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 Predictive modeling of asthma characterized by the systematic use of Machine Learning 

and Deep Learning techniques to develop classification/prediction models is a vital tool 

which is being deployed in most of the computer mediated decision making processes. 

Spirometry, being one of the most commonly used lung function tests, helps in the 

diagnosis and continuous monitoring of asthma and is recommended by both the 

national and international guidelines for the management of the disease when compared 

to other pulmonary function tests. It has been found to be more reliable because it has 

more parametric values. Despite the generalization of the respiratory equations in 

spirometry with respect of selected ethnic groups, the equation yields a considerable 

difference when compared to the spirometric readings in the general population. In an 

effort to overcome such differences that deviate from actual observations, in this paper, 

we have proposed a neural network model that can output a vector of Tiffeneau-Pinelli 

Index. The neural network model for the prediction of Tiffeneau-Pinelli index was able 

to reproduce a vector of indices that very closely approximated the actual observed 

values with a very low estimated error with an optimized radial basis fit neural net. This 

can be used as a reliable means to estimate some of the vital lung function parameters 

irrespective of the differences in the general population. 
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1. INTRODUCTION 

 

Asthma is a chronic lung disease in which the obstruction 

of the airway is generally considered reversible, which means 

that the obstruction of the lung can be resolved with treatment 

and in some cases spontaneously. However, in the case of 

failure to recognize the disease at an early stage, the disease 

could be progressive and finally become irreversible. These 

days, mining the most interesting patterns from multiple 

phenotypes of medical data poses a significant challenge [1, 

2]. The prevalence of airway diseases is significantly 

underestimated [3]. This necessitates authors to propose an 

approach that aids in the prediction of the disease 

using severity indicators that can be identified at an early stage, 

allowing for early medical interventions that alleviate disease 

severity, thereby lowering the mortality rate [4, 5]. Spirometry, 

being one of the most commonly used lung function tests, 

helps in the diagnosis and continuous monitoring of Asthma 

and is recommended by both, national and international 

agencies and guidelines for the management of the disease [6]. 

To determine whether the results of spirometric tests fall 

within the normal range, a comparison of the results against 

the reference equations describing the sample characterizing 

the "normal" population is essential [7]. There are numerous 

of such reference equations available, but the majority of them 

are only applicable to specific populations for a given age and 

gender [8]. 

 

1.1 Major contribution of the paper 

 

Global Lung Initiative has been instrumental in releasing 

reference equations that have now been globally accepted 

across a broad age range, varying from 3 to 95 years for five 

different ethnic groups, including South East Asian, North 

East Asian, Black, Caucasian and others. Despite the 

generalization of respiratory equations to the selected ethnic 

groups, the equations most times yield a considerable 

difference compared to the general population's spirometric 

readings. In an effort to overcome such differences that deviate 

from the actual observations, we propose in this paper a neural 

network model that can give the vector of Tiffeneau-Pinelli 

Index. The Tiffeneau-Pinelli Index is a ratio that is indicative 

of several obstructive respiratory diseases, for a given age, 

height, and gender for a specific individual. It is concluded 

from the error estimation metrics: MAE, MSE, and RMSE that 

the output vector showed consistency with the observed values 

from the spirometry tests. With this in mind, we propose a risk 

assessment model that can be used as a reliable tool to estimate 

lung function parameters based on basic information such as 

gender, age, and height.  
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The proposed approach for the prediction of vectors 

produces a range of values that closely approximate to the 

actual vector compared to the ARTP prediction vector 

produced by respiratory equations in the normal population. 

This thereby provides an effective solution to assess risk of the 

disease at its early stage. The target vector corresponds to the 

actual Tiffeneau index, obtained through spirometry tests. This 

helps one in predicting the index using the proposed approach 

well before getting the spirometry tests done as the inputs vary 

closely to predict the target as observed by experimental 

results. 

The rest of the paper is organized as follows. Section 2 

presents a review of related works including the technological 

advances made in clinical diagnosis of asthma especially with 

respect to pulmonary function testing. We also discuss some 

of the common neural network and deep learning architectures 

which have been proposed in studies concerning prognosis of 

asthma. Section 3 discusses the Methodology deployed, with 

a discussion on the proposed neural networks model, the 

process of training and learning, and the optimization 

techniques with respect to the adoption of the activation 

functions. In Section 4, the results are presented along with 

inferences drawn, while in Section 5, the paper is concluded. 

 

2. RELATED WORK 
 

Pulmonary function test plays a vital role in respiratory 

medicine. It is utilized to analyze obstructions to airways, 

evaluate its seriousness and outcomes, outline hazard factors, 

recognize early lung ailment, and screen the lungs for lung 

decay. The pulmonary function changes with age, height, sex, 

and ethnicity. Therefore, test outcomes should be contrasted 

with anticipated qualities, and lower and maximum points of 

confinement of the typical values that are suitable for the 

individual being tried. There are numerous reference 

conditions, contributing to reference equations and most are 

identified with Caucasians [7, 8]. The suitability and 

appropriateness of the equations were not tested with the 

number of special cases, and the LLN or ULN (lower and 

upper limits of normal) were not absolutely determined. 

Similarly, many prediction equations rely on a smaller number 

of subjects and information gathered decades ago. Changes in 

spirometry methods and secular trends (i.e. a pattern in 

respiratory functioning in progressive birth associates) may 

influence the applicability of today’s results [9-11]. 

A comparison validating the results of spirometric tests 

against the reference equations describing the sample 

characterizing the “normal” population is utmost required in 

order to ascertain whether the results fall within the normal 

range [12-26]. A huge number of such reference equations are 

available, but they are mostly applicable to selected ethnic 

populations for a given age and gender [27, 28]. The proposed 

neural network model for the prediction of Tiffeneau-Pinelli 

index was able to reproduce a vector of indices that are very 

close to the actual observed values with a very low estimated 

error with an optimized radial basis fit neural net model. The 

error was low when evaluated on the test set for the prediction 

of index vector pertaining to both males and females. 

A neural network (NN) architecture typically imitates the 

network of neurons as such in the human brain and is 

constructed using connected layers, with the first and last 

layers being called the input layer and output layer, 

respectively [9]. The layers in between the input and the output 

layers are called hidden layers. This is depicted in Figure 1. 

Learning using NN usually happens in two phases. The first 

phase involves applying a non-linear transformation of the 

input to create a statistical model as an output. The second 

phase refines the model using derivatives. Both the phases are 

repeated in succession. While the underlying principles 

between CNN and NN are same, CNN does bring in some new 

concepts, besides the difference their input which is 2-

dimensional vs. 1-dimensional in a standard neural network. 

A simple CNN has been used as the basis for the prediction 

process adopted in the neural network. A single 4x4 input 

matrix, with one 2x2 kernel matrix and a single convolution 

layer with one unit, one Rectified Linear Unit layer with one 

unit, a single pooling layer and a single fully connected (FC) 

layer was used. The elements of the filter matrix are equivalent 

to the unit weights in a standard NN and are updated during 

the backpropagation phase. 

 

 
 

Figure 1. Neural Network Architecture used for 

classification 

 

Deep learning networks in recent years have received a lot 

of unprecedented attention owing to the significant 

achievements in the field of healthcare and informatics 

accomplished by the intelligent deployment of the right 

network types. Deep learning networks incorporate sufficient 

depth into ANN by introducing more cascaded hidden layers 

built on same functions by exploring meaningful information 

which has a greater utility, especially with medical data that 

pose a lot of challenges [3-5]. Deep learning for asthma 

diagnosis is significant, more especially in the presence of 

extensive data of signs and symptoms as well as measures 

obtained from objective tests [18]. In this study, the number of 

neurons in each case was chosen to be less than the number of 

inputs and the same number of neurons was used in all the 

layers. An empirical analysis of the different activation 

functions employed in the hidden layers, including linear and 

non-linear functions was carried out to identify the most 

suitable performing activation function for the data under 

consideration. The performance of different optimizers was 

also analyzed. 

 

 

3. METHODOLOGY 
 

3.1 Data acquisition and preprocessing  

 

The data used in this study was obtained from the SPIROLA 

dataset. The dataset basically contains longitudinal data with 

respect to individual patients recorded over time. However, the 

data is not strictly periodic in nature; though it is closer to 
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being called time series data. The dataset contains the 

following features: Age, Sex, Race, and pulmonary function 

parameters such as FEV1 and FVC. These are included as the 

primary attributes along with optional attributes such as 

second best FEV1 and second best FVC. For the sex attribute, 

the male attribute is represented as 1 in our dataset and female 

attribute as 2. 

 

3.1.1 Feature transformation 

The FEV1P, i.e. FEV1 predicted and FVCP i.e., FVC 

predicted are computed using the formulae published by the 

Association for Respiratory Technology and Physiology for 

males and female given by Eqns. (1)-(4). The formula is based 

on a regression model from a cohort study where “height” is 

in meters and "age” is in years. The formula for the predicted 

FVC and FEV1 is published by the Association for 

Respiratory Technology and Physiology which is based on a 

regression model from a cohort of subjects aged 18-60, and 

includes height, age and genders as the important parameters. 

 

(i) Male: 

 

fev1 = 4.30*height-0.029*age-2.49 (1) 

 

fvc = 5.76*height-0.026*age-4.34 (2) 

 

(ii) Female: 

 

fev1 = 3.95*height-0.025*age-2.60  (3) 

 

fvc = 4.43*height-0.026*age-2.89 (4) 
 

Neural nets, inspired by the learning process within human 

brains, permit computing systems to study and fine- tune 

analyzed new data. A neural network often called ANN, 

consists of a grid of functions, called parameters that achieve 

the task of learning. A simple neural network is depicted in 

Figure 2. The initial input, x is fed to the principal layer of the 

neurons, represented by “hn”, wherein all the functions reflect 

the accepted input and create the output, which is then 

accepted and streamed to the next layer represented as “gn”. 

 

 
 

Figure 2. Architecture of neural network 

 

3.2 Neural nets deployed 

 

Though we used a wide range of neural networks including 

Feed forward back propagation, Cascade forward back 

propagation and Linear layer Design, Elman network, Layer 

recurrent, Radial basis function (RBF) and Radial basis with 

exact fit function, we discuss optimization with respect to 

Radial basis and its exact fit for our model as empirical 

estimations of the results were very significant. 

 

3.2.1 Radial basis function 

The RBF neural networks employ a radial basis function for 

its activation and relies largely on the amount of neurons in the 

hidden layer. The location of the functions also influences the 

performance of the neural network. A Gaussian function 

including a spread parameter of 1.0 was adopted to control the 

functioning of the neural network and its generalization. 

Radial basis functions in combination with spirometry are seen 

to yield considerably good results in the prediction of FEV1 

[14, 15, 29]. 

3.2.2 Radial basis 

A radial basis exact fit function works on the basis of radial 

basis functions as an activation function. The RBF attains an 

extreme value of 1 when the input is 0. The distance between 

w and p decreases with an increase in the output. Thus, a radial 

basis neuron is a sensor that generates a 1 every time the input 

vector p and weight vector w is identical. Furthermore, 

whenever the weight vectors differ from the input vectors, the 

output is approximately zero and is seen to have a negligible 

impact on the linear output neurons. The radial basis exact fit 

NN is depicted in Figure 3. 

 

 
 

Figure 3. Radial basis exact fit neural network 

 

The net input in the case of an input neuron is quite 

dissimilar from the other neurons. The net input is the bias b, 

multiplied by the distance between its weight and the input. 

Both the input and weight are in the form of vectors. An 

element by element multiplication operation is implemented 

to combine the output of || dist || and the bias vector, b. The 

first layer has neurons which calculates the weighted inputs 

using net inputs to the model and the distance, while the 

second layer contains purlin neurons which calculate weighted 

inputs using dot product and net inputs, using net summation. 

Both layers include biases. 

 

3.3 Training and Learning processes 

 

3.3.1 Training function 

The training function adopted, trainlm follows the 

Levenberg-Marquardt optimization to update both the weights 

and the bias. It is one of the fastest backpropagation algorithms 

and is recommended despite its requirements for more 

memory than the others. It uses validation vectors to stop 

training at an early stage in case the network's performance 
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fails to improve or remains constant without any further 

improvement. Test vectors further validate that the network 

generally generalizes well, but has no effect on training. 

The training process stops when any of the following 

conditions are met: 

• Concentrated number of recurrences indicates epochs is 

reached. 

• Concentrated time limit is exceeded. 

• Performance gradient goes below min_grad. 

• mu goes beyond mu_max. 

• Validation performance goes beyond the maximum 

number of failure times after the last time it condensed. 

The Levenberg-Marquardt algorithm approaches second 

order speed with respect to training without involving the task 

of the Hessian matrix. However, whenever the performance 

function is in the sum of squares form, as in feed-forward 

networks, the Hessian matrix and the gradient are computed as 

H = JTJ and g = JTe 

where J indicates the Jacobian matrix containing the first 

derivatives of the network errors computed with respect to 

weights and biases, and e is a vector with network errors. A 

standard backpropagation technique may be used to calculate 

the Jacobian matrix, which is computationally less complex 

when compared to hessian matrix. 

 

3.3.2 Transfer learning and transfer functions 

learngdm is seen as the gradient descent with momentum 

weight and bias learning function. It proceeds with a number 

of inputs and returns S-by-R weight (or bias) change matrix 

along with the fresh learning state. 

In this section, the various transfer functions experimented 

with trainlm and learngdm functions are discussed. Hyperbolic 

tangent sigmoid transfer function accepts N, an S*Q matrix of 

net input vectors and yields A, the S-by-Q matrix of N’s 

elements compacted into [-1 1], which is mathematically 

comparable to tanh(N). However, it is different in that it 

executes faster than the general application of the function, but 

the results can vary slightly. 

 

3.3.3 L-BFGS-B 

Limited-memory BFGS is an optimization algorithm that 

customizes a limited amount of memory and fits the family of 

quasi-Newton methods that approximates the Broyden–

Fletcher– Goldfarb–Shanno (BFGS). The problem to be 

optimized is the minimization of f(X) over unimpeded values 

of the real vector x, wherein f is a scalar function that is 

differentiable. 

 

3.3.4 Adam — adaptive moment estimation 

Adam optimization solver computes the learning rate 

individually for each parameter by looking into the estimates 

from the first and second gradient moments. As a combination 

of Adagrad and RMS prop, Adam works significantly well on 

sparse gradients and uses the moving average (exponential) of 

the gradients while scaling the learning rates, rather than using 

a simple average in Adagrad. Also, the Adam optimizer has 

very few memory requirements and is significantly 

computationally complex. Adam solver initially updates the 

moving average of the gradient and the squared gradient 

representing the estimates of the first and second moments. β1, 

β2 € [0, 1] which represent the Hyper parameters govern the 

exponential decay rates of the moving averages. Gradient 

descent, being one of the commonly used optimization 

methods in machine learning, finds the global minima by using 

the gradient of loss function by moving one step at a time 

towards the negative of the gradient. The gradient of the loss 

function, L is defined using the equations whenever Δw and 

Δb needs to be tracked. These represent the changes in the 

direction of w and b, respectively. The way gradient descent 

operates is to now frequently compute the gradient ΔL, and 

then move in the conflicting direction, “running down” the 

slope of the valley. Further, Stochastic Gradient Descent (SGD) 

is the most favored variation of gradient descent that estimates 

the gradient using a sample with a lesser size consisting of 

randomly chosen training inputs, characterizing mini-batches, 

at every iteration. 
 

3.4 Optimization using activation functions 
 

Activation functions, alternatively called transfer functions, 

are used to decide the output such as “yes” or “no” from the 

neural networks and ideally maps the resultant value in 

between 0 to 1 or - 1 to 1, subject to the type of underlying 

function used. It can be visualized as a step function that turns 

the output of the neuron on and off, subject to the satisfaction 

of a rule or threshold value. 

The two types of activation functions, namely linear 

/identity and non-linear, are discussed in the following 

sections. 
 

3.4.1 Linear /Identity activation function 

The linear function is linear or just a line. As such, the 

output of the functions will not be narrowed between any 

specified ranges. It accepts the inputs, multiplies by the 

assigned neuron weights, and generates an output proportional 

to the input. In a way, a linear function attempts to be better 

than a step function, as it allows multiple outputs without just 

confining itself to a simple “yes” and “no”. 
 

3.4.2 Non-linear activation functions 

The class of non-linear activation functions permits the 

model to produce complex mappings amid the network's 

inputs and outputs, which are significant to learn and model 

complex data, such as data sets involving high dimensionality 

or non-linearity, e.g., images, audio, and video. We have 

experimented with three non-linear activation functions that 

are explained as follows. 
 

a. Sigmoid activation function 

The sigmoid function is mostly used because it takes on 

values between (0 to 1), which essentially makes it useful for 

models where the prediction of probability is of utmost 

importance. The curve representing the function looks like “S” 

in shape. Subsequently, sigmoid is the right choice whenever 

the probability exists between the range of 0 and 1. In addition, 

the function is differentiable, which implies the slope of the 

sigmoid curve can be found out easily at any two points. 

However, the function, but not its derivative, is monotonic. 

Also, for multiclass classification, a softmax function which is 

a more generalized form of the activation function, can be used. 
 

b. Tanh activation function 

Tanh is very similar to sigmoid and even outperforms it in 

terms of performance. The tanh function has a range of -1 to 1, 

and it has the same shape as the sigmoid curve. This function 

is monotonic, but its derivative cannot be differentiated. Its 

most significant advantage is that in the graph for tanh, 

negative inputs are mapped powerfully negative and zero 
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inputs are plotted to near zeroes. This activation function is 

commonly used for binary classification. 

 

c. ReLU activation function 

The Rectified Linear Unit (ReLU) function is half rectified 

(from the bottom). The function f(z) tends to zero when z 

assumes a value less than zero and it tends to z when z is 

greater than or equal to zero. The range of outputs varies from 

zero to infinity. With ReLU activation function, both the 

function and its derivative are monotonic. As a result, the 

graph is affected as the negative values are not mapped 

correctly. Figures 4, 5, 6 and 7 depict the graphs of both linear 

and non-linear activation functions. 
 

 
 

Figure 4. Linear activation function 

 

 
 

Figure 5. Sigmoid activation function 

 

 
 

Figure 6. Tanh activation function 

 
 

Figure 7. ReLU activation function 

 

 

4. RESULTS AND DISCUSSION 
 

4.1 Implementation 
 

The model was implemented using MATLAB R2022a on 

Windows 10 operating system with 8GB RAM.  

 

4.2 NN training 
 

The longitudinal data obtained from the SPIROLA database 

is initially trained using various neural network types with 

fevp and fvcp as the input data and fev1/fvc index as the output. 

This was achieved by computing the ratio of fev1 to fvc, both 

of which are obtained through spirometric tests. fev1p and 

fvcp represent the transformed input variables as they are 

derived from the input parameters indicative of age, gender, 

and height. The samples include females and males as well as 

healthy and asthmatic and subjects. Once the best performing 

neural network type was deduced, it was adopted for the 

prediction process on the test data set. 

 

4.2.1 Training and learning steps 

The input data consisting of 7,233 samples was trained on 

5,000 samples and the rest was used for testing the model. We 

then obtain the transposed matrices of the order 2*5,000 and 

1*5,000 respectively. The test was conducted on the 

longitudinal data pertaining to individual subjects. The model 

can be suitably deployed to predict the index, given age and 

gender at any point in time. This can further be used to 

evaluate the risk of contacting the disease with specified 

percentages of predicted fev1p and fvcp. The neural network 

types are trained using “learngdm” learning function and 

“trainlm” adaption function and a few network specific 

parameters [7]. 

 

4.3 Optimization  
 

The performance of the network was measured using Mean 

Absolute Error (MAE) to assess the deviation between the 

actual and predicted vectors. The optimal performance of 

Mean Square Error (MSE) 0.0041 was obtained at epoch 1. It 

can be observed from Figure 8, which depicts the performance 

plot, that the curves representing training and validation along 

with that of testing converge is 0.0041183 at epoch 1. Figure 

9 depicts the training state plot for the radial basis exact fit 

neural network, which was observed to outperform the others 

significantly. As shown by the estimation metrics, mean 
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absolute error, the predicted values closely follow the actual 

values. 

 

 
 

Figure 8. Performance plot 

 

 
 

Figure 9. Training plot 

 

It is clearly observed from Table 1, that a lower MAE as 

desired was obtained by RBF exact fit trained neural network, 

thus justifying the inference that RBF neural network is one of 

the most preferred approaches for prediction of the Tiffeneau-

Pinelli index, the significant spirometer parameter under 

consideration. Tables 2 and 3 show the observed and predicted 

values for female and male subjects, with the Tiffeneau-Pinelli 

index indicated. 

 

Table 1. Evaluation of the different neural network types 

on the training data 

 
Network type MAE 

Feed-forward backprop 0.0488 

Elman backprop 0.0487 

Cascade forward backprop 0.0488 

Layer recurrent 0.0489 

Radial basis exact fit 0.0477 

 

Figure 10 shows the two-dimensional Tiffeneau-Pinelli 

Index vector scatter plots for the test set representing the 

Actual vs. NN predictions, and ARTP vs. NN predictions, 

while Figure 11 depicts the Actual vs. ARTP predictions. 

Figure 12 shows the prediction plots of the variables 

mentioned in Figure 11. The NN predicted vector closely 

approximates the actual vector as compared to the ARTP 

prediction vector, especially in the normal population. As such, 

it can be used as a resourceful means to assess risk whenever 

the measured values show a larger variation as against those 

predicted.  

 

Table 2. Evaluation of Tiffeneau-Pinelli Index for sampled 

female subjects 

 
Patient 1 (F) Patient 2 (F) 

Actual Predicted Actual Predicted 

0.8809 0.8506 0.8515 0.8307 

0.8447 0.8415 0.827 0.8329 

0.8466 0.8354 0.8167 0.8318 

0.8459 0.8205 0.814 0.8276 

0.829 0.7893 0.8207 0.8237 

0.8201 0.7842 0.8194 0.8476 

0.848 0.7812 0.8022 0.8454 

0.858 0.7808 0.741 0.8297 

0.8406 0.7829   

0.8333 0.7931   

MAE 0.0384 MAE 0.0273 

 

Table 3. Tiffeneau-Pinelli Index evaluated for sample 

Male subject 

Patient 1 (M) Patient 2 (M) 

Actual Predicted Actual Predicted 

0.7903 0.7764 0.8875 0.866 

0.7995 0.7767 0.89 0.8677 

0.8018 0.7764 0.8954 0.8385 

0.7921 0.7754 0.8624 0.8596 

0.7523 0.7734 0.8801 0.8656 

0.7716 0.7704   

0.8085 0.7667   

0.7738 0.7623   

0.7918 0.7576   

0.7536 0.753   

MAE 0.0408 MAE 0.0236 

 

 
 

Figure 10. Scatter plots actual vs NN and ARTP vs NN 

 

 
 

Figure 11. Actual vs ARTP predicted 
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Figure 12. Prediction plots of actual vs. ARTPR predicted 

vector, actual vs. NN predicted vector and ARTP predicted 

vector vs. NN predicted vector 

 

 

5. CONCLUSION 

 

The proposed neural network model for the prediction of 

Tiffeneau-Pinelli index was able to reproduce a vector of 

indices that were very close to the actual observed values with 

a very low estimated error using the optimized radial basis fit 

neural net model. The error was observed to be low when 

evaluated on the test set for the prediction of index vector 

pertaining to both male and female. Different optimization 

methods with variable activation functions were used to 

deduce the best combination that yields optimal results in 

various scenarios. The classification models experimented 

yielded considerably good results with logistic activation 

function with l-bfgs-b-optimizer, as against a high expected 

performance via ReLU, a widely accepted high performance 

activation function. The presented model addressed the 

problem of prediction of an important index in spirometry, 

often used to evaluate different types of obstructive and 

restrictive diseases. It also addressed the problem of having a 

generalized solution for predictive index in spirometry 

indicative of asthma at early stages. 

Early prediction of the asthma disease can minimize the 

number of asthma patients in the hospital. The presented 

model can be viewed as an important intervention to ensure 

the control of asthma, which usually leads to serious 

complications if not detected early. The spirometer readings 

such as Tiffeneau-Pinelli index is a very good indicator of the 

presence of obstructive lung disease such as asthma. The 

effectiveness of the model can further be improved by 

adopting spirometry data which cover various races of human 

population. The precision of the entire approach can further be 

strengthened if different sources of lung test data including 

images can be considered. 
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