
 
 
 

 
 

 
1. INTRODUCTION 

Irreversible processes can cause entropy of a system to 
change. The second law of thermodynamics accounts for 
irreversibility or entropy. Sources of irreversibility include; 
heat transfer across finite temperature difference, unrestrained 
chemical reaction, fluid viscosity, turbulence, and so on. 
Entropy change due to irreversibility is called entropy 
generation and this is encountered in all thermal systems. One 
of the significant interests in thermal systems is to minimize 
energy losses and fully maximize the energy resources. 
Investigation of mixed convection flow in a vertical porous 
channel is of special importance in view of its numerous 
applications in engineering and industries such as petroleum 
reservoirs, geothermal reservoirs, nuclear reactor cooling, 
thermal insulation, metallurgy, energy storage and 
conservation as well as chemical and food industries. The 
study of entropy generation in porous channel has attracted 
the attention of researchers in recent times. Bejan [1-3] 
pioneered theoretical work on entropy generation in flow 
systems. He showed that efficiency of a machine can be 
improved by minimizing entropy generation. Makinde and 
Eegunjobi [4] utilized velocity and temperature profiles to 
compute entropy generation in a couple stress fluid flows 
through a vertical channel. They affirmed that velocity 
profiles are parabolic in nature. Other several authors [5-13] 
have investigated different problems to analyze effects of 

entropy on thermal systems and to proffer ways to minimize 
them.  

Ajibade et al. [14] investigated entropy generation under 
the effect of suction. In the work of Ajibade et al. [14] 

entropy generation and irreversibility distribution were 
obtained and analyzed for a pressure driven flow through a 
porous horizontal channel. The set-up of the problem shows 
that the energy in the system is due to asymmetric heating of 
the porous channel plates and the viscous dissipation within 
the channel. It is however observed that despite the 
temperature gradient generated by the thermal input into the 
system, the buoyancy effect on the fluid was completely 
ignored. This is due to the channel orientation which is in the 
horizontal position.  

When the channel orientation is changed from horizontal 
through certain inclinations to vertical, the influence of 
acceleration due to gravity comes into play. In this case, the 
mass flux is influenced by the applied temperature and the 
problem becomes a mixed convection flow. It is therefore 
necessary to introduce a new parameter called the mixed 
convection parameter which is used to regulate the relative 
contributions of forced convection and that of natural 
convection within the system.  

Mahmud and Fraser [15] studied Entropy generation in 
mixed convection-radiation interaction in a vertical porous 
channel. Avci and Aydin [16] investigated mixed convection 
flow in a vertical microchannel considering asymmetric but 
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isothermal heating of the channel plates. In a related work, 
Avci and Aydin [17] investigated a similar problem in which 
the energy within the system is due to asymmetric heat fluxes 
on the boundaries. Barletta and Zanchini [18] and Zanchini 
[19] are two other works that investigated mixed convection 
flow; the former investigated the problem in a vertical 
channel while the latter was investigated in a vertical annulus 
subjected to uniform wall temperature. Avci and Aydin [20] 
investigated mixed convection in a vertical microannulus and 
concluded that increasing the mixed convection parameter 
enhances heat transfer while rarefaction decreases it. Jha et 
al. [21] investigated steady mixed convection in a 
microchannel filled with porous material. They found that 
growing the porosity of the medium decreases the critical 
value of the mixed convection parameter which signaled the 
onset of reverse flow in the channel. In another article, Jha et 
al. [22] investigated the role of porous medium in a mixed 
convection flow in a vertical tube with time periodic 
boundary condition. The work identifies a stagnation point 
within the tube and confirms that variations in fluid type, 
porosity as well as frequency have no impact on fluid velocity 
at this section. Seth et al. [23] investigated unsteady 
hydromagnetic convective flow of a viscous incompressible 
electrically conducting heat generating/absorbing fluid within 
a parallel plate rotating channel in a uniform porous medium 
under slip boundary conditions. Among their findings is that 
thermal source tends to accelerate fluid flow in both the 
primary and secondary flow directions whereas thermal sink 
has reverse effect on it. Seth et al.[24] studied the effects of 
Hall current on unsteady hydromagnetic free convection flow 
with heat and mass transfer of an electrically conducting, 
viscous, incompressible and time dependent heat absorbing 
fluid past an impulsively moving vertical plate in a porous 
medium, in the presence of thermal diffusion. They indicated 
that heat absorption enhances rate of heat transfer at the plate 
whereas thermal diffusion has a reverse effect on it, and as 
time progresses, rate of heat transfer at ramped temperature 
plate is getting enhanced whereas it is getting reduced for 
isothermal plate. In a related article, Seth et al. [25] 
concluded that heat absorption has tendency to reduce fluid 
temperature whereas fluid temperature is getting enhanced 
with the progress of time. Also, Seth et al. [26] investigated 
unsteady MHD natural convection flow with Hall effects of 
an electrically conducting, viscous, incompressible and heat 
absorbing fluid past an exponentially accelerated vertical 
plate with ramped temperature through a porous medium in 
the presence of thermal diffusion. They observed that heat 
absorption tends to decelerate fluid flow in both the primary 
and secondary flow directions as well as enhance rate of heat 
transfer at the plate and that rate of heat transfer at the plate 
increases with time. In Seth et al. [27] it was observed that 
heat absorption tended to enhance rate of heat transfer at the 
moving plate whereas it had a reverse effect on the rate of 
heat transfer at the stationary plate. 

In this paper, we extend the work of Ajibade et al. [14] to 
investigate entropy generation due to a mixed convection 
flow through a vertical porous channel. The temperature and 
velocity field are obtained and discussed for some carefully 
selected values of the flow parameters.   

 
 

2. MATHEMATICAL ANALYSIS 
 

The present problem considers steady mixed convection 
flow of viscous incompressible fluid in a vertical channel 

formed by two infinite parallel porous plates. The  axis is 

taken vertically parallel to one of the porous plates of the 

channel and normal to the  axis. The porous plates are 

stationary and parallel to each other at distance  apart as 

shown in Figure 1. The fluid flow is set up due to the applied 
pressure gradient along channel walls as well as density 
change caused by the asymmetric heating of the channel 
boundary porous plates and under the action of gravitational 
force, hence, the present situation describes a mixed 
convection flow in a vertical porous channel.  

 
Figure 1. Schematic diagram of the flow 

 
In addition, heat transfer in the system is due to the 

isothermal heating of one of the porous plates as well as 
viscous dissipation within the channel and under the action of 
heat generation/absorption. Also, we assume the flow to be 
steady and fully developed; hence, the temperature and 

velocity fields are functions of  alone. 

The governing equations for the steady flow of viscous 
incompressible fluid between two heated parallel plates are 
the conservation of mass 
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and the conservation of energy 
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 , , 0V u v 
r

, where u  and v  are the vertical and 

horizontal (suction/injection) components of the velocity 
respectively. Since the flow is assumed to be fully developed, 
the conservation of mass equation (1) is reduced to 
 

0
dv

dy





                                                                                (4) 

 
Upon integration of eq. (4), we obtain the horizontal 

velocity as a constant (say, ) which is the velocity of 

suction/injection. 
The equations of motion for steady mixed convection flow 

of a viscous incompressible heat generating fluid with viscous 
dissipation are given as, 
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while the boundary conditions are 
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The following non-dimensional quantities are used to 

transform equations (5) – (7) to dimensionless form. 
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Substituting equation (8) into equations (5) and (6), the 

momentum and energy equations are rendered in 
dimensionless form as 
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and the boundary conditions are given as 
 

0, 0 1

0, 1 1

u at y

u at y





    


       

        (11) 

 

where 
2

0 '

l P

u x








  

For brevity, we shall write the mixed convection parameter 

ReGr as Gre . This parameter measures the contribution of 

either the forced convection (small value of Gre ) or natural 

convection (large value of Gre ). For mixed convection, a 

moderate value of Gre  is required.  is the Prandtl number 

which is inversely proportional to the thermal diffusivity of 
the fluid. S is the dimensionless suction/injection parameter, 
where positive values denote suction at the porous plate 

 'y l   with a corresponding injection on the plate 'y l  

while negative values denote injection at the porous plate 

 with a corresponding suction on the other plate. 

Eckert number ( Ec ) is the measure of viscous dissipation in 

the system while  is the temperature dependent heat 

source/sink parameter, positive values of  represent heat 

source and negative values represent heat sink. All the 
physical quantities used in the dimensionless analysis are 
defined in the nomenclature. 

In order to solve equations (9) and (10) subject to the 
boundary conditions (11), we use the Homotopy perturbation 
method (HPM) to obtain approximate analytical solutions to 
the problem. HPM is a powerful solution tool to solve linear 
as well as nonlinear equations. The method has been shown 
to perform excellently well in solving this type of problems 
[28] and is advantageous over the regular perturbation 
technique because it was able to overcome the small 
parameter restriction which characterizes the regular 
perturbation technique. 
 

2.1 Homotopy perturbation method 

 
In order to illustrate the basic ideas of the HPM, we 

consider the following nonlinear differential equation 
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where  is a general differential operator,  is a boundary 

operator,  is a known analytic function,  is the boundary 

of the domain . The operator  can be divided into two 

parts  and , where  is linear and  is nonlinear. Hence, 

eq. (12) can be rewritten as 
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Using the Homotopy perturbation technique, we construct a 

Homotopy ( , ) : [0,1]v r P R   which satisfies 
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where  0,1P  is called the Homotopy parameter,  is the 

initial approximation for the solution of eq. (12) which 
satisfies the boundary conditions. Clearly, from eqs. (15) and 
(16) we have; 
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Assuming that the solution of eqs. (15) and (16) are 

expressed as a power series in P  , that is  
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Setting  gives the approximate solution of eq. (12) as 
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Applying the Homotopy perturbation technique to solve 

the governing equations in the present problem, we construct 
Homotopy on eqs. (9) and (10) to get 
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Simplifying  
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Assume the solutions of eqs. (9) and (10) to be written as 
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Substituting eq. (25) into eqs. (23) and (24) and 

simplifying, we have the following sets of boundary value 
problems which are obtained by comparing the coefficients of 

powers of P . 
Zeroth order: 
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First order: 
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Second order: 
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Solving the sets of Boundary Value Problems and taking 

limit as 1P  , the solution of the momentum and energy 

equations are 
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2.2 Entropy generation in the system  

 
For the flow of a Newtonian incompressible fluid due to 

Fourier law of heat conduction, the volumetric rate of entropy 
generation rate is given by Bejan2 in Cartesian coordinates as 
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This form of entropy generation shows that the 

irreversibility results from two effects; conductive  and 

viscosity . Entropy generation rate is finite and positive 

whenever one of temperature or velocity gradients is present 
in a medium. Velocity and temperature distribution are often 
simplified in many fundamental convective heat transfer 
problems, assuming that the flow is hydro-dynamically 
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thermally developed 0
T

x

 
 
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 ( White [29]  and Burmeister 

[30]), then eq. (37) is reduced to the form: 
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By scaling the velocity  with the reference velocity , 

the distance  with , the distance  with 2 1

0l u    and 

expressing the dimensionless temperature  as   1

0T T T 
  , 

the entropy generation is rendered in dimensionless form as  
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where 1

0Pe lu    is the Peclet number, and  is 

the dimensionless temperature difference. The first term  

stands for the entropy generation by heat transfer due to axial 

conduction, the middle term  represents entropy 

generation due to heat transfer across different fluid sections 

within the channel, and the last term  gives the 

contribution of viscous dissipation to entropy generation. 
 Substituting eqs. (35) and (36) into the dimensionless 
expression for entropy as presented in eq. (39), we have   
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2.3 Irreversibility distribution ratio 
 

Entropy generation rate is accounted for by both heat 
transfer and fluid friction in a convective problem. Eq. (39) 
shows the level of distribution of entropy but is unable to 
point out the relative contributions of each irreversibility to 
the total entropy generation. To identify whether it is the fluid 
friction or heat transfer irreversibility that dominates the total 
entropy, Bejan [1] defined irreversibility distribution ratio 
 as the ratio of the entropy generation due to fluid friction 

to heat transfer  c yN N . However, Paoletti et al. [31]  

 

showed an alternative irreversibility distribution parameter in 
terms of the Bejan number (Be) and defined it as the ratio of 

the entropy generation due to heat transfer  c yN N to the 

entropy generation ( ).sN  In the present problem, the flow is 

assumed to be thermally developed so that heat transfer due 
to axial conduction becomes negligible so that Bejan number 
becomes 
 

y

s

N
Be

N


  

          (41) 

 
A critical look at the Bejan number shows 

that 0 1,Be  with 1Be   indicating that the entropy 

generation is only by heat transfer irreversibility, 

whereas, 0Be   signify that the total entropy generation is as 

a result of fluid friction irreversibility only, whenever heat 
transfer and fluid friction contribute equally to the total 

entropy generation then 1 2Be  . In the light of this analysis, 

heat transfer irreversibility dominates the total entropy 

generation whenever 1Be  and likewise fluid friction 

irreversibility dominates when 0Be         

 
2

3

2 1 2

3 4

Be
Br



 


 
            (42) 

 

2.4 Pressure gradient 

 
In order to estimate the pressure gradient in the present 

problem, we assumed that the flow has a constant mass flux 
so that   is obtained such that the mass flux within the 

channel is maintained at a constant level.  That is 
 

1

1
( ) 2u y dy


             (43) 

 
Upon evaluation of eq. (43), we have the following 

polynomial equation  
 

3 2

4 8 9 10 0n n n n     
  

        (44) 

 

where the expressions for , 0, 1, 11in i  L are defined in the 

appendix.  
The roots of the cubic equation (44) are obtained 

numerically using an in-built function on the platform of 
MATLAB.   
 

2.5 Validation of results 

By setting the heat generation term  and the mixed 

convection term Gre  to zero in the present problem, we 

recover the results of Ajibade et al. [14] The comparison is 
presented in the table below 

Table 1. Numerical comparison between the present problem and case 2 of Ajibade et al. [14]  

 

 Ajibade et al. [14] 

0y   

Present problem 

Setting 0Gre  , 0  , 0y   

S    u    u  

-1.0 0.344861366004390 0.462117157260010 0.344914877500000 0.458333333333333 

-0.5 0.429243102325639 0.489837324807418 0.429234159479167 0.489583333333333 

0.5 0.604902179290661 0.489837324807418 0.604870039687500 0.489583333333333 
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A slight deviation is observed in the values displayed in the 
table and this could be attributed to the different pressure 
gradients used in both problems. For instance, in the work of 
Ajibade et al. [14], the pressure gradient was assumed to be 
constant. However, the pressure gradient in the present 
problem is obtained from the evaluation of the constant mass 
flux equation (43). This means that the pressure gradient in 
the present problem is dependent on all other parameters that 
affect the velocity of the fluid. 

 
 

3. RESULTS AND DISCUSSION 

This problem considers a mixed convection flow between 
two vertical porous plates with temperature-dependent heat 
generation and viscous dissipation. The non-dimensional 
parameters governing the fluid flow are; the mixed 

convection parameter ( Gre ), heat source/sink parameter , 

Prandtl number (Pr), suction/injection parameter (S) and the 

Eckert number  Ec . In this discussion, the value of Pr used 

is 0.71 which corresponds to the Prandtl number of air at 2.0 
atm., S is chosen from -1.5 to 2.0 to account for injection as 

well as suction through the porous plates. The values of  are 

chosen between -2.2 and 2.2 to accommodate both heat 

source  >0  and heat sink  <0 . Similarly, the value of 

Gre  is selected arbitrarily between 5 and 25. 

The influences of the governing parameters on the velocity 
are shown in figures 2 and 3. It can be seen that velocity 

increases with growing Gre  and  respectively. Physically 

speaking, higher value of Gre  implies an enhanced buoyancy 

force which is higher when compared to the viscous force. 
This acts to thicken the momentum boundary layer hence, the 

fluid velocity increases with growing Gre . Similarly, velocity 

increase due to increase in heat generation ( 0)   could be 

hinged on heat accumulation within the channel  which lead 
to a decrease in the density of the fluid resulting in enhanced 
buoyancy and hence, velocity increase. On the other hand, 

velocity decreases with increase in heat absorption ( 0)  . 

This is physically true because heat sink acts to decrease the 
fluid temperature and this thins the thermal boundary layer 
hence, heat is being conducted away from the system leading 
to a rise in density of the fluid thereby decreasing the flow 
velocity. 

Figures 4 and 5 present temperature distribution within the 

channel for different values of Gre and . It could be viewed 

from figure 4 that growing Gre  leads to a corresponding rise 

in temperature. This could be attributed to increase in 
buoyancy force against viscous force which characterizes 

growing Gre . It is also observed that there is an increase in 

temperature with increase in heat source ( 0) 
 
which 

means that heat generation within the system exceeds 
conduction and this leads to heat accumulation. On the other 

hand, increasing heat sink ( 0)   implies higher conduction 

in excess of heat generation, leading to a decrease in the 
temperature within the channel. 

Figures 6-11 show effects of the operating parameters on 
the entropy generation number within the channel. It can be 
clearly viewed that minimum entropy generation is obtained 
at the centerline of the channel. However, entropy generation 
number increases with growing values of each of the 
parameters towards the porous walls. Maximum entropy 
generation number is obtained at the porous walls as revealed 

in figures 6-11. From Figure 6, it is observed that entropy 
generation increases near both porous plates with growing 

buoyancy. This is premised on the fact that increasing Gre  
leads to growing velocity and temperature which in turn 
increase the velocity and temperature gradients near the 
porous plates. However, the entropy generation decreases 
center wards and is minimal near the centerline; this is 
because velocity gradient is higher near the porous plates and 
decreases to zero as the centerline is approached from both 
plates. Also, it is observed in Figure 7 that increase in heat 
generation lead to growing entropy while increase in heat 
absorption acts to decrease the total entropy within the 
system. 

The effect of channel porosity on entropy generation 
number as shown in Figure 8 reveals that increase in suction 

through the plate 1y    0S   causes an increase in entropy 

generation near this plate. It is further revealed that injection 

through the plate 1y     0S   acts to decrease the 

entropy generation. Response of the entropy generation due 

to variations in the viscous dissipation parameter  Ec
 
is 

shown in Figure 9. The figure shows that entropy generation 
increases as the viscous dissipation is enhanced with 

growing Ec . A similar trend is observed in figure 10 in which 

entropy generation increases with growing Pr . This is 

physically true since growing Pr  decreases thermal 
diffusivity of the fluid, therefore the diffusion of heat 

generated by viscous dissipation decreases as Pr  increases, 
causing heat accumulation, hence increase in velocity as well 
as increase in entropy generation. A careful scrutiny of figs. 
7-10 reveals that all parameters that cause temperature 
increase also causes entropy increase within the channel. 
From figure 11, entropy generation is observed to increase 

with increase in the group parameter  1Br  . This is 

because growing the group parameter increases the 
contribution of fluid friction irreversibility to the total entropy 
generation. 

Figures 12-17 reveal the influence of the different flow 
parameters on the relative contribution of either the fluid 
friction irreversibility or heat transfer irreversibility to the 
total entropy generation within the channel. It is observed that 
fluid friction irreversibility dominates the total entropy 
generation towards the channel porous walls while heat 
transfer irreversibility dominates at the centerline of the 

channel. From Figure 12, it is observed that increase in Gre , 

which increases fluid velocity has consequently lead to an 
increase in the domination of the fluid friction irreversibility 
over the heat transfer irreversibility. Figure 13 shows the 
contribution of heat generation/absorption towards the 
irreversibility distribution ratio. The figure reveals that the 
effect of heat generation/absorption within the channel is 
negligible near the cold porous plate. While heat sink acts in 
support of fluid friction irreversibility near the heated porous 
plate, heat source is observed to act against fluid friction 
irreversibility. This is physically true since growing heat 
generation increases fluid temperature (Figure 5) thereby 
increasing the temperature gradient near the heated porous 
plate. 

In figure 14, it is observed that suction on each plate 
increase the dominance of fluid friction irreversibility on the 
total entropy generation. Furthermore, it is observed that as 
the velocity of suction is increased, the fluid section in which 
the dominance of heat transfer is established moves towards 
the plate in which suction takes place. Figure 15 which shows 
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the effect of viscous dissipation parameter on the 

irreversibility distribution reveals that the effect of Ec is 

significant on the porous plates as well as the centerline of the 
channel. However, there exist some fluid sections in each half 

of the channel in which Ec  exerts little effect on the 

irreversibility distribution. Near the channel plates, 

growing Ec is found to increase the Bejan number which is 

translated to mean a decrease in the dominance of the fluid 
friction irreversibility. It is however a different trend as 
observed towards the centerline in which an increase 

in Ec decreases the Bejan number which is a sign of support 

towards the dominance of fluid friction irreversibility. At 
fluid sections near the cold porous plate, the effect of Prandtl 
number is lesser on irreversibility distribution when 
compared to the fluid sections adjacent to the heated plate in 

which growing thermal diffusivity (decreasing Pr ) acts in 
support of fluid friction irreversibility.    

 
           

4. CONCLUSION 

In the present study, entropy generation and irreversibility 
distribution in a steady fully developed flow and heat transfer 
with viscous dissipation in a vertical channel have been 
investigated. The governing momentum and energy equations 
were solved using the Homotopy perturbation method. The 
impacts of each of the operating parameters are discussed 
with the aid of graphs. It is found that heat source and the 
Grashof number exerts significant influence on the 
temperature, velocity, as well as entropy generation rate and 
irreversibility distribution within the channel. The following 
major conclusions have been drawn from the present study: 

i) Velocity and temperature are higher with increasing 
values of the parameters 

ii) Minimum entropy generation is obtained towards the 
center of the channel 

iii) Entropy generation is higher at the porous walls. 
iv) The contribution of fluid friction irreversibility 

dominates that of heat transfer irreversibility near the 
channel’s porous walls while heat transfer irreversibility 
dominates fluid friction irreversibility towards the centerline 
of the channel. 

Finally, a comparison made between this work and Ajibade 
et al.[14] shows that the present work agrees significantly 
with Ajibade et al.[14] 
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Figure 2. Velocity Profiles for different 
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Figure 3. Velocity Profiles for 

different  
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Figure 4. Temperature Profiles for 

different  

 

-1 -0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

y



=-2.2, -1.2, 0.2, 1.2, 2.2

 
 

Figure 5. Temperature Profiles for 

different  
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Figure 6. Entropy generation number for 
different
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Figure 7. Entropy generation number for different 
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Figure 8. Entropy generation number for 
different
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Figure 9. Entropy generation number for different 
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Figure 10. Entropy generation number for different 

 

 

-1 -0.5 0 0.5 1
0

100

200

300

400

500

N
s

y

Br -1=0.6, 0.8, 1.0, 1.2, 1.4

 
 

Figure 11. Entropy generation number for 
different
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Figure 12. Bejan Number for 
different
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Figure 13. Bejan Number for 
different
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Figure 14. Bejan Number for different 
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Figure 15. Bejan number for different 

 

 

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

B
e

 

 

Pr=0.044

Pr=0.71

Pr=1.0

Pr=2.0

Pr=7.0

 
 

Figure 16. Bejan number for different 
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Figure 17. Bejan Number for different 
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NOMENCLATURE 

Be  Bejan number 

Br  Brinkman number 

pC  specific heat at constant pressure, [ 2 2 1m s K   ]  

Ec  Eckert number 

GE  volumetric rate of entropy generation 

,G CE  characteristic entropy transfer rate 

g  acceleration due to gravity, [ 2ms ] 

Gr  Grashof number 

l  half width of the channel, [ m ] 

cN  entropy generation by heat transfer due to axial 

conduction 

fN  entropy generation by viscous dissipation 

sN  dimensionless entropy generation number 

yN  entropy generation due to heat transfer across fluid 

sections 
Nu  Nusselt number 

P  pressure difference 
Pe  Peclet number 

Pr  Prandtl number 

0Q  heat generation/absorption coefficient, 

[
1 3 1Kgm s K  

] 

Re  Reynolds number 

S  dimensionless suction/injection parameter 

0T  dimensional temperature at , [ K ]  

 dimensional fluid temperature, [ K ]  

 temperature of plate at , [ K ]  

 dimensional velocity of fluid, [ 1ms ] 

 dimensionless velocity of fluid 

 mean velocity/reference velocity of fluid, [ 1ms ] 

 velocity vector having the components , ,u v w  in 

'', 'x y and z direction, [ 1ms ] 

 velocity of suction/injection, [ 1ms ] 

 vertical axis, [ m ]  

 co-ordinate perpendicular to the plate, [ m ] 

'z  co-ordinate axis perpendicular to ' 'x y  plane, [ m ] 

,i j and k  unit vectors in the direction ', ' 'x y and z  

respectively 

 dimensionless horizontal co-ordinate 

 

Greek alphabets 

 

 thermal diffusivity, [ 2 1m s ] 

 coefficient of thermal expansion, [
1

K


] 

 dimensionless heat generating parameter 

 thermal conductivity, [
3 1Kgms K 

] 

 dimensionless temperature of fluid 

 irreversibility distribution ratio 

v  kinematic viscosity, [ 2 1m s ]
  

 

 coefficient of viscosity, [
1 1Kgm s 

]  

 density of the fluid, [
3Kgm

]  

 dimensionless temperature difference 

 
 

APPENDIX 
 

List of constants used 
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