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In this paper, we report a modeling of approximation for images by finding numerical 

rank in the wavelet domain through singular value decomposition of approximation 

coefficients. Firstly, the digital image is transformed into the frequency domain. Then 

high-frequency sub-bands are quantized to zero. This is quite obvious in wavelet-based 

image compression. Simultaneously, the low-frequency sub-bands are compressing by 

using truncated singular value decomposition (TSVD) through a numerical rank. 

Finally, reconstruct the approximation matrix via inverse discrete wavelet transform 

with low computational intricacy. This mathematical model is more adequate for 

solving engineering problems arises in digital image processing such as the 

transmission of image (reducing the bandwidth size of a communication channel) and 

storage capacity (space saving). The simulation results on gray and color images show 

that there is a gain in: (i) the compression ratio with acceptable visual quality as per 

human vision system; (ii) balancing of performance measures over conventional SVD 

methods. 
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1. INTRODUCTION

With the rapid development of the digital world, extensive 

applications of multimedia technology and the internet, the 

huge size of digital image(s) is represented by a matrix 

(𝐴 ∈ ℝ𝑚×𝑛) . This carries all kind of information's are

produced and transmitted over the network [1]. The size of 

digital multimedia data (images, videos) constantly increasing 

and these image files can be very large and they require more 

memory. For example, a grayscale (8-bit) image is 512 512 

pixels have 262144 elements to be stored, and a typical RGB 

(24-bit) image 1024  768 has nearly a million. Therefore, 

data compression in the form of an image(s) plays a crucial in 

the era of the digital world. 

The problem of image compression is to achieve a high 

compression ratio (CR) in the digital representation of an input 

image (𝐴 ∈ ℝ𝑚×𝑛)  with minimum perceived loss of image

quality. Ultimately, the criterion of image quality is usually 

that judged or measured by the human receiver on the basis of 

human vision system [2]. There are two approaches to 

compression methods: Lossless and lossy compression. 

Lossless compression is generally used for medical database 

management and telediagnosis applications [3] because it 

cannot tolerate any difference between original and 

reconstructed data [4]. An image can be lossy-compressed by 

removing irrelevant information even if the original image 

does not have any redundancy various methods of lossy image 

compression algorithms have been proposed [5]. One of the 

popular methods is singular value decomposition (SVD) 

which achieves a sequence of good approximation images 

with low compression ratios. On the other hand, JPEG2000 is 

based on a discrete wavelet transform (DWT) and it provides 

a better compression ratio [6]. The author(s) Stoica et al. [7] 

introduce the integration method of that knowledge for the 

improvement of perceptual JPEG2000 image compression 

quality. 

During past few years, immense data compression schemes 

and their applications in digital image processing have been 

proposed. Numerous efficient lossy image compression 

techniques [8, 9] motivated us to contribute in this field to 

combining SVD and DWT in different prospective. 

SVD of a matrix proposed by Eugenio Beltrami, Camille 

Jordan helps to approximate a matrix by lower rank matrix 

[10]. It is a lossy image compression technique that achieves 

compression by truncation of smaller singular values to zero 

[11]. Tian et al. [12] discuss the usage possibility of SVD in 

image compression. Rufai et al. [13] described image 

compression carried out by Hoffman coding with SVD which 

gives the image, better quality with low CR . Khalid et al. [14] 

introduced two new approaches for image compression. 

Further, Khalid et al. [15] progressed the compression studies 

to present an application of linear algebra to image 

compression using SVD and also recently, proposed by Khalid 

[16] image compression method based on the block SVD

power method (BSPM). Liu et al. [17] to apply sequence

image-based fractal compression method to compression

three-dimensional MRI images. Xu et al. [18] propose a novel

image compression method based on linear regression to the

domain of pixel prediction of the image. Bascones et al. [19]

designs aimed toward FPGA implementation and focus on the

low complexity predictive lossy compression. Bouida et al.

[20] an investigation to examine and evaluate image

compression degradation by the use of new tendency concept

of image quality assessment based on texture and edge
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analysis. 

Wavelet's theory has placed a prominent role in image 

processing applications (Especially, image compression). It is 

characterized by high CR  and maintains essentially the same 

characteristics of moments after the compression [21]. The 

author Mulcahy [22] has developed a compression method 

using the Haar wavelet transform. Grgic et al. [23] examine a 

set of wavelet functions for implementation of image 

compression. Usevitch [24] wavelet-based coding has been 

adopted as the underlying method to implement the JPEG 

2000 standard. Extends investigation of improvement in 

compression techniques, researcher(s) Yang et al. [25] 

proposed novel hybrid techniques of SVD and vector 

quantization for image coding. Rufai et al. [6] also described 

lossy image compression based on SVD and wavelet 

difference reduction. Krishnaraj et al. [26] introduce a wavelet 

transform-based deep learning-based image compression 

model especially for communication in IoUT. 

Based on the study of prevailing image compression 

techniques, an alternative method is proposed by adopting a 

relatively less computational complexity method to meet the 

requirements of getting a superior image consuming a lesser 

memory. 

2. THE HILBERT SPACE 𝑳𝟐(ℝ)

In order to create a mathematical model with which to build 

wavelet transform, it is important that to work in a vector space 

that lends itself to applications in digital imaging or signal 

processing. We can view a digital image (𝐴 ∈ ℝ𝑚×𝑛)as a

function of two variables where the function value is the grey-

level intensity and the audio signal as functions of time where 

the function values are the frequencies of the signal. Since 

rows or columns of A  usually are of finite dimension and 1D 

signals (audio) taper off, we want to make sure that the 

functions 𝑓(𝑡) in space decay sufficiently fast 𝑡 → ±∞. The 

rate of decay must be fast enough to ensure that the energy of 

the signal is finite. Finally, it is desirable from a mathematical 

standpoint to use a space where the inner product of a function 

with itself is related to the size (norm) of the function [27]. 

Following is the Hilbert space 𝐿2(ℝ) defined as

𝐿2(ℝ) = {𝑓:ℝ → ℂ |∫ |𝑓(𝑡)|2

ℝ

𝑑𝑡 < ∞} (1) 

with the inner product 𝑓(𝑡)  and 𝑔(𝑡)  as ⟨𝑓(𝑡), 𝑔(𝑡)⟩ =

∫ 𝑓(𝑡)
ℝ

𝑔(𝑡)𝑑𝑡. 

2.1 Wavelet transform 

The familiar Fourier function 𝑓(𝑡) is sinusoids of changing 

frequency and unbounded duration [28] and too much Fourier 

data is needed to reconstruct the signal locally and it is a useful 

tool to analyze the frequency component of the signal. In these 

cases, the wavelet investigation is often very effective because 

it provides a simple approach for dealing with the local aspects 

of a signal. Therefore, the wavelet transforms expansion 

functions are little waves of finite duration and varying 

frequency. One of the basic and prominent wavelet techniques 

is Haar and it is a good representation of the image with fewer 

coefficients [29]. 

2.2 The Haar function 

Haar functions have been utilized from 1910 when they 

were presented by the Hungarian mathematician Alfred Haar 

[30]. 

Haar scaling function defined as 

1, 0 1
( )

0, .

t
t

otherwise


 
=




(2) 

      Definition: (The Haar Space 𝑽𝒋 ) Let 𝜙(𝑡)  be the Haar

function in Eq. (2) and 𝑗 ∈ ℤ. We define  

𝑉𝑗 = 𝑠𝑝𝑎𝑛{𝜙(2𝑗𝑡 − 𝑙)}𝑙∈ℤ ∩ 𝐿2(ℝ) (3) 

2.3 Haar wavelet function 

The Haar wavelet function ( )t is given by 

( ) (2 ) (2 1)t t t  = − − ; 

.

1
1, 0

2

1
( ) 1, 1

2

0,

t

t t

otherwise













 

= −  
(4) 

Definition: (The Haar wavelet Space 𝑯𝒋) Let 𝜓(𝑡) be the

Haar wavelet function in Eq. (4), 𝑗 ∈ ℤ. We define 

𝐻𝑗 = 𝑠𝑝𝑎𝑛{𝜓(2𝑗𝑡 − 𝑙)}𝑙∈ℤ ∩ 𝐿𝟐(ℝ) (5) 

Therefore, the sets {𝜙𝑗,𝑙(𝑡) = 2
𝑗

2𝜙(2𝑗𝑡 − 𝑙): 𝑙 ∈ ℤ}  and

{𝜓𝑗,𝑙(𝑡) = 2
𝑗

2𝜓(2𝑗𝑡 − 𝑙): 𝑙 ∈ ℤ} are orthonormal basis for 𝑽𝒋

and 𝑯𝒋  [25]. Scale j determines dilation or the visibility in

frequency and l represents translation, 2
𝑗

2  controls their 

amplitude of the signal. The wavelet subspaces 𝑯𝒋 fill the gaps

between successive scales: 

1
V V Hj jj

= 
+ (6) 

We can start with an approximation on some scale 𝑉0 and

then use wavelets to fill in the missing details on finer and finer 

scales. The finest resolution levels includes all square-

integrable functions 

𝐿2(ℝ) 0 0j jV H


=+=  (7) 

One of the enormous discoveries for wavelet analysis was 

that perfect reconstruction filter banks could be formed using 

the wavelet coefficient sequences for 1D or 2D signal. 
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2.4 Discrete wavelet transform 

Suppose n  is an even positive integer. We define the 

discrete Haar wavelet transform (DHWT) matrix as 

𝐻𝑛 = [
𝑊

𝐺
] =

1

√2

[

1 1 0 0 0 0
0 0 1 1 0 0
⋮ ⋱ ⋮
0 0 0 0 ⋯ 1 1

1 −1 0 0 0 0
0 0 1 −1 0 0
⋮ ⋱ ⋮
0 0 0 0 ⋯ 1 −1]

(8) 

For each decomposition level, it generates the 
𝑛

2
× 𝑛 block 

W is called the averages block and the 
𝑛

2
× 𝑛 block G is called 

the detail block and other family of matrices can be easily 

obtained using filter coefficients. 

The filter 

( )0 1

1 1
, ,

2 2
h h h= =

 
 
 

(9) 

is called the Haar (low-pass) filter and then we will call 

( )0 1 ,
1 1

, ,
2 2

gg g= = −
 
 
 

(10) 

the Haar wavelet (high pass) filter. Similarly, we can obtain 

discrete higher order Daubechies wavelet transformation 

matrix obtained as [27] 

𝐻𝑛

=

[

ℎ0 ℎ1 ℎ2 ℎ3 ⋯ ℎ𝐿−1 ℎ𝐿 ⋯ 0 0
0 0 ℎ0 ℎ1 ⋯ ℎ𝐿−3 ℎ𝐿−2 ⋯ 0 0
0 0 0 0 ⋯ ℎ𝐿−5 ℎ𝐿−4 ⋯ 0 0

⋱ ⋱
0 0 0 0 ⋯ 0 0 ⋯ ℎ𝐿−1 ℎ𝐿

ℎ𝐿−1 ℎ𝐿 0 0 ⋯ 0 0 ⋯ ℎ𝐿−3 ℎ𝐿−2

⋱ ⋱
ℎ2 ℎ3 ℎ4 ℎ5 ⋯ 0 0 ℎ0 ℎ1

𝑔0 𝑔1 𝑔2 𝑔3 ⋯ 𝑔𝐿−1 𝑔𝐿 ⋯ 0 0
0 0 𝑔0 𝑔1 ⋯ 𝑔𝐿−3 𝑔𝐿−2 ⋯ 0 0
0 0 0 0 ⋯ 𝑔𝐿−5 𝑔𝐿−4 ⋯ 0 0

⋱ ⋱
0 0 0 0 ⋯ 0 0 ⋯ 𝑔𝐿−1 𝑔𝐿

𝑔𝐿−1 𝑔𝐿 0 0 ⋯ 0 0 ⋯ 𝑔𝐿−3 𝑔𝐿−2

⋱ ⋱
𝑔2 𝑔3 𝑔4 𝑔5 ⋯ 0 0 𝑔0 𝑔1 ]

(11) 

Here, 𝐿 = 2𝑙  where l is natural number. For l=1, we get 

Haar matrix. 

The matrix 𝐻𝑛 is orthogonal and still essentially computes

averages and differences. The benefit, of course, is that we 

have an easy formula for the inverse: 

1 T

n nH H
−
= (12) 

A two-dimensional DHWT of a discrete image A can be 

performed whenever an even number of rows (m) and an even 

number of columns (n). 1-level wavelet transform of an image 

A is defined as 

~

,
T

m nA H AH= (13) 

,

~ T
W W

A A
G G

=
   
      

(14) 

.

~
|

LL HL
A

LH HH
=
 
  

(15) 

For each level of decomposition, wavelet coefficients are 

decimated by a factor two, which achieves better compression 

ratio [31]. In Haar wavelet decomposition produces, 

approximate wavelet co-efficient (LL), horizontal (HL), 

vertical (LH) and diagonal (HH) detail coefficients as in Eq. 

(15). Then block matrix (LL) compressed by SVD method and 

other detail coefficients block(s): LH, HL, HH truncated to 

zero [32]. 

Remark: When an image A  has an odd number of m  or n ,

it can be extended by appending 0's so that it has an even 

number of rows and columns. 

3. SINGULAR VALUE DECOMPOSITION

Let 𝐴 ∈ ℝ𝑚×𝑛. The full space and comlun space of A and

𝐴𝑇 provide sufficient details to understand A. Basis and

dimension of each subspce can be obtained by knowing its 

SVD. SVD of A is given in the following [33]. 

1

1 2

1

1 2

, Where ( , , ),
0

0, , .

( 0) , Where ( , , ),

0, .

TP Q diag n

if m nnA

Tp Q diag m

if m nm

 

  

 

  

  
=   

 
     = 


 = 
      

(16) 
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Here 𝑃 = [𝑝1, 𝑝2,⋅⋅⋅, 𝑝𝑚] ∈ ℝ𝑚×𝑚  and 𝑄 = [𝑞1, 𝑞2,⋅⋅⋅
, 𝑞𝑛] ∈ ℝ𝑛×𝑛  are orthogonal. The columns of P and Q are

called left and right singular vectors respectively. The non – 

negative real numbers {𝜎𝑖}𝑖=1
𝑚𝑖𝑛(𝑚,𝑛)

 are called singular values.

Singular values are unique, but the singular vectors are not. 

The number of non-zero singular values is called the rank of 

A and denoted by rank(A) [11]. 

( )

1

rank A
T

i i i

i

A p q
=

=  (17) 

Truncated singular value decomposition or approximation 

of a matrix by lower ranks (decaying of smaller singular values 

to zero) has prominent role in lossy image compression, 

because it supports psychovisual redundancy related to human 

eye [6]. 

3.1 Optimality of SVD 

We consider the SVD of matrix A of size m×n as in Eq. (16). 

For any 𝑘 with 1 ≤ 𝑘 < 𝑟 = 𝑟𝑎𝑛𝑘(𝐴), then define.  

1

T

i i i

k
p q

i
A

k
=

=
(18) 

             Ekart-Young theorem says 𝐴𝑘 is the best approximation to

A among all 𝑘 − 𝑟𝑎𝑛𝑘  matrices with respect to Frobenius 

norm [34]. This result has been used to compress an image 

(matrix) A of size 𝑚 × 𝑛 has initially 𝑚 × 𝑛 entries to store in 

computer memory disk space and measured in kilobytes (KB). 

If we consider 𝐴𝑘 , instead of A, then we have an

approximation of A which can be stored with 𝑘(𝑚 + 𝑛 + 1) 

values in spatial domain, i.e., the entries of the vectors 𝑝𝑖 , 𝑞𝑖

and singular values 𝜎𝑖 , 𝑖 = 1,2,⋯ , 𝑘. For the point of image

compression choosing k value is a challenging task and this 

leads to limitation of SVD. Khalid et al. [14] considered new 

upper bound for k in terms of size of original image instead of 

its rank, 

i.e., 
1

mn
k

m n


+ +
(19) 

According to Eq. (19) choosing k value has a lot of choices 

between 1to
𝑚𝑛

𝑚+𝑛+1
. The concept of numerical rank of matrix 

help us to finalize suitable value for k. 

3.2 Estimating numerical rank 

In matrix computations, the numerical rank of 𝐴 ∈ ℝ𝑚×𝑛,

can be defined as the number of singular values greater than a 

specified tolerance 𝜀 > 0 and it is denoted by 𝑟𝜀  [35].

The singular values of matrix A by Eq. (16) with the 

numerical 𝑟𝜀  satisfy

1r r 
  +   (20) 

It is important to note that the notion of numerical rank 𝑟𝜀  is

useful only when there is a well-defined gap between 𝜎𝑟𝜀 and

𝜎𝑟𝜀+1 [36], as well. Then decaying singular values of A to get

low numerical rank and its needful to SVD compression 

method [8]. Clearly, the little value of 𝜀 > 0, we get 𝐴𝑟𝜀 with

rank 𝑟𝜀  such that ‖𝐴 − 𝐴𝑟𝜀‖2
= 𝜎𝑟𝜀+1 < 𝜀.

3.3 Methodology to image compression 

SVD methods heavily depend on a small number of 

dominant singular values to reconstruct the image, because 

there is a large number of singular values close to zero 

represents redundancy information of the digital image. A 

small number of dominant singular values are closely 

associated with numerical rank (𝑟𝜀) for a specified tolerance

𝜀 > 0. This fact is utilized for finding 𝑟𝜀  in the wavelet domain

because dominant singular values of the original image are 

found in SVD of its smooth / average coefficients.These facts 

are presented in the form of an algorithm: 

________________________________________________ 

ALGORITHM: 

________________________________________________ 

Input: Digital image A and tolerance 𝜀(0 < 𝜀 < 𝜎1)
Output: 𝐵 ≈ 𝐴 with 𝑟𝑎𝑛𝑘(𝐵) = 𝑟𝜀.

1. Apply 1-level discrete Haar wavelet transform to A to obtain

𝐴
~

= 𝐻𝑚𝐴𝐻𝑛
𝑇 .

2. We next quatize 𝐴
~

 by replacing each 𝐻𝐿, 𝐿𝐻 and 𝐻𝐻  by

the 
𝑚

2
×

𝑛

2
zero matrix, i.e., 

𝐴𝑞

~

= [
𝐿𝐿

0
|
0

0
]. 

3. Compute 𝑟𝜀  from SVD of 𝐿𝐿 . Here 𝐿𝐿  represents coaser

representation of 𝐴
~

,

4. Obtain the best 𝑟𝜀  rank matrix which approximations 𝐿𝐿 i.e.,

𝐿𝐿
~

= ∑ 𝜎𝑖𝑝𝑖𝑞𝑖
𝑇𝑟𝜀

𝑖=1  by Eq. (18). 

5. Construct B by applying 1-level inverse Haar wavelet

transform with smooth coefficients as 𝐿𝐿
~

 and all other detail 

coefficients are zero. 

________________________________________________ 

4. IMAGE QUALITY PARAMETERS

A picture quality in image compression systems is 

important phase in describing the type and amount of 

degradation in reconstructed image. Among many objective 

numerical measures of image quality, that are based on 

comparable distortion measures is defined as follows: 

4.1 Mean-square error (MSE) and peak signal-to-noise 

ratio (PSNR) 

Let 𝐴 ∈ ℝ𝑚×𝑛be a given digital image and the approximate

matrix 𝐵 ∈ ℝ𝑚×𝑛 . To evaluate 𝑀𝑆𝐸  and 𝑃𝑆𝑁𝑅  between A

and B defined as [37]. 

~
2

1 1
( , )

| |ij ij

m n

i j
MSE A B

mn

a b 
= =

=

−
(21) 
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' 2

10

( 1)
( , ) 10log ,

( , )

L
PSNR A B

MSE A B

 −
=  

 
(22) 

' 2

10 2

( 1)
( , ) 10log

F

L
PSNR A B

A B

 −
 =
 − 

(23) 

where, 𝐿′  is the number of gray levels.The unit of 𝑃𝑆𝑁𝑅  is 

decibel (dB). 𝑀𝑆𝐸 is inversely proportional to 𝑃𝑆𝑁𝑅. Smaller 

values of 𝑀𝑆𝐸 means better approximation. 

4.2 Compression ratio 

Compresssion ratio defined as the ratio of size of original 

image to the size of compressed image. 

Required memory space to store entries of sample image
( , ) .

Required memory space to store entries of sample image

A
CR A B

B
= (24) 

Vigor of image compression is measured by CR. 

5. RESULTS AND DISCUSSION

We implemented the proposed algorithm using MATLAB 

R2009a on machine with: i5-2450M CPU @2.50 GHz, 4GB 

RAM and 64-bits operating system.  

An innovative study of image compression with respect to 

numerical rank (𝑟𝜀) constructed in the wavelet domain for a

given tolerance   is presented. For comparison purposes, we 

have designed/considered various tolerance values in such a 

way that the proposed algorithm produces a platform to 

compare other related works. It is implemented on test images 

and obtained observations are noted in Tables and Figures. 

Table 1 is showing the comparision between the proposed 

technique test with grayscale image pigeon and spatial domain 

(SVD alone method). In order to see the performance of the 

method is test with fruits image shown in Table 2. 

Table 3 reveals that proposed algorithm meets the 

reasonable MSE (𝐶2&𝐶7) and PSNR (𝐶3&𝐶8) with high CR

(𝐶4&𝐶9). The behavior of compression ratio for Lena image

with respect to tolerances as shown in Figure 1. 

The performance of proposed routine as compared to 

scheme BSPM for color image (Desert.jpg, 1024×768) and 

results are shown in Table 4. 

Remark: In the Table 4, PSNR value (see column 2) to 

mention 92.97 for 0.36MSE = , its apparently correct answer 

is 52.56 [16]. 

We designed various tolerances for three different channels 

(𝜀𝑅, 𝜀𝐺and𝜀𝐵)  to match 𝑟𝜀  for comparison with existing

methods Khalid et al. [15] and Khalid [16]. Observations in 

Table 4 report that proposed algorithm achieves a higher 

compression ratio by reasonably balancing PSNR. Also, 

PSNR values are increased as numerical rank (𝑟𝜀) increases

(see 𝐶7&𝐶8  in Table 4). In the context of a human visual

comparison between sample image(s) and compressed 

image(s) as shown in Figure 2. 

Visual analysis of compressed images obtained from the 

proposed compression methodology is illustrated in Figure 2. 

Original (a, b, c and d) and compressed images (e, f, g and h) 

have been shown, which illustrates the compressed images 

with fewer amounts of data. Different visual characteristics are 

tested with different images. From this analysis, illustration 

clearly demonstrates the proposed method is evident from 

simulation results that better compression is achieved with 

acceptable visual quality (as per HVS) as compared to 

conventional SVD methods [9]. 

Table 1. PSNR and CR values for SVD and proposed mathod on pigeon image (768×512) 

SVD Compression Proposed method 

k MSE PSNR CR ε rε MSE PSNR CR 

08 0.0118 67.4267 38.3700 20.1 08 0.0119 67.3785 76.6802 

16 0.0065 70.0304 19.1850 11.1 16 0.0067 69.8859 38.3401 

32 0.0036 72.5418 9.5925 5.7 32 0.0040 72.1188 19.1700 

64 0.0019 75.2900 4.7963 3.0 64 0.0026 74.0490 9.5850 

128 0.0008 78.9971 2.3981 1.4 128 0.0018 75.4607 4.7925 

Table 2. Comparison of SVD techniques with proposed method using fruits image (512×512) 

SVD Compression Proposed method 

k MSE PSNR CR 𝜀𝑅 𝜀𝐺 𝜀𝐵 𝑟𝜀 MSE PSNR CR 

08 0.0185 65.4489 1.7838 14.1 13.5 13.5 08 0.0077 69.2828 3.9741 

16 0.0150 66.3756 1.5503 7.0 7.1 7.4 16 0.0044 71.7090 3.4402 

32 0.0114 67.5643 1.3509 4.0 4.1 4.5 32 0.0029 74.2223 3.0733 

64 0.0088 68.6738 1.2000 1.9 2.0 2.1 64 0.0014 76.6132 2.8456 

128 0.0017 75.7361 1.0974 0.71 0.79 0.76 128 0.0010 78.1028 2.7604 

Table 3. Obtained numerical results of image quality parameters tested on Lena image (512×512) and comparison with the work 

of Tian et al. [12] 

SVD Compression Proposed method 

k MSE PSNR CR ε 𝑟𝜀 MSE PSNR CR 

08 0.0070 69.6843 31.48186 14.1 08 0.0071 69.6333 63.8752 

16 0.0038 72.3836 15.98439 8.1 16 0.0039 72.2171 31.9376 

32 0.0018 75.6716 7.992195 3.9 32 0.0020 75.0684 15.9688 

64 0.0006 80.0204 3.996098 1.9 64 0.0011 77.7585 7.8744 

128 0.0001 86.2687 1.998043 0.61 128 0.0007 79.4549 3.9922 
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Table 4. Comparision of obtained outcomes against block SVD power method (BSPM) for various tolerances [15, 16] 

BSPM Proposed method 

k PSNR CR 𝜀𝑅 𝜀𝐺 𝜀𝐵 𝑟𝜀 PSNR CR 

50 48.44 6.98 6.38 2.61 1.12 50 75.5155 10.8256 

100 51.20 6.94 3.65 1.57 0.69 100 77.2613 9.6046 

122 92.97(52.56) 6.92 3.02 1.31 0.6 122 77.7329 9.2808 

150 53.60 6.92 2.36 1.07 0.5 150 78.1662 9.1879 

200 54.43 6.92 1.51 0.71 0.36 200 78.6212 9.0471 

250 58.88 6.89 0.93 0.44 0.24 250 78.8227 8.9978 

300 63.26 6.88 0.47 0.24 0.15 300 78.8946 8.5507 

350 67.19 6.87 0.17 0.095 0.08 350 78.9100 8.5243 

Figure 1. Variation of compression ratio ( CR ) with different numerical rank (𝑟𝜀) for Lena image

a (pigeon, 234 KB)  e ( 1.4 = , 85.5KB) 

b (fruits, 461KB) f (𝜀𝑅 = 0.71, 𝜀𝐺 = 0.79,

𝜀𝐵 = 0.76, 𝑟𝜀 = 128; 167KB)

c (Lena, 148 KB)  g ( 0.6 = , 128;136r = KB) 
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d (Desert, 826 KB) h (𝜀𝑅 = 1.52, 𝜀𝐺 = 0.71,

𝜀𝑅 = 0.36, 𝑟𝜀 = 200;

     91.3KB) 

Figure 2. Human visual comparison of a, b,c,d are sample images and e,f,g, h are after compression with suitable   and acquired 

memory space in KB (Kilobytes) 

6. COMPUTATIONAL INTRICACY

Let A be a given digital image of size 𝑚 × 𝑛. In the case of 

SVD, the required complexity to compute the compressed 

image with numerical rank 𝑟𝜀 , it found to be 𝑂(𝑚 × 𝑛 ×
𝑚𝑖𝑛{𝑚, 𝑛}) [38]. Whereas the proposed algorithm requires 

half of both because we are applying SVD on a matrix size 
𝑚

2
×

𝑛

2
. For this half (50%) reduction, the proposed method has 

to pay O(m×n) [12] operations to obtain the wavelet (Haar 

takes fewer operations compare to other wavelets) transform 

of A. Whenever the image database is large, proposed 

algorithm places a crucial role in reducing complexity (hence 

CPU time) and memory compared to conventional SVD.  

The CPU time is taken to construct compressed image with 

various numerical rank (𝑟𝜀 ) corresponding to conventional

SVD and the proposed method for Lena image is shown in the 

following Figure 3. In this figure, x and y axes represent the 

numerical rank and corresponding processing time in seconds 

respectively. Further, this figure demonstrates the above 

discussed reduction in half computational process 

characterized in terms of CPU time concerned with the work 

of Tian et al. [12] presented a SVD alone method. 

Figure 3. Shows the plot of CPU time rate across the numerical rank 

7. CONCLUSIONS

The algorithm proposed with the significant role of 

numerical rank (𝑟𝜀 ) for image compression in the wavelet

domain. It has two advantageous over conventional SVD and 

its variants: (i) the comparison clearly illustrates that the 

proposed model achieves high compression ratio with 

tolerable visual quality as per human vision system; (ii) less 

computational complexity because of fast wavelet transform. 

Test images considered in results and discussion act as 

testimonials to demonstrate the features of the proposed 

algorithm over the conventional SVD methods. Haar wavelet 

transform outperforms to reduce the computational processing 

time and speeds up the compression and decompression 

process as compared to the higher-order level of wavelet 

families. The proposed algorithm applied to video 

compression justifies the high computational complexity. 

Future researches may lead to continuing on developing more 

effective transform-based algorithms and explore a better 

performance on data compression. 
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