
 
 
 

 
 

 

1. INTRODUCTION 

 

The problem of 2-D unsteady viscous incompressible flow 

with heat transfer in a driven square cavity has wide range of 

applications in engineering and physical sciences. Some of 

these applications include oil extraction, cooling of electronic 

devices, heat transfer improvement in heat exchanger devices 

and drying technologies. The streamfunction-vorticity (ψ−ξ) 

formulation is a powerful approach for solving the two-

dimensional viscous incompressible flow. In this method, the 

difficulty associated with the computation of pressure is 

circumvented by eliminating the pressure gradient terms from 

the momentum equations by cross-differentiation which leads 

to a vorticity-transport equation. There are some advantages 

as well as disadvantages associated with this method. The 

main advantage of this method is that it does not involve the 

solution of the pressure field. 

Briefly discussing the related literature: Rubin and Khosla 

[21] extended the strongly implicit numerical method to the 2 

×2 coupled vorticity-streamfunction form of the Navier-

Stokes equations.Ghia et al. [8] have used the vorticity-

streamfunction formulation for the two-dimensional 

incompressible Naiver-Stokes equations to study the 

effectiveness of the coupled strongly implicit multigrid (CSI-

MG) method in the determination of high-Refine-mesh flow 

solutions. Iliev and Makarov [9] have described a block-

matrix iterative numerical method for coupled solving 2-D 

Navier-Stokes equations. Alleborn et al. [2] have investigated 

the configurations of steady two-dimensional flow 

accompanied by heat and mass transport in a shallow lid-

driven cavity with a moving heated lid and a moving cooled 

lid. Natural convection in a square cavity with its horizontal 

walls submitted to different heating models by a finite 

difference procedure have been investigated by Abourida et 

al. [1]. Steady state two-dimensional mixed convection 

problem in a vertical two sided lid-driven differentially 

heated square cavity was investigated numerically by Oztop 

and Dagtekin [17]. Natural convection heat transfers in 

partially open inclined square cavities have been investigated 

by Bilgen and Oztop [3]. Dhiman et al. [7] have investigated 

the flow and heat transfer characteristics of an isolated square 

cylinder in cross-flow placed symmetrically in a planar slit. 

Rahman et al. [20] have investigated numerical study of 

opposing mixed convection in a vented enclosure. The 

behavior of nanofluids was investigated numerically by 

Tiwari and Das [27] inside a two sided lid-driven 

differentially heated square cavity to gain insight into 

convective recirculation and flow processes induced by a 

nanofluid. Khanafer et al. [11] have investigated the 

numerical simulation of unsteady mixed convection in a 
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driven cavity using an externally excited sliding lid. Luo and 

Yang [12] have studied multiple fluid flow and heat transfer 

solutions in a two sided lid-driven cavity. Nouanegue et al. 

[16] have investigated the conjugate heat transfer by natural 

convection, conduction and radiation in open cavities in 

which a uniform heat flux was applied to the inside surface of 

the solid wall facing the opening. Flow and heat transfer 

inside a square cavity with double-sided oscillating lids have 

been studied numerically by Noor et al. [15]. Sivasankaran et 

al. [25] have investigated a numerical study on mixed 

convection in a lid-driven cavity with non-uniform heating 

on the vertical side-walls of the cavity. Mixed convection in a 

square cavity of sinusoidal boundary temperatures at the side 

walls in the presence of magnetic field was investigated 

numerically by Sivasankaran et al. [22]. Wang et al. [28] 

proposed a higher order compact (HOC) finite difference 

solution procedure for the steady two-dimensional 

convection-diffusion equations in a lid-driven square cavity 

filled with a CuO-water nanofluid. The mixed convection 

in a square porous lid-driven cavity with non-uniform heating 

was studied by Sivasankaran and Pan [23]. Sivasankaran et al. 

[24] have studied a numerical analysis on mixed convection 

in an inclined square cavity with different sizes and locations 

of the heater. Steady laminar mixed convection inside a lid-

driven square cavity filled with water was studied 

numerically by Ismael et al. [10]. Malleswaran and 

Sivasankaran [13] have investigated on mixed convection in 

a lid-driven square cavity in the presence of the uniform 

magnetic field with corner heaters. Pandit et al. [18] have 

proposed fourth order compact scheme for the convection-

diffusion equations with considering reaction and non-

homogeneous source terms, to compute flow in a two sided 

lid-driven differentially heated square cavity filled with a 

fluid saturated porous medium. Chattopadhyay et al. [6] have 

numerically simulated 2-D mixed convection flow in a 

sinusoidally heated porous cavity whose two vertical walls 

(lids) are in motion. 

As described in the beginning of this introduction, 2-D 

unsteady incompressible viscous flow with heat transfer has 

enormous scope of applications in engineering and physical 

sciences. This fact was our motivation in undertaking the 

current study. Moreover, the importance of these applications 

can be investigated only by determining numerical solutions 

of the unknown flow variables, streamfunction, and 

vorticity function for low Reynolds numbers Re≤50. To 

achieve this we present, numerically, an investigation of the 

problem of 2-D unsteady incompressible flow with heat 

transfer in a driven square cavity using the streamfunction-

vorticity (ψ−ξ) formulation. 

The main target of this work is to suitably use 

streamfunction-vorticity formulation to investigate the 

problem of 2-D unsteady viscous incompressible flow with 

heat transfer in a driven square cavity with moving top and 

bottom walls. Alternating-Direction-Implicit (ADI) scheme 

has been employed to discretize the vorticity-transport 

equation. We have proved the stability and convergence of 

the numerical scheme using matrix method. A general 

algorithm was used for this formulation in order to compute 

the numerical solutions of the flow variables for Re≤50. 

In this chapter, we have used a streamfunction-vorticity 

(ψ−ξ) formulation to investigate the problem of 2-D unsteady 

viscous incompressible flow with heat transfer in a driven 

square cavity with moving top and bottom walls. We used 

this formulation to solve the governing equations along with 

no-slip and slip wall boundary conditions. A general 

algorithm was used for this formulation in order to compute 

the numerical solutions for the flow variables: ψ, ξ, u, v, P 

and T for low Reynolds numbers Re≤50. The numerical 

solutions of the unknown flow variable T are calculated for 

different Prandtl numbers 0.7 (for air) and 6.75(for water). 

We have executed this with the aid of a computer programme 

developed and run in C++ compiler. We have proved the 

stability and convergence of the numerical scheme using 

matrix method. Following this, the stability conditions 

obtained for the time and space steps have been used in 

numerical computations to arrive at the numerical solutions 

with desired accuracy. 

The design of the current work is as follows: Section 2 

provides the physical description, governing equations of the 

2-D unsteady incompressible viscous flow with heat transfer 

in a driven cavity along with the initial and boundary 

conditions for a square cavity, streamfunction-vorticity 

method and determination of pressure for viscous flow. 

Section 3 describes numerical discretization of governing 

equations and specification of boundary conditions. Section 4 

provides proof of the stability and convergence of the 

numerical scheme using the matrix method. Section 5 

provides numerical computations and general algorithm for 

computation of numerical solutions of the flow variables. 

Section 6 discusses the numerical results. Section 8 lays out 

the conclusions of the study. 

2.PROBLEMFORMULATION 

2.1 Physical description 

 

Figure 1 illustrates the geometry of the problem in this 

study along with the boundary conditions. ABCD is a square 

cavity in which a 2-D unsteady incompressible viscous flow 

with heat transfer is considered. Now, by sliding in finite 

long plates lying on top and bottom of the cavity, vorticity 

along the walls of the cavity is generated. Suppose that all 

variables are normalized so that the size of the cavity is 1×1 

and the sliding velocities are 1 and -1 in the positive and 

negative x-directions respectively. The temperature on the 

walls AB and DC are T=-0.5 and T=0.5 respectively. 

 

 
 

Figure 1. Square cavity flow caused by moving plates with 

temperature boundary conditions 

 

The boundary conditions are defined as no slip on the 

stationary walls (AB and DC) and as slip on the moving 

walls (AD and BC). We have assumed that, at all the four 
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corner points of the square domain, the velocity components 

(u, v), temperature T and pressure P vanish. 

 

2.2 Governing equations 

 

In the present investigation, unsteady 2-D incompressible 

flow with heat transfer in a driven square cavity with no-slip 

and slip wall boundary conditions has been considered. The 

governing equations of 2-D unsteady incompressible viscous 

flow with heat transfer are the continuity equation, and the 

two components of the momentum equations and the energy 

equation. Using the Boussinesq approximations, the non-

dimensional governing equations of this problem are 

expressed as follows: 

 

0,
u v

x y

 
 

 
                                                                         (1) 

 
2 2

2 2

1
,

u u u P u u
u v

t x y x Re x y

      
      

      
                       (2) 

 
2 2

2 2

1
,

v v v P v v
u v

t x y y Re x y

      
      

      
                         (3) 

 
2 2

2 2

1
,

T T T T T
u v

t x y Pr x y

     
    

     
                                (4) 

 

where u, v, P, T, Re, and Pr are the velocity components 

along x and y axis, pressure, temperature, Reynolds number 

and Prandtl number respectively. The initial, no-slip and slip 

wall boundary conditions are 

 

For t=0, 

 

( , ,0) 0, ( , ,0) 0, ( , ,0) 0.u x y v x y T x y    

 

For 0t  , 

 

on plate AB: 0, 0, 0.5u v T     

on plate DC: 0, 0, 0.5u v T    

on plate AD: 1, 0, 1
T

u v T
y


   


 

on plate BC: 1, 0, 1
T

u v T
y


     


 

 

2.3 Streamfunction-vorticity formulation 

 

To obtain the streamfunction-vorticity (ψ−ξ) equation, 

pressure P  is eliminated from Eq. (2) and Eq. (3) by 

differentiating Eq. (2) with respect to y  and Eq. (3) with 

respect to x  and subtracting one from the other. The 

resulting equation is expressed with vorticity ξ as the 

dependent variable which is defined by 

 

v u

x y


 
 
 

 (5) 

 

 

The result is 

 
2 2

2 2

1
.u v

t x y Re x y

         
    

     
 (6) 

 

Equation (6) is a parabolic PDE called vorticity-transport 

equation expressed in compact form as follows: 

 

21
.

D

Dt Re


   (7) 

 

Now, define a streamfunction  as 

 

,v u
x y

  
  

 
 (8) 

 
  Identically, satisfies the continuity Eq. (1). Further, use 

of the definition of ξ leads to 

 
2 2

2 2
 

x y

 


 
  

 
 (9) 

 

This is an elliptic PDE called Poisson equation. The 

energy Eq. (4) can be expressed as 

 
2 2

2 2

1
.

T T T T T

t Pr x y y xx y

               
           

             
 (10) 

 

2.4 Determination of pressure for viscous flow 

 

In the streamfunction-vorticity method, to obtain pressure 

at each grid point for viscous flow, it is necessary to solve an 

additional equation for pressure. This equation is derived by 

differentiating Eq. (2) with respect to x and Eq. (3) with 

respect to y and adding them together. The resulting equation 

is expressed as follows: 

 
2

2 2
u v u v u v v u

t x y x y x y x y

                   
               

                    

 

u v u v
u v

x x y y x y

              
         

              
 

2 2
2

2 2

1
.

u v u v
P

Re x y x yx y

         
         

        
              (11) 

 

From the continuity equation for incompressible flow, we 

have 

 

0.
u v

x y

 
 

 
  

 

We obtain from Eq. (11), 

 

2 2
u v v u

P
x y x y

          
         

          
 or 

2 ,P S   (12) 
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Eq. (12) is known as Poisson equation for pressure. A 

suitable second-order difference representation for right hand 

side of Eq. (12) is given as 

 

1, , 1, , 1 , , 1

, 2 2

2 2
2

i j i j i j i j i j i j

i jS
x y

              
   

   

 

2

1, 1 1, 1 1, 1 1, 1
.

4

i j i j i j i j

x y

          
   
 

    

                          (13) 

 

 

3. NUMERICAL DISCRETIZATION 

 

 
 

Figure 2. Finite difference grid of a square cavity flow 

caused by moving plates with temperature boundary 

conditions 

 

Discretization of the governing equations by finite 

difference method although a well-known technique we have 

adopted this technique in the present study due to its 

compatibility with the regularly shaped geometry, flow in a 

square cavity caused by moving plates. With the help of 

streamfunction-vorticity (ψ-ξ) formulation as discussed 

above, the governing equations (1) to (4) of 2-D unsteady 

incompressible viscous flow with heat transfer in non-

dimensional form are expressed as: 

 
2 2

2 2
,

x y

 


 
  

 
 (14) 

 
2 2

2 2

1
,

t Re x y y xx y

                    
           

             
 (15) 

 
2 2

2 2

1
,

T T T T T

t Pr x y y xx y

               
           

             
 (16) 

 

where Re is the Reynolds number, Pr is the Prandtl number, x 

and y are the Cartesian co-ordinates. Essentially, the system 

is composed of the Poisson equation for streamfunction Eq. 

(14), the vorticity-transport equation Eq. (15) and the energy 

equation Eq. (16). 

To obtain the numerical solutions, the coupled equations 

(14) to (16) need to be solved in an iterative manner. There is 

a distinct advantage in using a scheme that will allow 

equations (15) and (16) to be solved by means of tridiagonal 

forms only. Therefore, a fully implicit scheme, namely 

Alternating-Direction-Implicit (ADI) scheme is used for 

solving numerically these coupled partial differential 

equations (15) and (16). 

Consider a square numerical grid of size 1×1 having n 

horizontal interior grid lines and an equal number of vertical 

grid lines as shown in Figure 2. Using the ADI scheme [5, 

pp.883] and applying the forward-time and central-space 

(FTCS) finite difference quotients for the first and second 

order partial derivatives of  , ξ and T with respect to time 

and space variables in equations (14) to (16) as given below: 

 
2 2

1, , 1, 1, , 1,

2 2 2 2

2 2
| ,

t t t t t t

i j i j i j i j i j i j

t

T T TT
t

x x x x

          
 

   
 

1 1 1 1 1 1

2 2 2 2 2 22 2
, 1 , , 1 , 1 , , 1

2 2 2 2
1 1

2 2

2 2
,

t t t t t t

i j i j i j i j i j i j

t t

T T TT

y y y y

  
     

   

 

    
 
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1, 1, 1, 1,
,

2 2

t t t t

i j i j i j i j

t t

T TT

x x x x

       
 
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1 1 1 1

2 2 2 2
, 1 , 1 , 1 , 1

1 1

2 2

,
2 2

t t t t

i j i j i j i j

t t

T TT

y y y y

 
   

   

 

  
 
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1 1

2 2
, , , ,

, .

2 2

t t
t t

i j i j i j i j

t t

T TT

t tt t

 
 

  
 

  
 

1, 1, , 1 , 1
,

2 2

t t t t

i j i j i j i j

t t
x x y y

         
 
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2 2
1, , 1, , 1 , , 1

2 2 2 2

2 2
,

t t t t t t

i j i j i j i j i j i j

t t
x x y y

             
 

   
 

 

The discretized Poisson Eq. (14) for   can be written as 

 
1 1 1 1 1 1

1, , 1, , 1 , , 1 1

,2 2

2 2
.

t t t t t t

i j i j i j i j i j i j t

i j
x y

     


     

    
   

  
 

 

 

We choose ∆x = ∆y so that the above discretized equation 

reduces to 

 
1 1 1 1 1 1 2

1, 1, , 1 , 1 , ,4 .t t t t t t

i j i j i j i j i j i j x          

           (17) 

 

The discretized vorticity-transport Eq. (15) over time step 

t+1/2 can be written as 

 
1

2
, , 1, , 1, 1, 1,

2

21 1

2 2 2

t tt t t t t t

i j i j i j i j i j i j i j

t Re y xx

      


   
       

               

 

1 1 1 1 1
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2

21 1
.

2 2 2

t t t t t
t

i j i j i j i j i j

x y Re y
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    

   

   
       

             
   

 

 

Rearranging terms in the above equation, we have 
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1 1
1, 1, 2 2

, 1 ,2 2
1

4 2 2

t t
t ti j i j

i j i j

t t t

y x Re y Re y

 
 

  



      
               

 

1
1, 1, 2

, 1 ,2 24 2 2 2

t t
ti j i j t

i j i j

t t t

y x Re y Re x

 
 

 



    
      

       

 

1, , 1, 1, 1, , 1 , 12 .
8

t t t t t t t

i j i j i j i j i j i j i j

t

x y
           


                

 

This is the final discretized equation of Eq. (15) at time 

step t+1/2. Now, discretizing the energy equation Eq. (16) 

over time step t+1/2 using the ADI scheme we have 
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Rearranging terms in the preceding equation, we have 
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This is the final discretized equation of Eq. (16) at time 

step t+1/2. Now, discretizing the vorticity-transport equation 

Eq. (15) and the energy equation Eq. (16) over time step t+1 

by introducing the finite difference quotients as described 

below: 
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Using the above equations into equations (15) and (16), we 

get 
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respectively. Rearranging terms in the above equations, we 

have 
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(20) 

 

respectively. The equations (19) and (20) are the final 

discretized equations of (15) and (16) at time step t+1 

respectively. 

 

3.1 Specification of boundary conditions 

 

Consider the finite-difference grid shown in Figures 2 and 

3 for specification of the boundary conditions for vorticity 

and temperature respectively on four walls defined as given 

below. 
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Figure 3. Finite-difference grid for temperature boundary 

conditions 

 

On the left plate AB:

0, 1, 0,

0, 0,2

2 |

, 0.5
j j j

j j

x
x

T
x


 



 
   

 
  


 

 

On the right plate DC:

1, , 1,

1, 1,2

2 |

, 0.5
n j n j n j

n j n j

x
x

T
x


 


 

 

 
   

 
 


 

 

On the top plate AD:

, 1 , , 1

,

, 1 , 12

2 |

,
1

i n i n i n

i n

i n i n

y
y Ty

T
yy


 



 

 

 
   

  
 

 
 

 

On the bottom plate BC:

,0 ,1 ,0

,1

,0 ,02

2 |

,
1

i i i

i

i i

y
y Ty

T
yy


 



 
   

  
 

 
 

 

The homogeneous Neumann boundary conditions for 

pressure are given by  

 

0,
P


n
 

 

where n is the normal-direction. Elliptic equations with 

Neumann boundary conditions on all boundaries, such as the 

pressure Eq. (12), present an indeterminate problem, as the 

coefficient matrix of the finite-difference representation of 

the equation has one zero eigenvalue [4]. Consequently, the 

resulting system of equations is linearly dependent and 

cannot be solved uniquely. This can be alleviated by 

assigning a constant value to pressure at one reference point 

in the solution domain. We have assigned P=5 at one 

reference point in the solution domain. The resulting 

equations will be linearly independent and will have a unique 

solution. Thus, the pressure solution will be off by this 

constant, but the pressure gradient, which is the actual term 

that exists in the equation of motion, will be correctly 

calculated. 

 

4. STABILITY AND CONVERGENCE OF THE 

NUMERICAL METHOD 

 

In this section, we will prove the stability and convergence 

of the numerical (ADI) method used in the numerical 

discretization based on the criteria proposed by Peaceman 

and Rachford [19]. We now introduce the finite-difference 

formulae for first and second-order partial derivatives of ξ 

with respect to x and y as proposed in [14], which are given 

by 
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Similarly, for second-order partial derivatives we will 

employ the second central difference, 
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where ∆𝑥 is the grid spacing in x-direction. We adopt similar 

formulas in y direction. Let t  denotes the grid spacing in 

time (t)-direction. Further, we assume A = 𝐷𝑂,𝑥
2 , B = 𝐷0,𝑦

2 , 

C = 𝐷0,𝑥  and D = 𝐷0,𝑦 . Now, discretizing the equation Eq. 

(15) at time step t+1/2 we get 
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Now, discretizing the Eq. (15) at time step t+1 we get 
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Now, equations (21) and (22) give, 
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Rewriting the equations (21), (22) and (23) we obtain the 

following form: 

 

464



1

2
, ,

t
t

i j i jE 


  (24) 

 
1

1 2
, ,

t
t

i j i jF 


   (25) 

 
1

, , ,t t

i j i jFE    (26) 

 

where 

 
1

, , ,
2 2 2 2

i j i j

t t t t
E I v D B I u C A

Re Re


      

       
   

       (27) 

 
1

, , .
2 2 2 2

i j i j

t t t t
F I u C A I v D B

Re Re


      

       
   

       (28) 

 

Now, discretizing the equation Eq. (16) at time step t+1/2, 

we get 
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Now, discretizing the equation Eq. (16) at time step t+1 

we get 
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Now, equations (29) and (30) together give, 
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Rewriting the equations (29), (30) and (31) we obtain the 

following form: 
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                                                                      (33) 

 
1

, ,' ' ,t t

i j i jT F E T                                                                  (34) 

 

where 

 

1

, ,' ,
2 2 2 2

i j i j

t t t t
E I v D B I u C A

Pr Pr


      

       
   

 (35) 

 
1

, , .
2 2 2 2

i j i j

t t t t
F I u C A I v D B

Pr Pr


      

        
   

 (36) 

 

Recall, the equations (26) and (34), these equations in 

matrix form can be written as 

 
1

, ,

1

, ,

0

0 ' '

t t

i j i j

t t

i j i j

FE

T TF E

 



    
    

       

 (37) 

 

From the matrix method for stability, we must have the 

norm of the above matrix must be less than or equal to 1, i.e. 

 

0
1,

0

FE

FE

 
 

 
 

 

which gives ‖𝐹𝐸‖ ≤ 1 and ‖𝐹′𝐸′‖ ≤ 1. Now, recall that for 

any matrix M, ρ(M) ≤ ‖𝑀‖for all matrix norms‖∙‖. If we 

now take ‖∙‖ to be the spectral norm for the matrices (and 2-

norm for vectors) so‖∙‖ = 𝜌(∙), which is valid provided E 

and F are diagonalizable with real eigenvalues. So, ‖𝐹𝐸‖ =
𝜌(𝐹)𝜌(𝐸)and ‖𝐹′𝐸′‖ = 𝜌(𝐹′)𝜌(𝐸′). Thus our task reduces 

to show that 𝜌(𝐸) ≤ 1  and 𝜌(𝐹) ≤ 1  in order to 

achieve ‖𝐹𝐸‖ ≤ 1. Similarly, to obtain ‖𝐹′𝐸′‖ ≤ 1 we need 

𝜌(𝐹′) ≤ 1 and 𝜌(𝐸′) ≤ 1. 

Now, we will prove that 𝜌(𝐹) ≤ 1  and leave the case 

𝜌(𝐹) ≤ 1  because the same result is obtained as that of 

𝜌(𝐸) ≤ 1. 

Consider equations (27), (28), (35) and (36) with A=B and 

C=D. We note that this occurs for the vorticity transport 

equation and the energy equation if the same spatial step size 

is used in both directions. 

Now, writing the discretized equation of Eq. (24), we get 

 
1 1 1

2 2 2
, , 1 , , , 12 2 2

1
4 42 2

t t t

i j i j i j i j i j

t t t t t
v v

y yRe y Re y Re y
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 

         
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, , 1 , , , 12 2 2
1

4 42 2

t t t

i j i j i j i j i j

t t t t t
u u

x xRe x Re x Re x
   

         
                  

 

(38) 

 

If the boundary values at i = 0, i = n+1, j = 0 and j = n+1 

are known, then for a fixed i in x-direction and varying the 

values for j in y direction, j = 1(1)n, we obtain a system of 

equations. We can write the above system of equations in 

matrix form as follows: 
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              
          

 

 

 

where 

 

465



2 2
1 , 1 ,

t t
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Re y Re x
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y xRe y Re x
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, ,2 2
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4 42 2
i j i j

t t t t
c v c u

y xRe y Re x

     
           

 

 

and gj is a column vector of known boundary values of
0

1

2
,

t

i j


, 

1

1

2
, n

t

i j




 at time t+1/2, and zeros. Rewriting the above system as 

follows 

 
1 1

2 2
1 1 1

t t
t 

 

   

 

where the matrices 
1

, 
1
 are of order n as shown above, 

1

2
t




 and t  denote the column vectors with components 

1 2 1 2

1 1 1

2 2 2
, , , , , ,, ,... , and , ,...

n n

t t t
t t t

i j i j i j i j i j i j     
  

respectively, 
1

2
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denotes the column vector of known boundary values of  

0

1

2
,

t

i j


, 
1

1

2
, n

t

i j




 at time t+1/2, and zeros. Now, calculating the 

eigenvalues of matrix 
1

, 
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So, the eigenvalues of matrix
1

 are 
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nRe y Re y
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where s = 1(1)n . Now, calculating the eigenvalues of 

matrixQ1, 
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Therefore, the eigenvalues of matrix Q1 are 
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where s=1(1)n. Thus, for the stability we must have 
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                                                                                            (39) 

We have chosen 
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Then the Eq. (39) can be expressed in the form 
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(40) 

 

It is easy to observe that  |𝑀| ≤ 1, |𝑀′| ≤ 1  or 
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Thus, we have |𝑢𝑖.𝑗∆𝑥𝑅𝑒| ≤ 2  and |𝑣𝑖.𝑗∆𝑦𝑅𝑒| ≤ 2 . Also 

letting  
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For this value of s, 1

1 1 2

  has maximum value, therefore 

Eq. (40) reduces to 
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which gives 
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1 1
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Since 1,M  ' 1M  , also  

 

2 2
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t t
r

Re x Re y

 
  

 
 (42) 

 

Thus, from equations (41) and (42) we have 0 ≤ r < 1 i.e. 
2.t Re x   Similarly, we will prove that 𝜌(𝐸′) ≤ 1  and 

leave the case 𝜌(𝐹′) ≤ 1 because the same result is obtained 

as that of 𝜌(𝐸′) ≤ 1. Now, 'E  is equivalent to the following 

matrix system: 
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where 
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and jg  is a column vector of known boundary values of 
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 at time t+1/2, and zeros. Rewriting  the above 

system as follows 
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denotes the column vector of known boundary values of 
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 at time t+1/2, and zeros. Now, preceding as for 

the above case, we get 2.t Pr x   Thus, we have proved 

that 
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2
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Hence, the numerical scheme we have used is 

unconditionally stable. The scheme is consistent as the 

limiting value of the local truncation is zero as t , x  and 

0y  . So, by Lax's equivalence theorem [26, pp.72], the 

given scheme is convergent. 

 

 

5. NUMERICAL COMPUTATIONS 

 

We obtained the numerical computation of the unknown 

flow variables  ,  , u , v , P , T  for the present problem 

with the aid of a computer programme developed and run in 

C++ compiler. The input data for the relevant parameters in 

the governing equations like Reynolds number (Re) and 

Prandtl number (Pr) have been properly chosen incompatible 

with the present problem considered. 

 

 

 

5.1 Algorithm for obtaining numerical solutions by 

streamfunction-vorticity formulation 

 

The algorithm for obtaining the numerical solutions by 

streamfunction-vorticity formulation consists of the 

following steps: 

 

Step (1)Specify the initial values for   and   at time 0t  . 

Step (2)Solve the vorticity transport equation Eq. (7) for   

at each interior grid point at time t t  . 

Step (3) Iterate for new   values at all points by solving the 

Poisson equation Eq. (9) using newξ values at interior points. 

Step (4) Find the velocity components  and .v
x


 


u

y





 

Step (5) Solve the energy equation Eq. (10) for T at each 

interior grid point using u  and v  values. 

Step (6) Find the local Nusselt-number 
yNu = T

x




 and average 

Nusselt-number Nu . 

Step (7) Solve the Poisson equation Eq. (12) for P using the 

calculated   values at each interior grid point. 

Step (8) Determine the values of ξ on the boundaries using 

  and ξ values at interior points. 

Step (9) Return to Step 2 if the solution does not converge. 

 

 

6. NUMERICAL RESULTS AND DISCUSSION 

 

We used the Alternating-Direction-Implicit (ADI) scheme 

to carry out the numerical computations of the unknown flow 

variables  ,  , u , v , P , T  for the present problem. We 

summarized this method under an algorithm for 

streamfunction-vorticity formulation as described under 

section 5.1 above. We used a computer code developed and 

run in C++ compiler to execute this. To verify our computer 

code, the numerical results obtained by the present method 

were compared with the benchmark results reported in [8]. It 

is seen that the results obtained in the present work are in 

good agreement with those reported in [8] at low Reynolds 

number Re=100. This indicates the validity of the numerical 

code that we developed. 

Figures 4 and 5 illustrate the variation of u -velocity along 

the vertical line through geometric center of the square cavity 

at different time levels (t=0.25sec, 0.50 sec, 0.75 sec, 1.00 

sec), for different Reynolds numbers Re=15 and 50 

respectively. We observed that, the u-velocity is almost same 

near the top and bottom wall of the square cavity, above and 

below the geometric center respectively for Re=15 and 50. 

We also observed that, the absolute value of u-velocity first 

decrease, then increases, and finally, decreases in the vicinity 

of the top wall and the same behavior is observed below the 

geometric center. 

Figures 6 and 7 illustrate the variation of v-velocity along 

the horizontal line through geometric center of the square 

cavity at different time levels (t=0.25sec, 0.50 sec, 0.75 sec, 

1.00 sec), for different Reynolds numbers Re=15 and 50 

respectively. We observed that, the absolute value of v-

velocity first increases uniformly, and finally, converge to the 

boundary of the right wall. The behavior of v-velocity from 

the left side wall towards the geometric center of the cavity is 

that it increases uniformly, and converges at the geometric 

center of the cavity. We also observed that, the absolute 

467



value of v-velocity increases uniformly as time increases, and 

converges at the geometric center, and the same behavior is 

also observed to the right side of the geometric center at both 

Reynolds numbers Re=15 and 50. 

 

 
 

Figure 4. u-velocity profiles along the vertical line through 

geometric center of the square cavity for Re=15 at different 

time levels 

 

 
 

Figure 5. u-velocity profiles along the vertical line through 

geometric center of the square cavity for Re=50 at different 

time levels 

 

 
 

Figure 6. v-velocity profiles along the horizontal line through 

geometric center of the square cavity for Re=15 at different 

time levels 

 

Figures 8 and 9 illustrate the variation of pressure along 

the horizontal line through geometric center of the square 

cavity at different time levels (t = 0.25 sec, 0.50 sec, 0.75 sec, 

1.00 sec), for different Reynolds numbers Re=15 and 50 

respectively. We observed that, the pressure first increases, 

then decreases in between the left wall boundary to the mid 

of the square domain and the same behavior is observed to 

the right of geometric center for Re=15 at t =1 sec. We found 

that the pressure first increases, then decreases, and finally, 

increases in between left wall boundary and geometric center 

of the square cavity while it decreases, increases, then 

decreases, and finally, increases to the right of the geometric 

center of the square domain for Re=50 at t =1 sec. 

 

 
 

Figure 7. v -velocity profiles along the horizontal line 

through geometric center of the square cavity for Re=50 at 

different time levels 

 

 
 

Figure 8. Pressure along the horizontal line through 

geometric center of the square cavity for Re=15 at different 

time levels 

 

 
 

Figure 9. Pressure along the horizontal line through 

geometric center of the square cavity for Re=50 at different 

time levels 

 

Figures 10 and 11 illustrate the variation of pressure along 

the vertical line through geometric center of the square cavity 

at different time levels (t = 0.25 sec, 0.50 sec, 0.75 sec, 1.00 

sec), for different Reynolds numbers Re=15 and 50 

respectively. We observed that, the pressure first decreases, 
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then increases, and finally, decreases in between bottom wall 

boundary and the geometric center of the square cavity, while 

it first increases, then decreases, increases, and finally, 

decreases in between the top wall and the geometric center of 

the square cavity for Reynolds numbers Re=15. We found 

that the pressure-profiles for Re=50, in between the bottom 

wall boundary and the geometric center of the square cavity 

are same as that of Re=15, while it first decreases, then 

increases and finally decreases in between the top wall 

boundary and mid of the square domain. 

 

 
 

Figure 10. Pressure along the vertical line through geometric 

center of the square cavity for Re=15 at different time levels 

 

 
 

Figure 11. Pressure along the vertical line through geometric 

center of the square cavity for Re=50 at different time levels 

 

 
 

Figure 12. Temperature-profiles along the horizontal line 

through geometric center of the square cavity for Re=15 and 

Pr= 0.7 at different time levels 

 

 
 

Figure 13. Temperature-profiles along the horizontal line 

through geometric center of the square cavity for Re=50 and 

Pr= 0.7 at different time levels 

 

Figures 12 and 13 illustrate the variation of temperature-

profiles along the horizontal line through geometric center of 

the square cavity at different time levels (t = 0.25 sec, 0.50 

sec, 0.75 sec, 1.00 sec), for different Reynolds numbers 

Re=15, 50and Prandtl number Pr=0.7 (for air) respectively. 

We observed that, at a particular time level, the absolute 

value of temperature decreases in the vicinity of right wall 

and the same behavior is observed to the left of geometric 

center of the cavity. We also observed that, the absolute 

value of temperature increases uniformly as time increases 

for both Reynolds numbers Re=15 and 50. 

Figures 14 and 15 illustrate the variation of temperature-

profiles along the vertical line through geometric center of 

the square cavity at different time levels for different 

Reynolds numbers Re=15, 50 and Prandtl number Pr=0.7 (for 

air) respectively. We observed that, the absolute value of 

temperature decreases in the vicinity of top wall and the same 

behavior is observed below the geometric center of the cavity. 

We also observed that, the absolute value of temperature 

decreases uniformly as time increases for both Reynolds 

number Re=15 and 50. 

Figures 16 and 17 illustrate the variation of temperature-

profiles along the horizontal line through geometric center of 

the square cavity at different time levels for different 

Reynolds numbers Re=15, 50 and Prandtl number Pr=6.75 

(for water) respectively. We observed that, at a particular 

time level, the absolute value of temperature decreases in the 

vicinity of right wall and same behavior is observed to the 

left of the geometric center of the cavity. We also observed 

that, the absolute value of temperature increases uniformly as 

time increases for both Reynolds number Re=15 and 50. 

 

 
 

Figure 14. Temperature-profiles along the vertical line 

through geometric center of the square cavity for Re=15 and 

Pr=0.7 at different time levels 
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Figure 15. Temperature-profiles along the vertical line 

through geometric center of the square cavity for Re=50 and 

Pr= 0.7 at different time levels 

 

 
 

Figure 16. Temperature-profiles along the horizontal line 

through geometric center of the square cavity for Re=15 and 

Pr= 6.75 at different time levels 

 

 
 

Figure 17. Temperature-profiles along the horizontal line 

through geometric center of the square cavity for Re=50 and 

Pr= 6.75 at different time levels 

 

Figures 18 and 19 illustrate the variation of temperature-

profiles along the vertical line through geometric center of 

the square cavity at different time levels for different 

Reynolds numbers Re=15, 50 and Prandtl number Pr=6.75 

(for water) respectively. We observed that, the absolute value 

of temperature decreases in the vicinity of top wall and the 

same behavior is observed below the geometric center of the 

cavity. We also observed that, the absolute value of 

temperature first increases uniformly, and then, decreases as 

time increases for both Reynolds number Re=15 and 50. 

 
 

Figure 18. Temperature-profiles along the vertical line 

through geometric center of the square cavity for Re=15 and 

Pr=6.75 at different time levels 

 

 
 

Figure 19. Temperature-profiles along the vertical line 

through geometric center of the square cavity for Re=50 and 

Pr= 6.75 at different time levels 

 

The Isotherms for Reynolds number 15, Prandtl numbers 

Pr=0.7 and 6.75 at different time levels ( t   0.25 sec, 0.50 

sec, 0.75 sec, 1.00 sec), have been depicted in Figures 20 and 

21 respectively. Isotherms are the lines which connect points 

of equal temperature. The above mentioned figures show a 

number of curves with a particular number on it, which 

represent the temperature value on that curve. The isotherms 

labeled as -0.4 and 0.4 in both Figures 20 and 21 indicate the 

coldest and hottest temperature-profiles. The relative spacing 

of isotherms indicate the temperature gradient which is 0.1 as 

shown in figures, the amount by which the temperature vary 

across each unit of horizontal distance in a direction 

perpendicular to the isotherms. 

 

 
 

(a) t   0.25sec(b) t   0.50sec 
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(c) t   0.75sec 

 
(d) t   1.00sec 

 

Figure 20. Isotherms for Re=15 and Pr=0.7 at different time 

levels: (a) t = 0.25 sec; (b) t = 0.50 sec; (c) t = 0.75 sec; (d) t 

= 1.00 sec 

 

 
(a) t   0.25sec 

 
(b) t   0.50sec 

 

 
(c) t   0.75sec 

 
(d) t   0.75sec 

 

Figure 21. Isotherms for Re=15 and Pr=6.75 at different time 

levels: (a) t = 0.25 sec; (b) t = 0.50 sec; (c) t = 0.75 sec; (d) t 

= 1.00 sec 

 

The Isobars for Reynolds numbers 15 and 50 at different 

time levels ( t  0.25sec, 0.50 sec, 0.75 sec, 1.00sec), have 

been depicted in Figures 22 and 23 respectively. Isobars are 

the lines which connects points of equal pressure. Figures 22 

and 23 shows a number of curves with a particular number on 

it, which represent the pressure value on that curve. We 

found that the maximum value of pressure is 5.1 and 5.2 for 

Re=15 and 50 respectively. In Figures 22 and 23, a small 

blue color contour shows the smallest value of pressure. 

The physical quantity of interest, the Nusselt number (Nu), 

represents heat transfer. The local Nusselt number (𝑁𝑢𝑦) and 

average Nusselt number 𝑁𝑢̅̅ ̅̅ at the center line (x=0.5) of the 

square cavity is defined as 𝑁𝑢𝑦 =
𝜕𝑇

𝜕𝑋
 and 𝑁𝑢̅̅ ̅̅ = ∫ 𝑁𝑢𝑦𝑑𝑦

1

0
. 

Figure 24 illustrates the numerical computations of average 

Nusselt number variation, at different time-levels, along 

vertical line through geometric center of the square cavity. 

This variation shows that heat transfer rising to a peak value 

and subsequently converging to the steady state value. 

Initially transient flow dominates. After some passage of time

( 1.0 )t sec , it is evident that transient flow settles down to 

steady state flow. 

 

 
(a) t   0.25sec 

 
(b) t   0.50sec 

 

 
(c) t   0.75sec 

 
(d) t   1.00sec 

 

Figure 22. Isobars for Re=15 at different time levels: (a) t = 

0.25 sec; (b) t = 0.50 sec; (c) t = 0.75 sec; (d) t = 1.00 sec 

 

 
(a) t   0.25sec 

 
(b) t   0.50sec 

 

 
(c) t   0.50sec 

 
(d) t   1.00sec 

 

Figure 23. Isobars for Re=50 at different time levels: (a) t = 

0.25 sec; (b) t = 0.50 sec; (c) t = 0.75 sec; (d) t = 1.00 sec 
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Figure 24.Temporal variation of the average Nusselt number 

at center line x  0.5 of square cavity for Re=15 and Pr=6.75 

 

 

7. CODE VALIDATION 

 

To check the validity of our present computer code used to 

obtain the numerical results of u-velocity and v-velocity, we 

have compared our present results with those benchmark 

results given by Ghia et al. [8] and it has been found that they 

are in good agreement 

 

 
Figure 25. Comparison of the numerical results of u-velocity 

along the vertical line through geometric center of the square 

cavity for Re=100 

 
Figure 26. Comparison of the numerical results of v-velocity 

along the horizontal line through geometric center of the 

square cavity for Re=100 

8. CONCLUSIONS 

 

Based on the numerical computations of velocity 

components pressure and temperature, we found that with the 

increase of Reynolds number, the absolute value of velocity 

components decreases and the absolute value of pressure also 

decreases. Further, the numerical solutions of the temperature 

show that, with the increase of Prandtl number, the 

temperature decreases along the vertical line through the 

geometric center of the square cavity for a particular value of 

Reynolds number while the temperature increases along the 

horizontal line through the geometric center of the square 

cavity for a particular value of Reynolds number. 

The average Nusselt number variation along vertical line 

through geometric center of the square cavity for Re=15 and 

Pr=6.75 shows that heat transfer rising to a peak value and 

subsequently converging to the steady state value. Initially 

transient flow dominates. After some passage of time 

( 1.0 )t sec , it is evident that transient flow settles down to 

steady state flow. 

The isotherms show that the coldest and hottest 

temperature-profiles are -0.4 and 0.4. The relative spacing of 

isotherms indicate the temperature gradient, which is 0.1 as 

shown in figures, the amount by which the temperature vary 

across each unit of horizontal distance in a direction 

perpendicular to the isotherms. The isobars for Reynolds 

numbers 15 and 50 at different time levels ( t  0.25sec, 

0.50sec, 0.75sec,1.00sec), are shown in the figures. We found 

that, the maximum value of pressure is 5.1 and 5.2 for Re=15 

and 50 respectively. 
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