
A Hybrid Supervised Learning Approach for Detection and Mitigation of Job Failure with

Virtual Machines in Distributed Environments

Reshma S. Gaykar1*, V. Khanaa1, Shashank D. Joshi2

1 Bharath Institute of Higher Education and Research, Chennai 600073, India
2 College of Engineering, Bharati Vidyapeeth (Deemed to be University), Pune 411043, India

Corresponding Author Email: reshma.gaykar@gmail.com

https://doi.org/10.18280/isi.270412 ABSTRACT

Received: 31 May 2022

Accepted: 30 July 2022

Distributed data processing techniques are very popular nowadays due to high data

generation from various resources. To increase work learning outcomes and to reduce

consumption, modern massive computational systems divide jobs into several smaller tasks

that perform in parallel. Nevertheless, responding with straggler processes, which are

sluggish running processes that rise the total response time, is a typical performance issue

in such platforms. In this paper, we proposed the detection of struggler nodes in a large

distributed environment using a hybrid machine learning technique. Initially, the data has

been collected from numerous virtual machine network logs. The entire data set has various

fields such as Virtual Machine ID, CPU load, memory load, bandwidth utilization, etc.

Memory utilization an input to the proposed system is collected from the garbage collection

log files where the memory consumption on each VM and its timestamp is recorded. This

is the most efficient way to get the memory consumption in web/desktop applications.

Similarly, the CPU, I/O and bandwidth utilization is grabbed from the process monitoring

functionality and SAR (System Activity Report) utility from the respective VM boxes. This

data set is useful to identify weather-specific virtual machine is heated up or not. In this

approach, we proposed three conventional machine learning algorithms and a hybrid

machine learning algorithm for the identification of node status. Main purpose of the

proposed system is to identify the slow performing node in an efficient way to prevent the

other nodes from failures. This can provide effective load balancing and low response time

for task execution from available VM’s in distributed cloud environments. To create its

training program, several extractions of features approaches were used. TF-IDF,

correlational co-occurrence, and density-based features have been mined from the whole

data set. With extensive experimental analysis, we evaluate our system with our proposed

classification algorithm. As a result, the system produces higher classification accuracy of

94.5% over the traditional machine learning classifiers. If the proposed system is tested

against the data set fields, memory load and CPU load on the homogenous machine

configurations, we see more efficiency while detecting the underperforming node than the

heterogenous machine configurations.

Keywords:

hybrid machine learning, virtual machine,

job failure, detection and mitigation, load

balancing

1. INTRODUCTION

Task implementation efficiency is critical for either system

management or service customers when programs are built on

parallel computing platforms like Hadoop. The former might

result in lower reliability and a possible service level

agreement gap, while the later would result in poor customer

satisfaction due to the unexpected response. Node failures,

such as machine crashes, are prevalent in large-scale

production systems, and ways to cope with node failures have

been extensively researched. However, in addition to node

failures, node efficiency deterioration requires investigation

since it may lead to major issues like the straggler problem.

The group members or VM’s who are running more slowly or

making less progress than the others are known as stragglers.

In distributed computing stragglers can be generate many

times due to overhead of massive data processing. In many

cases it enhances the overall execution time as well as generate

data leakage issues. Core issue, we tried to address in the

proposed system is to find out the efficient way to identify the

straggler node. The Straggler issue illustrates the phenomena

in which a tiny fraction of outlier activities performs

exceptionally slowly compared to the other siblings’ tasks in a

concurrent job. The straggler issue is addressed by Speculator,

a Hadoop built-in component. When a straggler is detected, a

redundant replica job is initiated and executed on additional

node. The outcome of the fastest task will be used, while the

further task will be removed. Hardware heterogeneity, input

output disharmony data skew, resource constraints,

background traffic of network and Operating system or

execution associated reasons are all examples of behaviors that

might induce straggler formation in cluster systems. Node

efficiency diversity is one of the most significant factors. The

ability of a node to execute concurrent applications is referred

to as node performance in this work. Machine learning

approaches provide a strong light on node performance

analysis, which is crucial for straggler reduction. The

scheduling algorithm can choose appropriate nodes to

Ingénierie des Systèmes d’Information
Vol. 27, No. 4, August, 2022, pp. 621-627

Journal homepage: http://iieta.org/journals/isi

621

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270412&domain=pdf

introduce tasks of latency-sensitive by categorizing nodes into

separate classes and forecasting the connected performance

categorization with high accurateness. This avoids assigning

pure speculation tasks to nodes that are most probable to be in

their poor operating province in the upcoming years. The

following is a list of our major contribution:

• We proposed the hybrid machine learning framework

called (HML) for classification of log data to achieve

the high accuracy for straggler prediction.

• The hybrid feature extraction techniques for strong

module building which achieves good accuracy.

• Validation of the proposed system with various

machine learning and hybrid machine learning module.

In the proposed system for classification of data, we carried

out HML as a supervised classification algorithm. Then

supervised machine learning is applied in order to train the

classifier. The class labelled data is present at the beginning.

HML algorithm for Deep learning is applied to determine

identity deception from the feature set and the majority output

class of all the decision trees is taken as output of the HML.

Proposed HML algorithm produces 94.5% detection and

classification accuracy which is more as compare to the

traditional algorithms which are mentioned in the result and

discussion section.

The paper is described as, SECTION 2 demonstrates the

literature review of a proposed model where the various

existing system has been analysed and all the current systems

are identified. In SECTION 3, research methodology of the

presented system and implementation details are described,

while in SECTION 4 the proposed algorithm is described in

detail. SECTION 5 focuses on results and discussion of the

experimental set-up, and various experimental results, and

finally, the conclusion and recommendations are discussed in

SECTION 6 of the proposed model.

2. LITERATURE REVIEW

The straggler issue, as well as the difficulty of overcoming

it due to node performance heterogeneity, will be examined in

this section. All observations are based on the distributed

environment's data analytics findings.

Mou [1] uses a whole binary tree of code snippets to train a

specialised convolutional neural network. An AST neural

network breaks huge ASTs into a group of tiny statement trees

to alleviate the gradient constraint. The tree-based RNN is then

applied. Overall, tree-based techniques enhance source code

representation by including syntactic information.

Additionally, arbitrary code fragments may be processed to

AST, expanding the range of applications for tree-based

techniques. Though, tree-based approaches greatly increase

the complexity of code fragments. Furthermore, they are prone

to issues like long-term dependency and gradient fading. To

improve productivity and lessen dependency on human

employees, pattern-based techniques are offered. On the one

side, flaws are detected using principles derived from

established software. Infringement of these rules is viewed as

potential security flaws. Fabian [2] established anomalous

patterns as a result of variable initializations using information

or control reliance upon security-sensitive functions. A range

of crucial expressions or API usages are captured, including a

typical API usage behaviour, imports, as well as function calls.

Bian et al. [3] created odd patterns using syntactic information.

They create AST from sliced source codes. The vector

representation is then obtained using a hash method. Anomaly

detection provides the benefit of uncovering previously

undiscovered vulnerabilities while also reducing reliance on

labelled vulnerability datasets. Anomaly detection, on the

other hand, is project specific or task specific and has a low

recall.

The unsupervised and supervised approaches are the two

main concepts describes in details according to Nasteski [4].

In supervised Machine learning, sometimes known as

"learning with a teacher," the train data set (condition) and

testing dataset (required answer) are formed. Obtaining such

training sets from industry and labs is difficult. A few numbers

of damaging tests may be done for training reasons owing to

the restricted number of malfunctioning equipment running in

the industry due to regular maintenance and in labs.

Furthermore, in both circumstances, data gathering with

numerous failures (composite errors) in the similar machine is

difficult. The mathematical models of electrical machinery can

train AI algorithms by rising computational capacity of

computers and cloud computing. Unsupervised machine

learning, commonly known as "learning without a teacher," is

a method of learning in which patterns are identified from

unstructured data [5]. The goal is to cluster objects and/or

minimise the quantity of data available. Semi-supervised

algorithms are sometimes used in industrial systems to get a

more exact result. Some research is using both training and test

data, while others just contain training data.

Unlike traditional techniques, reinforcement distributed

deep learning focuses on recognising and generalising patterns

in reinforcement configuration environment [6] by Mousavi.

The goal is to reduce mistakes and improve precision; the

machine learns to assess data before each step. Furthermore,

the machine seeks to maximise the reward (benefit) from the

learning, which is predetermined, such as minimal resource

consumption, obtaining the required value, analysing time,

and so on.

According to Tranchevent et al. [7] Unsupervised machine

learning refers to algorithms that can learn to do a job on their

own, without the assistance of a teacher. When a result is

known and a link between system responses is needed,

unsupervised learning is typically compared with supervised

learning. If there are comparable patterns, the algorithm

attempts to detect similarities between items and divides them

into groups in unsupervised learning. Clusters are the names

for these groupings. The following supervised methods are the

most extensively used namely k means, cluster analysis as well

as fuzzy c-means.

The particle swarm optimization [8] is one of the techniques

that may be utilised in data mining and cluster analysis. SI is

an optimization approach that explains the collective

behaviour of a decentralised and self-organized system. The

SI system is made up of agents (or boids) that interrelate with

one another and with their surroundings. Swarm intelligence

is a multiple agent system capable of self-organization and

exhibiting rational behaviour. This algorithm can adapt to

changes and reach some optima quickly. In complicated

problems, solutions might be locked in local minimums

because they are dependent sequences of random options.

At the same time, the genetic algorithm [9] is the most often

employed reinforcement algorithm in condition monitoring. A

GA (genetic algorithm) is an optimization methodology that

provides natural selection concepts to simulate random

selection in the environment. The focus on employing the

"crossing" operator, which exploits the instrumental function

622

of crossing in wildlife, is a distinguishing aspect of the GA. In

the case of GA, the issue is formalised to the point that its

solution may be recorded as a vector of genes, each of which

has a value. The genotype is expected to have a constant length

in traditional GA implementations. There are, however, GA

variations. Liang and Znati [10] suggested and CICIDS2017

assessed a deep-learning-based technique based on long short

term memory (LSTM) and a recurrent ANN. They alternated

training and testing the system on different parts of the dataset

that included types of malicious. As a result, both the test and

training data come from the very same network contexts. In

the first experiment, the recall of their proposed methodology

was about 300 percent larger than the percentage of the DT,

Support vector machine, and artificial neural network has the

accuracy of roughly 6% lower. In the second trial, the training

and testing sets were swapped, and the recall improved by

roughly 59 percent while the precision declined by about 25

percent.

Yang et al. [11] developed a dimensionality reduction

approach based on the auto encoder, a form of unsupervised

ANN. They trained the technique on a dataset that was a

distinct subset of the network log than what we use, and then

used network simulation to test it on a fake dataset. Deepa et

al. [12] combined Support vector machine, a supervised

methodology, with self-organized mappings which is an

unsupervised technique also called as SOM. An artificial

neural network called the SOM is utilized to reduce data

dimensionality. The connection will be stopped if the support

vector machine algorithm determines that it is harmful; else, it

will be forwarded to the SOM for judgement. Li et al. [13]

suggested a real-time technique for detecting high-rate DDoS

assaults that employs entropy analysis and ANN. Because of

the massive botnet, the entropy of source IP is likely to rise

during a DDoS assault. However, this may not be the case in

reality due to variables such as the number of objectives or

policies in play. To identify DDoS assaults, Idhammad et al.

[14] suggested a hybrid learning technique. An entropy

calculation phase, a co-clustering step, and a classification

technique are all included in their approach. First, the mean

entropy of 4 characteristics for every dataset’s record is

determined using a temporal frame.

As a result, it is critical to recognise and neutralise them as

soon as possible. Furthermore, centres with huge

computational infrastructure may encounter delays, resulting

in poor task execution. Large data centres also have a high

volume of service generation, making them susceptible to

stragglers. Background network traffic, resource congestion,

hardware heterogeneity as well as OS related issues are all root

reasons for stragglers [15]. Stragglers have been the subject of

much research. The effect of stragglers has grown

considerably as the quantity of computer infrastructure and

tasks done has expanded over time. Stragglers are known to

significantly delay task execution, compromising the

"Consumer Service Level Agreement" and QoS performance

standards. Bortnikov offers two approaches for dealing with

stragglers that is tolerance and prevention [16]. Stragglers, on

the other hand, are difficult to avoid because pursuing them is

impracticable. As a result, most stakeholders choose the

straggler tolerance strategy. In the tolerance of straggler, a

percentage score consists of values in the range (0 – 1) that

reflect beginning and ending and it is used for tracking

execution progress of the task. Currently, straggler

identification methods may be classified as either offline or

online analytics [17] by Abasi. Though, it's worth mentioning

that detecting online might happen too late in a task's

execution cycle. Consequently, even after the installation of

speculative copies, it will slowly run. Offline methods, on the

other side, are often used to prevent stragglers. This method is

less prevalent since it is considered less viable. Combining

online and offline tactics, on the other hand, may provide

greater outcomes. They may considerably boost the efficacy

of "straggler detection" when used simultaneously. Bangare et

al. [18-22] have contributed Machine learning projects for

medical images. Shelke et al. [23] and Gupta et al. [24] also

worked on the similar domain of research. Pande et al. [25-27]

worked on the spline curve etc. Basic concept of staggler and

ML are referred from the papers [28-31].

3. PROPOSED SYSTEM DESIGN

As machine learning (ML) algorithms are more common

and training models becomes more difficult, a simple, versatile,

and straggler-resistant distributed ML framework becomes

more important. With a parallel processing communication

pattern, proposed framework aims to reduce the effects of

stragglers in large-scale training jobs. Stragglers are workers

who are behind the rest of the workers in synchronous

distributed computing. This section outlines our suggested

methodology for reducing straggler effects in distributed

machine learning. Straggler nodes cause synchronous

processing delays. This occurs when the results of all workers

must be combined before moving on to the next stage of the

calculation.

Due to the repetitive nature of Stochastic Gradient Descent-

like algorithms, the issue of stragglers is especially prominent

in distributed machine learning. As a result, even a few

stragglers in each loop may drastically reduce performance as

measured by throughput and time to accuracy. In the world of

distributed computing, stragglers have long been a problem.

They squander valuable calculation cycles, which must be

recovered by reproducing machines or redoing the process.

The difficulty is worsened in machine learning since the

underlying training methods are iterative and synchronous.

State-of-the-art straggler mitigation solutions in distributed

computing depend on replication, which may be an expensive

approach due to the extra resources required. Straggler

mitigation was previously presented as a primary-backup

design.

Figure 1 describes a Hybrid Machine Learning (HML) for

classification of detection and prediction of straggler in large

distributed environment. Data has been validated according to

the rules and norms defined during pre-processing. Each

property has a lower and upper limit for specific values, and

when one of these values exceeds or violates the bounds, the

system instantly destroys the instance. Collection of data

gathering, cleaning, filtering and normalizing are all part of

pre-processing. Cleaning and repairing false or incorrect

information from documents, records, and datasets entails

locating and changing (or eliminating) lost mistaken, wrong or

nonsensical info, as well as replacing, updating, or eliminating

dirty or sensitive info. Proposed system uses scripting software

or transaction processing to sanitize data interactively. We

used consistent sampling procedures to balance data and

filtered the standardized dataset to exclude the incorrectly

classified occurrences. In the feature extraction, the normal

and numerical values from text data are extracted.

623

Figure 1. Proposed system architecture using HML for

straggler node detection and classification

The various feature selection and extraction techniques

have been applied to the entire data set. The TF-IDF,

correlation coefficients, bi-tagged, N-Gram and density-based

features have been extracted from the entire data set. Once the

feature extraction has been done, we generate a unique feature

vector that contains heterogeneous features from the extracted

features. This feature vector gives the assurance that it does

not have redundant data and provides minimum redundancy

and maximum relevance (mRmR). Finally, the system detects

each record, either attack or normal using a supervised

classification technique. Moreover, the system also

demonstrates an unknown attack classification of normal real

time dataset.

For the detection and classification, we carried out HML as

a supervised classification algorithm. Then supervised

machine learning is applied in order to train the classifier. Here

class labelled data is present at the beginning. HML algorithm

for Deep learning is applied to determine identity deception on

social networks where multiple decision trees are created

using randomly selected features from the feature set and the

majority output class of all the decision trees is taken as output

of the HML. The results have been evaluated according to

confusion matrix and generated the F1 Score, PR-AUC (area

under the (precision-recall) curve).

4. ALGORITHM DESIGNING

Training Procedure (HML): According to machine learning

strategy we divide our dataset into two phases as train dataset

and test dataset. The 10-fold cross validation has utilized for

data splitting and then 70-30% data feed for raining and testing

respectively. The following algorithm describes a training

function which used for module training during the execution.

Input: The training dataset train_data [], No. of epoch size n,

name of classifier cls_name.

Output: Building a training model train_matrix []

(1) Read each attribute cls_name form training dataset as t

[] into train_data []

(2) 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑡 [] 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑡[])
(3) 𝑛𝑒𝑤_𝑚𝑎𝑡𝑟𝑖𝑥 []  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑡)

return 𝑡𝑟𝑎𝑖𝑛_𝑚𝑎𝑡𝑟𝑖𝑥 [] ← 𝑛𝑒𝑤_𝑚𝑎𝑡𝑟𝑖𝑥 [] as training

dataset.

Figure 2. Flowchart for straggler node detection and

classification

System testing algorithm (HML): Once training has been

successfully done, it generates the background rules for entire

system. In testing phase of step 1 and 2, it extracts the features

from testing dataset. The step 3 and 4 demonstrates the

extraction of rules from training repository. Finally steps 5

describe evaluation and generate the similarity index and

assign the class label to all instances as straggler or non-

straggler. Figure 2 show the flowchart for the proposed

algorithm.

Input: Train dataset trainingDBList [], Test dataset

testingDB-List [] and Threshold Th.

Output: Whose weight is heavier than Th is determined by

rslt-set <cls_name, sim_wt>

(1) As described in the following equation, for every

testing data, it operates in a convolutional layer with

invader training and test data.

624

𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑘)

= ∑(. 𝑓𝑒𝑎𝑡𝑠𝑒𝑡[A[1] … … . . A[n]  𝑡𝑒𝑠𝑡𝑖𝑛𝑔𝐷𝐵𝐿𝑖𝑠𝑡)

n

k=1

(2) By using below code, generate a feature vector from

testing_feature (k).

𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓𝑒𝑎𝑡𝑠𝑒𝑡_𝑥 [1 … . . … 𝑛]=
∑ (t)n

x=1  𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(k)

The output of every pooling layer collected by every

convolutional layer and forwarded on to the total

convolutional layer is extract_featset_x[t]. Each layer keeps

the features extracted of every instance in the test dataset.

(3) For every train instance, use the following function:

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑙)

= ∑(. 𝑓𝑒𝑎𝑡𝑠𝑒𝑡[A[1] … … . . A[n]  𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝐵𝐿𝑖𝑠𝑡)

n

𝑙=1

(4) Produce new feature vector from training_feature(l) by

using following function

𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓𝑒𝑎𝑡𝑠𝑒𝑡_𝑦 [1 … . . … 𝑛]=
∑ (t)n

y=1  𝑡𝑟𝑎𝑛𝑖𝑛𝑔_𝑓𝑒𝑎𝑡ure(l)

The output of every pooling layer collected from every

convolutional layer and forwarded on to the total

convolutional layer is extract_featset_y[t]. Each layer stores

each derived feature from each occurrence in the train dataset.

(5) Compute every testing record with whole train dataset,

in the dense layer

𝑤𝑒𝑖𝑔ℎ𝑡_𝑤𝑡 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠𝑖𝑚 (𝑓𝑒𝑎𝑡𝑠𝑒𝑡𝑥|| ∑ 𝑓𝑒𝑎𝑡𝑠𝑒𝑡𝑦[𝑖])

𝑛

𝑖=1

(6) Return rslt-set (cls_name, weight_wt)

Both the training and testing algorithms are used for training

and testing respectively. The extracted heterogeneous features

ensure robust module training, supervised classifiers achieve

higher accuracy in detecting such faulty nodes. In module

testing when any input is assigned to a classifier, it generates

a specific weight with all training rules. Finally, optimization

techniques are used for the selection of the best prediction.

5. RESULTS AND DISCUSSIONS

For the system’s evaluation process, we have computed the

matrices for correctness. The system is built on python

framework with INTEL 2.8 GHz i7 processor and 16 GB

RAM with open-source environment. After the

implementation of system, comparison between numerous

existing system and proposed system has been evaluated. The

following figure describes testing result in details with data

validation. A machine learning model is also known as just an

error matrix. It is a table structure that lets the visualization of

an application's output, classically a supervised learning one,

in the machine learning field, and particularly the issue of

statistical classification. Every row of the matrix indicates the

expected occurrences in a class, while every column represents

the instances in an actual class. Supervised learning, an

uncertainty matrix is a simple tool for evaluating outcomes. It

is used to characterise the projected model’s test outcome.

Every row in the matrix shows the classes in a class diagram,

whereas every column indicates the examples in a predicted

class. Four independent experiments were performed to test

the discriminant function for various dataset formats.

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃𝑡𝑎𝑏𝑙𝑒 + 𝑇𝑁) + (𝐹𝑃 + 𝐹𝑁)
(1)

The accuracy (Eq. (1)) is the percentage of accurate

predictions out of an overall number of projections. The

equation used to measure it are:

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(2)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4)

Table 1. Faulty nodes detection analysis

Training

data

Test

data
Classifier Accuracy Precision Recall

F-

Measure

10% 10% HML 94.5% 0.96 0.97 0.97

10% 10% NB 81.0% 0.86 0.92 0.89

10% 10% RF 90% 0.92 0.96 0.94

10% 10% SVM 93% 0.95 1.0 0.97

The proposed implementation has done in Windows

opensource environment, python Platform has used due to

availability of open source. The file system dataset has used to

extract the data from file system application. We create

various data chunks to perform the system classification

accuracy with different deep learning algorithms. Table 1

illustrates the comparative analysis of evaluation of different

classification techniques for developed churn prediction

module. The Naïve Bayes provides minimal accuracy thus

HML categorization gives maximum accuracy with 94.5

percent on several cross validation. The results also

demonstrate that the HML classifies logging data and achieve

high-precision discrete prediction of maximum value of 0.96

as compare to the other algorithm.

Figure 3. Detection and classification accuracy using

numerous machine learning and proposed hybrid machine

learning algorithm.

625

The above Figure 3 describes a straggler node detection and

prediction accuracy using proposed hybrid machine learning

algorithms. The three different machine learning (ML)

techniques has used for such as NB, RF and SVM. The HML

produces highest accuracy The NB gives 81% accuracy; RF

produces 90% while SVM gives 93% and proposed HML

produces 94.5% detection and classification accuracy.

6. CONCLUSIONS

In order to ensure effective task execution, it is necessary to

analyse and anticipate node performance. It makes task

deployment easier by avoiding and allocating them to nodes

that are expected to be in low-performance or execution. It

gives information on the optimal node choices that are good

for starting replications for straggler mitigation strategies such

as fault injection. The following is a list of the paper's key

contributions. To begin, we looked at the efficiency

heterogeneity of nodes based on dispersed data for parallel

task execution. We characterise and assess the nodes'

effectiveness using straggler numbers because they directly

indicate the effect of heterogeneity which has on efficient task

replies, in contrast to work that focuses only on physical

capacity disparities or utilisation variances. Second, we looked

at a number of factors that might be used to define node

performance and created an automatic labelling system that

could give unbiased and precise labels for various

performance segments. We generated the features to represent

node execution ability using standardised execution speed of

the task and task quantity per node numbers, statistical

properties, and timing aspects. Finally, we introduced ML, a

framework for analysing node performance that categories

machine nodes. The results of the predictions demonstrate that

different machine learning algorithms can accurately predict

node efficiency subcategories with an accuracy rate of 94.5%

percent as shown in Table 1. This may help the scheduler even

more by blacklisting endpoints that are anticipated to be in

low-performance conditions in the next scheduled window. In

addition to the aforementioned contributions, future research

will include integration of the suggested deep learning

techniques into cluster work schedule decision-making

elements such as the task scheduler in distributed systems, as

well as improving its ability to handle limitation situations

when no tasks are forwarded.

REFERENCES

[1] Mou, L., Li, G., Zhang, L., Wang, T., Jin, Z. (2016).

Convolutional neural networks over tree structures for

programming language processing. arXiv:1409.5718.

https://doi.org/10.48550/arXiv.1409.5718

[2] Yamaguchi, F., Maier, A., Gascon, H., Rieck, K. (2015).

Automatic inference of search patterns for taint-style

vulnerabilities. In 2015 IEEE Symposium on Security

and Privacy, San Jose, CA, USA, pp. 797-812.

https://doi.org/10.1109/SP.2015.54

[3] Bian, P., Liang, B., Zhang, Y., Yang, C., Shi, W., Cai, Y.

(2018). Detecting bugs by discovering expectations and

their violations. IEEE Transactions on Software

Engineering, 45(10): 984-1001.

https://doi.org/10.1109/TSE.2018.2816639

[4] Nasteski, V. (2017). An overview of the supervised

machine learning methods. Horizons, 4: 51-62.

https://doi.org/10.20544/HORIZONS.B.04.1.17.P05

[5] Cord, M., Cunningham, P. (2008). Machine learning

techniques for multimedia: Case studies on organization

and retrieval. Springer Science & Business Media.

https://doi.org/10.1117/1.3207770

[6] Samsami, M.R., Alimadad, H. (2020). Distributed deep

reinforcement learning: An overview. arXiv preprint

arXiv:2011.11012. https://arxiv.org/abs/2011.11012.

[7] Yu, S., Tranchevent, L., Liu, X., Glanzel, W., Suykens,

J. A., De Moor, B., Moreau, Y. (2011). Optimized data

fusion for kernel k-means clustering. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 34(5):

1031-1039. https://doi.org/10.1109/TPAMI.2011.255

[8] Abdmouleh, Z., Gastli, A., Ben-Brahim, L., Haouari, M.,

Al-Emadi, N.A. (2017). Review of optimization

techniques applied for the integration of distributed

generation from renewable energy sources. Renewable

Energy, 113: 266-280.

https://doi.org/10.1016/j.renene.2017.05.087

[9] Beg, A.H., Islam, M.Z. (2016). Advantages and

limitations of genetic algorithms for clustering records.

In 2016 IEEE 11th Conference on Industrial Electronics

and Applications (ICIEA), Hefei, China, pp. 2478-2483.

https://doi.org/10.1109/ICIEA.2016.7604009

[10] Liang, X., Znati, T. (2019). A long short-term memory

enabled framework for DDoS detection. In 2019 IEEE

global communications conference (GLOBECOM),

Waikoloa, HI, USA, pp. 1-6.

https://doi.org/10.1109/GLOBECOM38437.2019.90134

50

[11] Yang, K., Zhang, J., Xu, Y., Chao, J. (2020). DDoS

attacks detection with autoencoder. In NOMS 2020-2020

IEEE/IFIP Network Operations and Management

Symposium, Budapest, Hungary, pp. 1-9.

https://doi.org/10.1109/NOMS47738.2020.9110372

[12] Deepa, V., Sudar, K.M., Deepalakshmi, P. (2018).

Detection of DDoS attack on SDN control plane using

hybrid machine learning techniques. In 2018

International Conference on Smart Systems and

Inventive Technology (ICSSIT), Tirunelveli, India, pp.

299-303. https://doi.org/10. 1109/ICSSIT.2018.8748836

[13] Li, J., Liu, M., Xue, Z., Fan, X., He, X. (2020). RTVD:

A real-time volumetric detection scheme for DDoS in the

Internet of Things. IEEE Access, 8: 36191-36201.

https://doi.org/10.1109/ACCESS.2020.2974293

[14] Idhammad, M., Afdel, K., Belouch, M. (2018). Semi-

supervised machine learning approach for DDoS

detection. Applied Intelligence, 48(10): 3193-3208.

https://doi.org/10.1007/s10489-018-1141-2

[15] Aktas, M.F., Peng, P., Soljanin, E. (2018). Straggler

mitigation by delayed relaunch of tasks. ACM

SIGMETRICS Performance Evaluation Review, 45(3):

224-231. http://dx.doi.org/10.1145/3199524.3199564

[16] Bortnikov, E., Frank, A., Hillel, E., Rao, S. (2012).

Predicting execution bottlenecks in map-reduce clusters.

In 4th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud 12).

[17] Abasi, A.K., Khader, A.T., Al-Betar, M.A., Naim, S.,

Makhadmeh, S.N., Alyasseri, Z.A.A. (2020). Link-based

multi-verse optimizer for text documents clustering.

Applied Soft Computing, 87: 106002.

https://doi.org/10.1016/j.asoc.2019.106002

[18] Bangare, S.L. (2022). Classification of optimal brain

626

https://doi.org/10.%201109/ICSSIT.2018.8748836

tissue using dynamic region growing and fuzzy min-max

neural network in brain magnetic resonance images.

Neuroscience Informatics, 2(3): 100019.

https://doi.org/10.1016/j.neuri.2021.100019

[19] Bangare, S.L., Pradeepini, G., Patil, S.T. (2006).

Implementation for brain tumor detection and three

dimensional visualization model development for

reconstruction. ARPN Journal of Engineering and

Applied Sciences (ARPN JEAS), 13(2): 467-473.

[20] Bangare, S.L., Dubal, A., Bangare, P.S., Patil, S.T.

(2015). Reviewing Otsu’s method for image thresholding.

International Journal of Applied Engineering Research,

10(9): 21777-21783.

http://dx.doi.org/10.37622/IJAER/10.9.2015.21777-

21783

[21] Bangare, S.L., Pradeepini, G., Patil, S.T. (2018).

Regenerative pixel mode and tumour locus algorithm

development for brain tumour analysis: A new

computational technique for precise medical imaging.

International Journal of Biomedical Engineering and

Technology, 27(1-2): 76-85.

https://doi.org/10.1504/IJBET.2018.093087

[22] Bangare, S.L., Pradeepini, G., Patil, S.T. (2017).

Neuroendoscopy adapter module development for better

brain tumor image visualization. International Journal of

Electrical & Computer Engineering (2088-8708), 7(6):

3643-3654.

http://dx.doi.org/10.11591/ijece.v7.i6.pp%25p

[23] Shelke, N., Chaudhury, S., Chakrabarti, S., Bangare, S.

L., Yogapriya, G., Pandey, P. (2022). An efficient way

of text-based emotion analysis from social media using

LRA-DNN. Neuroscience Informatics, 100048.

https://doi.org/10.1016/j.neuri.2022.100048

[24] Gupta, S., Kumar, S., Bangare, S.L., Nuhmani, S.,

Alguno, A.C., Samori, I.A. (2022). Homogeneous

decision community extraction based on end-user mental

behavior on social media. Computational Intelligence

and Neuroscience, 2022: 3490860.

https://doi.org/10.1155/2022/3490860

[25] Pande, S.D., Chetty, M.S.R. (2018). Analysis of capsule

network (Capsnet) architectures and applications. J Adv

Res Dynam Control Syst, 10(10): 2765-2771.

[26] Pande, S.D., Chetty, M.S.R. (2019). Position invariant

spline curve based image retrieval using control points.

Int J Intell Eng Syst, 12(4): 177-191.

http://dx.doi.org/10.22266/ijies2019.0831.17

[27] Pande, S.D., Patil, U.A., Chinchore, R., Chetty, M.S.R.

(2019). Precise approach for modified 2 stage algorithm

to find control points of cubic Bezier curve. In 2019 5th

International Conference on Computing,

Communication, Control and Automation (ICCUBEA),

Pune, India, pp. 1-8.

https://doi.org/10.1109/ICCUBEA47591.2019.9128550

[28] Mandhala, V.N., Bhattacharyya, D.,

Midhunchakkaravarthy, D., Kim, H.J. (2022). Detecting

and mitigating bias in data using machine learning with

pre-training metrics. Ingénierie des Systèmes

d’Information, 27(1): 119-125.

https://doi.org/10.18280/isi.270114

[29] Govindarajan, M. (2022). Effective intrusion detection

system using classifier ensembles. Ingénierie des

Systèmes d’Information, 27(1): 151-156.

https://doi.org/10.18280/isi.270118

[30] Gaykar, R.S., Khanaa, V., Joshi, S.D. (2021). Detection

of faulty nodes in distributed environment using machine

learning. 2021 3rd International Conference on

Advances in Computing, Communication Control and

Networking (ICAC3N), pp. 228-232.

https://doi.org/10.1109/ICAC3N53548.2021.9725478

[31] Gaykar, R.S., Khanaa, V., Joshi, S.D. (2021).

Identification of straggler node in distributed

environment using soft computing algorithms. 2021

International Conference on Emerging Smart Computing

and Informatics (ESCI), pp. 1-5.

https://doi.org/10.1109/ESCI50559.2021.9396825

627

