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Distributed data processing techniques are very popular nowadays due to high data 

generation from various resources. To increase work learning outcomes and to reduce 

consumption, modern massive computational systems divide jobs into several smaller tasks 

that perform in parallel. Nevertheless, responding with straggler processes, which are 

sluggish running processes that rise the total response time, is a typical performance issue 

in such platforms. In this paper, we proposed the detection of struggler nodes in a large 

distributed environment using a hybrid machine learning technique. Initially, the data has 

been collected from numerous virtual machine network logs. The entire data set has various 

fields such as Virtual Machine ID, CPU load, memory load, bandwidth utilization, etc. 

Memory utilization an input to the proposed system is collected from the garbage collection 

log files where the memory consumption on each VM and its timestamp is recorded. This 

is the most efficient way to get the memory consumption in web/desktop applications. 

Similarly, the CPU, I/O and bandwidth utilization is grabbed from the process monitoring 

functionality and SAR (System Activity Report) utility from the respective VM boxes. This 

data set is useful to identify weather-specific virtual machine is heated up or not. In this 

approach, we proposed three conventional machine learning algorithms and a hybrid 

machine learning algorithm for the identification of node status. Main purpose of the 

proposed system is to identify the slow performing node in an efficient way to prevent the 

other nodes from failures. This can provide effective load balancing and low response time 

for task execution from available VM’s in distributed cloud environments. To create its 

training program, several extractions of features approaches were used. TF-IDF, 

correlational co-occurrence, and density-based features have been mined from the whole 

data set. With extensive experimental analysis, we evaluate our system with our proposed 

classification algorithm. As a result, the system produces higher classification accuracy of 

94.5% over the traditional machine learning classifiers. If the proposed system is tested 

against the data set fields, memory load and CPU load on the homogenous machine 

configurations, we see more efficiency while detecting the underperforming node than the 

heterogenous machine configurations. 
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1. INTRODUCTION

Task implementation efficiency is critical for either system 

management or service customers when programs are built on 

parallel computing platforms like Hadoop. The former might 

result in lower reliability and a possible service level 

agreement gap, while the later would result in poor customer 

satisfaction due to the unexpected response. Node failures, 

such as machine crashes, are prevalent in large-scale 

production systems, and ways to cope with node failures have 

been extensively researched. However, in addition to node 

failures, node efficiency deterioration requires investigation 

since it may lead to major issues like the straggler problem. 

The group members or VM’s who are running more slowly or 

making less progress than the others are known as stragglers. 

In distributed computing stragglers can be generate many 

times due to overhead of massive data processing. In many 

cases it enhances the overall execution time as well as generate 

data leakage issues. Core issue, we tried to address in the 

proposed system is to find out the efficient way to identify the 

straggler node.  The Straggler issue illustrates the phenomena 

in which a tiny fraction of outlier activities performs 

exceptionally slowly compared to the other siblings’ tasks in a 

concurrent job. The straggler issue is addressed by Speculator, 

a Hadoop built-in component. When a straggler is detected, a 

redundant replica job is initiated and executed on additional 

node. The outcome of the fastest task will be used, while the 

further task will be removed. Hardware heterogeneity, input 

output disharmony data skew, resource constraints, 

background traffic of network and Operating system or 

execution associated reasons are all examples of behaviors that 

might induce straggler formation in cluster systems. Node 

efficiency diversity is one of the most significant factors. The 

ability of a node to execute concurrent applications is referred 

to as node performance in this work. Machine learning 

approaches provide a strong light on node performance 

analysis, which is crucial for straggler reduction. The 

scheduling algorithm can choose appropriate nodes to 
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introduce tasks of latency-sensitive by categorizing nodes into 

separate classes and forecasting the connected performance 

categorization with high accurateness. This avoids assigning 

pure speculation tasks to nodes that are most probable to be in 

their poor operating province in the upcoming years. The 

following is a list of our major contribution: 

• We proposed the hybrid machine learning framework

called (HML) for classification of log data to achieve

the high accuracy for straggler prediction.

• The hybrid feature extraction techniques for strong

module building which achieves good accuracy.

• Validation of the proposed system with various

machine learning and hybrid machine learning module.

In the proposed system for classification of data, we carried 

out HML as a supervised classification algorithm. Then 

supervised machine learning is applied in order to train the 

classifier. The class labelled data is present at the beginning. 

HML algorithm for Deep learning is applied to determine 

identity deception from the feature set and the majority output 

class of all the decision trees is taken as output of the HML. 

Proposed HML algorithm produces 94.5% detection and 

classification accuracy which is more as compare to the 

traditional algorithms which are mentioned in the result and 

discussion section. 

The paper is described as, SECTION 2 demonstrates the 

literature review of a proposed model where the various 

existing system has been analysed and all the current systems 

are identified. In SECTION 3, research methodology of the 

presented system and implementation details are described, 

while in SECTION 4 the proposed algorithm is described in 

detail. SECTION 5 focuses on results and discussion of the 

experimental set-up, and various experimental results, and 

finally, the conclusion and recommendations are discussed in 

SECTION 6 of the proposed model. 

2. LITERATURE REVIEW

The straggler issue, as well as the difficulty of overcoming 

it due to node performance heterogeneity, will be examined in 

this section. All observations are based on the distributed 

environment's data analytics findings. 

Mou [1] uses a whole binary tree of code snippets to train a 

specialised convolutional neural network. An AST neural 

network breaks huge ASTs into a group of tiny statement trees 

to alleviate the gradient constraint. The tree-based RNN is then 

applied. Overall, tree-based techniques enhance source code 

representation by including syntactic information. 

Additionally, arbitrary code fragments may be processed to 

AST, expanding the range of applications for tree-based 

techniques. Though, tree-based approaches greatly increase 

the complexity of code fragments. Furthermore, they are prone 

to issues like long-term dependency and gradient fading. To 

improve productivity and lessen dependency on human 

employees, pattern-based techniques are offered. On the one 

side, flaws are detected using principles derived from 

established software. Infringement of these rules is viewed as 

potential security flaws. Fabian [2] established anomalous 

patterns as a result of variable initializations using information 

or control reliance upon security-sensitive functions. A range 

of crucial expressions or API usages are captured, including a 

typical API usage behaviour, imports, as well as function calls. 

Bian et al. [3] created odd patterns using syntactic information. 

They create AST from sliced source codes. The vector 

representation is then obtained using a hash method. Anomaly 

detection provides the benefit of uncovering previously 

undiscovered vulnerabilities while also reducing reliance on 

labelled vulnerability datasets. Anomaly detection, on the 

other hand, is project specific or task specific and has a low 

recall. 

The unsupervised and supervised approaches are the two 

main concepts describes in details according to Nasteski [4]. 

In supervised Machine learning, sometimes known as 

"learning with a teacher," the train data set (condition) and 

testing dataset (required answer) are formed. Obtaining such 

training sets from industry and labs is difficult. A few numbers 

of damaging tests may be done for training reasons owing to 

the restricted number of malfunctioning equipment running in 

the industry due to regular maintenance and in labs. 

Furthermore, in both circumstances, data gathering with 

numerous failures (composite errors) in the similar machine is 

difficult. The mathematical models of electrical machinery can 

train AI algorithms by rising computational capacity of 

computers and cloud computing. Unsupervised machine 

learning, commonly known as "learning without a teacher," is 

a method of learning in which patterns are identified from 

unstructured data [5]. The goal is to cluster objects and/or 

minimise the quantity of data available. Semi-supervised 

algorithms are sometimes used in industrial systems to get a 

more exact result. Some research is using both training and test 

data, while others just contain training data. 

Unlike traditional techniques, reinforcement distributed 

deep learning focuses on recognising and generalising patterns 

in reinforcement configuration environment [6] by Mousavi. 

The goal is to reduce mistakes and improve precision; the 

machine learns to assess data before each step. Furthermore, 

the machine seeks to maximise the reward (benefit) from the 

learning, which is predetermined, such as minimal resource 

consumption, obtaining the required value, analysing time, 

and so on. 

According to Tranchevent et al. [7] Unsupervised machine 

learning refers to algorithms that can learn to do a job on their 

own, without the assistance of a teacher. When a result is 

known and a link between system responses is needed, 

unsupervised learning is typically compared with supervised 

learning. If there are comparable patterns, the algorithm 

attempts to detect similarities between items and divides them 

into groups in unsupervised learning. Clusters are the names 

for these groupings. The following supervised methods are the 

most extensively used namely k means, cluster analysis as well 

as fuzzy c-means. 

The particle swarm optimization [8] is one of the techniques 

that may be utilised in data mining and cluster analysis. SI is 

an optimization approach that explains the collective 

behaviour of a decentralised and self-organized system. The 

SI system is made up of agents (or boids) that interrelate with 

one another and with their surroundings. Swarm intelligence 

is a multiple agent system capable of self-organization and 

exhibiting rational behaviour. This algorithm can adapt to 

changes and reach some optima quickly. In complicated 

problems, solutions might be locked in local minimums 

because they are dependent sequences of random options. 

At the same time, the genetic algorithm [9] is the most often 

employed reinforcement algorithm in condition monitoring. A 

GA (genetic algorithm) is an optimization methodology that 

provides natural selection concepts to simulate random 

selection in the environment. The focus on employing the 

"crossing" operator, which exploits the instrumental function 
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of crossing in wildlife, is a distinguishing aspect of the GA. In 

the case of GA, the issue is formalised to the point that its 

solution may be recorded as a vector of genes, each of which 

has a value. The genotype is expected to have a constant length 

in traditional GA implementations. There are, however, GA 

variations. Liang and Znati [10] suggested and CICIDS2017 

assessed a deep-learning-based technique based on long short 

term memory (LSTM) and a recurrent ANN. They alternated 

training and testing the system on different parts of the dataset 

that included types of malicious. As a result, both the test and 

training data come from the very same network contexts. In 

the first experiment, the recall of their proposed methodology 

was about 300 percent larger than the percentage of the DT, 

Support vector machine, and artificial neural network has the 

accuracy of roughly 6% lower. In the second trial, the training 

and testing sets were swapped, and the recall improved by 

roughly 59 percent while the precision declined by about 25 

percent. 

Yang et al. [11] developed a dimensionality reduction 

approach based on the auto encoder, a form of unsupervised 

ANN. They trained the technique on a dataset that was a 

distinct subset of the network log than what we use, and then 

used network simulation to test it on a fake dataset. Deepa et 

al. [12] combined Support vector machine, a supervised 

methodology, with self-organized mappings which is an 

unsupervised technique also called as SOM. An artificial 

neural network called the SOM is utilized to reduce data 

dimensionality. The connection will be stopped if the support 

vector machine algorithm determines that it is harmful; else, it 

will be forwarded to the SOM for judgement. Li et al. [13] 

suggested a real-time technique for detecting high-rate DDoS 

assaults that employs entropy analysis and ANN. Because of 

the massive botnet, the entropy of source IP is likely to rise 

during a DDoS assault. However, this may not be the case in 

reality due to variables such as the number of objectives or 

policies in play. To identify DDoS assaults, Idhammad et al. 

[14] suggested a hybrid learning technique. An entropy

calculation phase, a co-clustering step, and a classification

technique are all included in their approach. First, the mean

entropy of 4 characteristics for every dataset’s record is

determined using a temporal frame.

As a result, it is critical to recognise and neutralise them as 

soon as possible. Furthermore, centres with huge 

computational infrastructure may encounter delays, resulting 

in poor task execution. Large data centres also have a high 

volume of service generation, making them susceptible to 

stragglers. Background network traffic, resource congestion, 

hardware heterogeneity as well as OS related issues are all root 

reasons for stragglers [15]. Stragglers have been the subject of 

much research. The effect of stragglers has grown 

considerably as the quantity of computer infrastructure and 

tasks done has expanded over time. Stragglers are known to 

significantly delay task execution, compromising the 

"Consumer Service Level Agreement" and QoS performance 

standards. Bortnikov offers two approaches for dealing with 

stragglers that is tolerance and prevention [16]. Stragglers, on 

the other hand, are difficult to avoid because pursuing them is 

impracticable. As a result, most stakeholders choose the 

straggler tolerance strategy. In the tolerance of straggler, a 

percentage score consists of values in the range (0 – 1) that 

reflect beginning and ending and it is used for tracking 

execution progress of the task. Currently, straggler 

identification methods may be classified as either offline or 

online analytics [17] by Abasi. Though, it's worth mentioning 

that detecting online might happen too late in a task's 

execution cycle. Consequently, even after the installation of 

speculative copies, it will slowly run. Offline methods, on the 

other side, are often used to prevent stragglers. This method is 

less prevalent since it is considered less viable. Combining 

online and offline tactics, on the other hand, may provide 

greater outcomes. They may considerably boost the efficacy 

of "straggler detection" when used simultaneously. Bangare et 

al. [18-22] have contributed Machine learning projects for 

medical images. Shelke et al. [23] and Gupta et al. [24] also 

worked on the similar domain of research. Pande et al. [25-27] 

worked on the spline curve etc. Basic concept of staggler and 

ML are referred from the papers [28-31]. 

3. PROPOSED SYSTEM DESIGN

As machine learning (ML) algorithms are more common 

and training models becomes more difficult, a simple, versatile, 

and straggler-resistant distributed ML framework becomes 

more important. With a parallel processing communication 

pattern, proposed framework aims to reduce the effects of 

stragglers in large-scale training jobs. Stragglers are workers 

who are behind the rest of the workers in synchronous 

distributed computing. This section outlines our suggested 

methodology for reducing straggler effects in distributed 

machine learning. Straggler nodes cause synchronous 

processing delays. This occurs when the results of all workers 

must be combined before moving on to the next stage of the 

calculation. 

Due to the repetitive nature of Stochastic Gradient Descent-

like algorithms, the issue of stragglers is especially prominent 

in distributed machine learning. As a result, even a few 

stragglers in each loop may drastically reduce performance as 

measured by throughput and time to accuracy. In the world of 

distributed computing, stragglers have long been a problem. 

They squander valuable calculation cycles, which must be 

recovered by reproducing machines or redoing the process. 

The difficulty is worsened in machine learning since the 

underlying training methods are iterative and synchronous. 

State-of-the-art straggler mitigation solutions in distributed 

computing depend on replication, which may be an expensive 

approach due to the extra resources required. Straggler 

mitigation was previously presented as a primary-backup 

design. 

Figure 1 describes a Hybrid Machine Learning (HML) for 

classification of detection and prediction of straggler in large 

distributed environment.  Data has been validated according to 

the rules and norms defined during pre-processing. Each 

property has a lower and upper limit for specific values, and 

when one of these values exceeds or violates the bounds, the 

system instantly destroys the instance. Collection of data 

gathering, cleaning, filtering and normalizing are all part of 

pre-processing. Cleaning and repairing false or incorrect 

information from documents, records, and datasets entails 

locating and changing (or eliminating) lost mistaken, wrong or 

nonsensical info, as well as replacing, updating, or eliminating 

dirty or sensitive info. Proposed system uses scripting software 

or transaction processing to sanitize data interactively. We 

used consistent sampling procedures to balance data and 

filtered the standardized dataset to exclude the incorrectly 

classified occurrences. In the feature extraction, the normal 

and numerical values from text data are extracted. 
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Figure 1. Proposed system architecture using HML for 

straggler node detection and classification 

The various feature selection and extraction techniques 

have been applied to the entire data set. The TF-IDF, 

correlation coefficients, bi-tagged, N-Gram and density-based 

features have been extracted from the entire data set. Once the 

feature extraction has been done, we generate a unique feature 

vector that contains heterogeneous features from the extracted 

features. This feature vector gives the assurance that it does 

not have redundant data and provides minimum redundancy 

and maximum relevance (mRmR). Finally, the system detects 

each record, either attack or normal using a supervised 

classification technique. Moreover, the system also 

demonstrates an unknown attack classification of normal real 

time dataset.  

For the detection and classification, we carried out HML as 

a supervised classification algorithm. Then supervised 

machine learning is applied in order to train the classifier. Here 

class labelled data is present at the beginning. HML algorithm 

for Deep learning is applied to determine identity deception on 

social networks where multiple decision trees are created 

using randomly selected features from the feature set and the 

majority output class of all the decision trees is taken as output 

of the HML. The results have been evaluated according to 

confusion matrix and generated the F1 Score, PR-AUC (area 

under the (precision-recall) curve). 

4. ALGORITHM DESIGNING

Training Procedure (HML): According to machine learning 

strategy we divide our dataset into two phases as train dataset 

and test dataset. The 10-fold cross validation has utilized for 

data splitting and then 70-30% data feed for raining and testing 

respectively. The following algorithm describes a training 

function which used for module training during the execution. 

Input: The training dataset train_data [], No. of epoch size n, 

name of classifier cls_name. 

Output: Building a training model train_matrix [] 

(1) Read each attribute cls_name form training dataset as t

[] into train_data []

(2) 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑡 [] 𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 (𝑡[])
(3) 𝑛𝑒𝑤_𝑚𝑎𝑡𝑟𝑖𝑥 []  𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑠𝑒𝑡)

return 𝑡𝑟𝑎𝑖𝑛_𝑚𝑎𝑡𝑟𝑖𝑥 []  ←  𝑛𝑒𝑤_𝑚𝑎𝑡𝑟𝑖𝑥 []  as training 

dataset. 

Figure 2. Flowchart for straggler node detection and 

classification 

System testing algorithm (HML): Once training has been 

successfully done, it generates the background rules for entire 

system. In testing phase of step 1 and 2, it extracts the features 

from testing dataset. The step 3 and 4 demonstrates the 

extraction of rules from training repository. Finally steps 5 

describe evaluation and generate the similarity index and 

assign the class label to all instances as straggler or non-

straggler. Figure 2 show the flowchart for the proposed 

algorithm. 

Input: Train dataset trainingDBList [], Test dataset 

testingDB-List [] and Threshold Th. 

Output: Whose weight is heavier than Th is determined by 

rslt-set <cls_name, sim_wt> 

(1) As described in the following equation, for every

testing data, it operates in a convolutional layer with

invader training and test data.
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𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑘)

= ∑(.  𝑓𝑒𝑎𝑡𝑠𝑒𝑡[A[1] … … . . A[n]   𝑡𝑒𝑠𝑡𝑖𝑛𝑔𝐷𝐵𝐿𝑖𝑠𝑡 )

n

k=1

 

(2) By using below code, generate a feature vector from

testing_feature (k).

𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓𝑒𝑎𝑡𝑠𝑒𝑡_𝑥 [1 … . . … 𝑛]=
∑ (t)n

x=1  𝑡𝑒𝑠𝑡𝑖𝑛𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(k)

The output of every pooling layer collected by every 

convolutional layer and forwarded on to the total 

convolutional layer is extract_featset_x[t]. Each layer keeps 

the features extracted of every instance in the test dataset. 

(3) For every train instance, use the following function:

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔_𝑓𝑒𝑎𝑡𝑢𝑟𝑒(𝑙)

= ∑(.  𝑓𝑒𝑎𝑡𝑠𝑒𝑡[A[1] … … . . A[n]   𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝐵𝐿𝑖𝑠𝑡 )

n

𝑙=1

 

(4) Produce new feature vector from training_feature(l) by

using following function

𝑒𝑥𝑡𝑟𝑎𝑐𝑡_𝑓𝑒𝑎𝑡𝑠𝑒𝑡_𝑦 [1 … . . … 𝑛]= 
∑ (t)n

y=1  𝑡𝑟𝑎𝑛𝑖𝑛𝑔_𝑓𝑒𝑎𝑡ure(l)

The output of every pooling layer collected from every 

convolutional layer and forwarded on to the total 

convolutional layer is extract_featset_y[t]. Each layer stores 

each derived feature from each occurrence in the train dataset. 

(5) Compute every testing record with whole train dataset,

in the dense layer

𝑤𝑒𝑖𝑔ℎ𝑡_𝑤𝑡 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠𝑖𝑚 (𝑓𝑒𝑎𝑡𝑠𝑒𝑡𝑥|| ∑ 𝑓𝑒𝑎𝑡𝑠𝑒𝑡𝑦[𝑖])

𝑛

𝑖=1

 

(6) Return rslt-set (cls_name, weight_wt)

Both the training and testing algorithms are used for training

and testing respectively. The extracted heterogeneous features 

ensure robust module training, supervised classifiers achieve 

higher accuracy in detecting such faulty nodes. In module 

testing when any input is assigned to a classifier, it generates 

a specific weight with all training rules. Finally, optimization 

techniques are used for the selection of the best prediction. 

5. RESULTS AND DISCUSSIONS

For the system’s evaluation process, we have computed the 

matrices for correctness. The system is built on python 

framework with INTEL 2.8 GHz i7 processor and 16 GB 

RAM with open-source environment. After the 

implementation of system, comparison between numerous 

existing system and proposed system has been evaluated. The 

following figure describes testing result in details with data 

validation. A machine learning model is also known as just an 

error matrix. It is a table structure that lets the visualization of 

an application's output, classically a supervised learning one, 

in the machine learning field, and particularly the issue of 

statistical classification. Every row of the matrix indicates the 

expected occurrences in a class, while every column represents 

the instances in an actual class.  Supervised learning, an 

uncertainty matrix is a simple tool for evaluating outcomes. It 

is used to characterise the projected model’s test outcome. 

Every row in the matrix shows the classes in a class diagram, 

whereas every column indicates the examples in a predicted 

class. Four independent experiments were performed to test 

the discriminant function for various dataset formats. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃𝑡𝑎𝑏𝑙𝑒 + 𝑇𝑁) + (𝐹𝑃 + 𝐹𝑁)
(1) 

The accuracy (Eq. (1)) is the percentage of accurate 

predictions out of an overall number of projections. The 

equation used to measure it are: 

𝐹1 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(2) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(3) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4) 

Table 1. Faulty nodes detection analysis 

Training 

data 

Test 

data 
Classifier Accuracy Precision Recall 

F-

Measure 

10% 10% HML 94.5% 0.96 0.97 0.97 

10% 10% NB 81.0% 0.86 0.92 0.89 

10% 10% RF 90% 0.92 0.96 0.94 

10% 10% SVM 93% 0.95 1.0 0.97 

The proposed implementation has done in Windows 

opensource environment, python Platform has used due to 

availability of open source. The file system dataset has used to 

extract the data from file system application. We create 

various data chunks to perform the system classification 

accuracy with different deep learning algorithms. Table 1 

illustrates the comparative analysis of evaluation of different 

classification techniques for developed churn prediction 

module. The Naïve Bayes provides minimal accuracy thus 

HML categorization gives maximum accuracy with 94.5 

percent on several cross validation. The results also 

demonstrate that the HML classifies logging data and achieve 

high-precision discrete prediction of maximum value of 0.96 

as compare to the other algorithm. 

Figure 3. Detection and classification accuracy using 

numerous machine learning and proposed hybrid machine 

learning algorithm. 
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The above Figure 3 describes a straggler node detection and 

prediction accuracy using proposed hybrid machine learning 

algorithms. The three different machine learning (ML) 

techniques has used for such as NB, RF and SVM. The HML 

produces highest accuracy The NB gives 81% accuracy; RF 

produces 90% while SVM gives 93% and proposed HML 

produces 94.5% detection and classification accuracy. 

6. CONCLUSIONS

In order to ensure effective task execution, it is necessary to 

analyse and anticipate node performance. It makes task 

deployment easier by avoiding and allocating them to nodes 

that are expected to be in low-performance or execution. It 

gives information on the optimal node choices that are good 

for starting replications for straggler mitigation strategies such 

as fault injection. The following is a list of the paper's key 

contributions. To begin, we looked at the efficiency 

heterogeneity of nodes based on dispersed data for parallel 

task execution. We characterise and assess the nodes' 

effectiveness using straggler numbers because they directly 

indicate the effect of heterogeneity which has on efficient task 

replies, in contrast to work that focuses only on physical 

capacity disparities or utilisation variances. Second, we looked 

at a number of factors that might be used to define node 

performance and created an automatic labelling system that 

could give unbiased and precise labels for various 

performance segments. We generated the features to represent 

node execution ability using standardised execution speed of 

the task and task quantity per node numbers, statistical 

properties, and timing aspects. Finally, we introduced ML, a 

framework for analysing node performance that categories 

machine nodes. The results of the predictions demonstrate that 

different machine learning algorithms can accurately predict 

node efficiency subcategories with an accuracy rate of 94.5% 

percent as shown in Table 1. This may help the scheduler even 

more by blacklisting endpoints that are anticipated to be in 

low-performance conditions in the next scheduled window. In 

addition to the aforementioned contributions, future research 

will include integration of the suggested deep learning 

techniques into cluster work schedule decision-making 

elements such as the task scheduler in distributed systems, as 

well as improving its ability to handle limitation situations 

when no tasks are forwarded. 
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