.453 

4.4 A comparison study with other control structures 

 

The WNN-based NARMA-L2 IFC's performance is 

compared to that of the PID controller in this section. The GA 

optimizes the two controllers using the same plants as 

previously considered. In order to do a good comparison study, 

ten runs were done on each plant to get an average result. Table 

2 shows that the WNN-based NARMA-L2 IFC structure has 

achieved better control results compared to the PID controller, 

which has resulted in an unacceptable steady-state error in the 

output response, as shown in Figure 9. 

 
 

Figure 9. The output response of the PID controller 

 

 

5. CONCLUSIONS 

 

The purpose of this work is to develop and implement an 

intelligent control strategy for dynamical nonlinear systems 

based on the NARMA-L2 IFC scheme. The NARMA-L2 has 

the significant advantage of eliminating the nonlinear system's 

dynamic behavior. It is capable of converting a nonlinear 

dynamical system to an implied algebraic model, which makes 

it easier and more efficient to control the system's trajectory. 

Without the use of derivatives, the effort of control is 

calculated directly from the position reference. To overcome 

the limitations of the commonly used gradient methods, the 

weights of the WNN-based NARMA-L2 network have been 

optimized using the GA. Rapid convergence was achieved for 

all controlled plants using this optimization method by 

significantly reducing the MSE from the start of the 

optimization process. The main contributions of this work are 

the improved approximation ability of the WNN-based 

NARMA-L2 and the use of the GA rather than the widely used 

GD methods in previous studies. The proposed intelligent IFC 

structure's effectiveness in controlling nonlinear plants has 

been demonstrated through simulation results in terms of 

precise control performance and robustness against outside 

disturbances. Additionally, a comparison study with other 

control structures revealed that the proposed WNN-based 

NARMA-L2 controller with the RASP1 function outperforms 

the WNN-based NARMA-L2 controller with the Mexican hat 

function, the MLP-based NARMA-L2 controller, and the PID 

controller in terms of control results. The main requirement in 

the proposed method is that the controlled system should be 

invertible. 

For future work, the proposed controller will be applied to 

control a real-time system using an adaptive control approach. 

This can significantly enhance the control performance of real-

time industrial systems. 
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