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 Picture fuzzy set is an extension of intuitionistic fuzzy set, which allows interpreting 

uncertain data in decision-making problems. This study provides aggregation operators 

based on Choquet integral, namely Choquet integral picture fuzzy geometric 

aggregation (CIPFGA) operator and Choquet integral picture fuzzy hybrid geometric 

aggregation (CIPFHGA) operator with certain properties of these operators are 

established. We validate the functioning of the operators with illustrative examples. The 

CIPFHGA operator has an added benefit of combining the weights of positions along 

with capturing the comprehensive correlative relationships of the criteria. Further, the 

proposed operators enable us to solve a numerical problem in picture fuzzy Multi 

attribute decision-making problem and also allows to make a comparison study with the 

existing literature. 
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1. INTRODUCTION 

 

Multi attribute decision-making (MADM) is the process of 

selecting the most suitable alternative from among a number 

of available alternatives. Zadeh [1] introduced the main 

concept of fuzzy set (FS) theory in 1965 and examined the 

degree of membership of an object in a set, which ranges from 

zero to one. Later, Intuitionistic fuzzy set (IFS) was 

established by Atanassov [2] in 1986 as an extension of FS by 

including the degree of non-membership as well as the degree 

of membership to each object in a set and demonstrating 

various properties associated with operations and relations 

over sets. If an expert obtains an opinion from a certain person 

regarding any object, that person may indicate that 0.5 is the 

likelihood that the statement is true, 0.3 is the possibility that 

the statement is false and 0.2 is that he or she is not sure. As a 

result, the role of neutrality is not handled by FSs or IFSs but 

must be addressed in real-life decision making. Cuong [3, 4] 

proposed a picture fuzzy set (PFS) and investigated certain 

essential operations and properties. The PFS is influenced by 

the degree of membership, the degree of neutral membership 

and the degree of non-membership. The only requirement is 

that the sum of the three degrees be less than or equal to one. 

Essentially, PFS based models may be applied to situations 

requiring human opinions involving more sorts of answers: 

yes, abstain, no, refuse, which cannot be adequately described 

in FS and IFS. Dutta et al. [5] defined (α, δ, β)-cuts under 

picture fuzzy (PF) environment. Many researchers introduced 

PFSs into the MADM field to express fuzzy evaluations due 

to their high performance in dealing fuzzy information. 

Aggregation operators (AOs) are especially important in the 

decision-making (DM) process since they combine all of the 

provided individual assessment values into a single form. 

Yager [6] explored the features of an ordered weighted AOs 

and described a new form of AOs. Cuong et al. [7] investigated 

picture t-norm and picture t-conorms and its properties for 

PFSs. Wei [8] described various PF Weighted average (WA) and 

Weighted geometric (WG) operators as well as PF hybrid 

aggregators and their applications. Wang et al. [9] studied 

MADM problems utilising some PF geometric operators. Garg 

[10] demonstrated a series of AOs for the PFSs that were used 

to solve the multi criteria decision-making problem. Wei [11] 

used arithmetic and geometric AOs, Hamacher operations 

with PF environment to study the MADM problem. Jana et al. 

[12] developed PF Dombi arithmetic and geometric AOs are 

used to solve MADM problem. Zhang et al. [13] developed 

new PF operational laws based on Dombi t-norm and t-conorm 

and utilised Heronian mean (HM) information AO to combine 

picture fuzzy numbers (PFN) and the suggested operators not 

only combine individual attribute values but they are also able 

to model the general correlation between attributes. Wang et 

al. [14] used a case study regarding financial investment risk 

to provide various picture fuzzy aggregation operators (PFAO) 

that were based on the classic Muirhead mean (MM) operators 

and developed the MADM approach. Xu et al. [15] proposed 

a family of MM operators with PF environment and its 

properties are investigated. Jana et al. [16] developed MADM 

approaches for enterprise performance evaluation using PF 

Hamacher AOs. Khan et al. [17] suggested an AOs based on 

PF Einstein operations for the MADM problem using PF 

environment. Qiyas et al. [18] developed some AO based on 

the idea of yager operators with PF environment based on 

Archimedean t-norm and t-conorm. Qin et al. [19] proposed a 

novel MADM approach that uses a set of Archimedean power 

Maclaurin symmetric mean (MSM) operators of PFNs. Tapan 

Senapati [20] introduced the AOs of PFNs and a few AOs 

mainly PF Aczel-Alsine average AOs as well as these 

operators to develop a method for solving MADM in a PF 

environment. Table 1 is a list of the AOs of PFNs on which 

these approaches are based. 
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Table 1. Existing aggregation operators of PFNs 

 
Authors Aggregation operators of PFNs Operation 

Wei [8] WA, WG, Ordered WA, Ordered WG, Hybrid average (HA) and Hybrid geometric (HG) operators. Algebraic 

Garg [10] WA, Ordered WA and HA operators. Archimedean 

Wei [11] 

HamacherWA, Hamacher Ordered WA, HamacherHA, HamacherWG, Hamacher Ordered WG, 

HamacherHG, Hamacher Correlated averaging (CA) and Hamacher Correlated geometric (CG), 

Induced Hamacher Ordered WA, Induced Hamacher: Ordered WG, Induced Hamacher CA and 

Induced Hamacher CG, Hamacher weighted prioritised average, prioritised geometric, power 

average and power geometric operators. 

Hamacher 

Jana et al. [12] Dombi WA, Ordered WA, HA, WG, Ordered WG, HG operators. Dombi 

Zhang et al. [13] Dombi weighted Heronian mean, Dombi weighted dual Heronian mean operators. Dombi 

Xu et al. [15] Weighted Muirhead mean, Weighted dual Muirhead mean operators. Algebraic 

Jana et al. [16] Hamacher WA and WG operators. Hamacher 

khan et al. [17] Einstein WA and Ordered WA operators. Einstein 

Qiyas et al. [18] Yager WA, Ordered WA, Hybrid WA, WG, Ordered WG, Hybrid WG operators. Yager 

Qin et al. [19] Archimedean power MSM and Archimedean power weighted MSM operators. Archimedean 

Senapati [20] Aczel–Alsina WA, Ordered WA and HA operators. Aczel–Alsina 

 

The above mentioned PFAOs are initiated within a 

presumption: The criteria are independent. In most of the 

MADM problems which are dependent on the contrary, they 

are correlative. In such cases, the important degrees of criteria 

are given as fuzzy measures (FM) rather than weights, because 

weighted AOs cannot be aggregated. FMs can well reflect the 

correlative relationships between criteria sets, such as 

redundant, independent, and complimentary. In reality, FMs 

are extensions of weights due to the fact that the sum of all 

FMs of criteria set can exceed one, whereas the FM of the 

entire set_is_restricted to one. Consequently, the FMs are 

more flexible. Choquet integral is an efficient method for 

aggregating ranking based on correlated criteria. To handle 

multi-criteria group decision making (MCGDM) problems 

where the criteria and expert opinions frequently involve inter-

dependent or interaction phenomena among criteria. Tan et al. 

[21] investigated the generalised IF ordered geometric 

averaging operator. Zhang et al. [22] developed the Einstein 

interval IF Choquet geometric operator and investigated the 

relationship with the IF Choquet geometric operator. Singh et 

al. [23] described Choquet averaging and geometric mean 

operators for PFSs and also presented a VIKOR for MCGDM 

problems based on PF Choquet integrals. IF arithmetic and 

hybrid arithmetic AOs are proposed by Jia and Wang [24] 

based on Choquet integral as well as proposed operator 

computes the correlative criteria and combines the weight of 

position. 

In MADM problems, the decision-making criteria may be 

dependent or independent. FMs were first presented by 

Sugeno [25] in 1974 to model interactions between decision 

criteria. The aforementioned AOs, which are unable to 

properly handle the specific conditions with correlative criteria 

and weighted positions, we define an AOs as the Choquet 

integral picture fuzzy geometric aggregation (CIPFGA) 

operator. After that, we combine the FMs of the criteria and 

the weights of the positions to construct the Choquet integral 

picture fuzzy hybrid geometric aggregation (CIPFHGA) 

operator.  

The summary of the motivations of this article are outlined 

as follows: 

• When compared to weighted AOs, the CIPFGA 

operator result can indicate the connections between 

the criteria.  

• In comparison to the Choquet integral based AOs 

(Singh et al. [23]), the CIPFGA operator result may not 

only reflect the comprehensive connections of each 

criteria, but also reflect the unique relevance of each 

criteria. 

• When compared to existing AOs, the CIPFHGA 

operator results can reflect weights of position. which 

are listed in Table 2. 
The summary of the contributions of this article are outlined 

as follows: 

• It has been demonstrated that the CIPFGA operator can 

effectively combine PFNs with correlative criteria and 

it has several properties that have been proved. 

• The CIPFHGA operator is described to aggregate PFNs 

using a combination of FMs and weights position, with 

various properties are proved. 

• To solve decision-making challenges in the PF 

environment, a MADM approach based on the 

CIPFHGA operator is provided. 

 

Table 2. A comparison of the existing operators and the 

proposed operator 

 

 

Weight 

of the 

criteria 

Fuzzy 

measure 

and weight 

of the 

criteria 

Correlative 

relationships 

among 

criterion sets 

Wei [8]      

Wang et al. [9]      

Garg [10]      

Jana et al. [16]      

Khan et al. [17]      

Qiyas et al. [18]      

Proposed operator    

 

From Table 2, existing AOs [8-10, 16-18] are not dealing 

with FMs and correlative relationships among criteria sets, 

whereas the proposed CIPFHGA operator completely deals 

with them. 

The present article is structured in a comprehensive manner 

into seven detailed sections: In Section 2, we briefly review 

the concepts with respect to the PFSs and the fuzzy measures. 

In Section 3, the CIPFGA and CIPFHGA operators are defined 

in detail, along with their properties. Section 4, a MADM 

approach that relies on the CIPFHGA operator is proposed. 

Section 5, applying the proposed MADM approach to the 

numerical problem to demonstrate its practicality. Section 6, 

Comparative analyses are conducted to demonstrate the 
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advantages of our suggested MADM approach over existing 

aggregation operators. Conclusions and potential study 

directions are discussed in the final section. 

 

 

2. PRELIMINARIES 

 

This section provides the definitions required to support the 

proposed research work. 

 

2.1 Picture fuzzy set 

 

Cuong [3, 4] developed the PFS as an extension of the IFS. 

PFS is represented mathematically as follows: 

Definition 1: A picture Fuzzy “sets  on universal set X is 

defined by: 

 

  = , ( ), ( ), ( ) |x x x x x X       

 

where, μΑ(x), ηΑ(x) and 𝜈𝛢(𝑥) ∈ [0,1]
 
are the degree of 

membership, the degree of neutral membership and
 
the degree 

of non-membership of 𝑥 ∈ 𝛢 respectively, with the following 

condition: 0≤μΑ(x)+ηΑ(x)+νΑ(x)≤1 ∀𝑥 ∈ 𝑋.  Then for 𝑥 ∈ 𝑋, 
πΑ(x)=1-μΑ(x)-ηΑ(x)-νΑ(x) could be called the degree of refusal ” 

membership of x in Α. For convenience, let α=(μα, ηα, να) is 

called a PFN. 

 

2.2 Comparison for picture fuzzy numbers 

 

According to Garg [10] the score and accuracy functions are 

as follows: 

Definition 2: Let α=(μα, ηα, να) be a PFN and its score 

function S(α) and its accuracy function A(α) is defined by: 

 

( ) ;S      = − −  ( ) [ 1,1],S   −  

( ) ;A      = + + ( ) [0,1].A    

 

Based on the S(α) and A(α)an order relationship between 

two PFNs is defined as follows. 

Definition 3: Let 𝛼1 = (𝜇𝛼1
, 𝜂𝛼1

, 𝜈𝛼1
) and 𝛼2 =

(𝜇𝛼2
, 𝜂𝛼2

, 𝜈𝛼2
) are two PFNs, the following is their order using 

the score and accuracy functions: 

(1) If S(α1) > S(α2) then α1 > α2;  

(2) If S(α1) = S(α2) then 

(a) If A(α1) > A(α2) then α1 > α2; 

(b) If A(α1) = A(α2) then α1 = α2. 

 

2.3 Operation laws of picture fuzzy numbers 

 

Wang et al. [9] following operational laws are defined for 

PFNs. 

Definition 4: Le 𝛼1 = (𝜇𝛼1
, 𝜂𝛼1

, 𝜈𝛼1
) and 𝛼2 =

(𝜇𝛼2
, 𝜂𝛼2

, 𝜈𝛼2
) are two PFNs and λ>0. Then PFN operations 

can be defined as follows: 

 

( )( )

( )( )
1 1 2 2 1 2 1 2

1 2

1 2

, ,

1 1 1

 
       

 

       

 
 

+ +

− − −

 =
−

 

( ) ( )
1 1 1 1 11 , ,1 1 .


   




 
     + − − −=  

 

These two operational laws are also satisfying the following 

properties under condition λ, λ1, λ2 > 0. 
(1) 𝛼1 ⊗ 𝛼2 = 𝛼2 ⊗ 𝛼1 

(2) (𝛼1 ⊗ 𝛼2)𝜆 = 𝛼1
𝜆 ⊗ 𝛼2

𝜆 

(3) 𝛼1
𝜆1 ⊗ 𝛼1

𝜆2 = 𝛼1
𝜆1+𝜆2 . 

 

2.4 Fuzzy measure and existing PFCGM operator 

 

Analyzing the relationships between a set of criteria is 

accomplished using FMs. Unlike weights, which only 

represent the importance of a single criteria, FMs properly 

reflect the importance of a collection of criteria. Fuzzy 

measure Sugeno [25] and picture fuzzy Choquet geometric 

mean (PFCGM) operator Singh et al. [23] are discussed in this 

section. 

Definition 5: Sugeno et al. [25] Let S={S1, S2, ..., Sn} be an 

universe of discourse, a set function ϑ: P(S) → [0, 1] is a FM 

on S, if satisfying the following conditions: 
(1) 𝜗(𝜙) = 0, 𝜗(𝑆) = 1; 

(2) If 𝑅1, 𝑅2 ⊆ 𝑃(𝑆) and 𝑅1 ⊆ 𝑅2, then 𝜗(𝑅1) ≤ 𝜗(𝑅2).  

Sugeno [25] suggested a λ-fuzzy measure, which may be 

described as follows: 

 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 2R R R R R R      = + +   

( )1 2,R R P S  and 1 2 ,R R  =  1  −  

 

λ diagnoses the relationship between the criteria in this case. 

For different values of λ, the λ- FM reduces to various 

measures. If λ = 0, then it becomes simply additive measure, 

if λ > 0 then it becomes to super-additive measure, and if λ < 

0 then it becomes to sub additive measure. 

 

( )

( )( )

( )

1

1

1
1 1 0

0

n

i

i

n

i

i

S if

S

S if

  




 

=

=

  
+  −   

  
=  
 =
 
 





 
(1) 

 

Eq. (1), boundary condition ϑ(Si) = 1 can be used to find 

parameter λ, following Eq. (2) is similar to solve Eq. (1). 

 

( )( )
1

1 1
n

i

i

S 
=

 
+ = + 

 
  (2) 

 

Definition 6: Singh et al. [23] Let 𝛼𝑗 = (𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
) (j=1, 

2, ..., n) and ϑ be a family of PFNs and fuzzy measure on .S  

The PFCGM operator of αi with respects to ϑ is defined as 

follows:  

 

( )

( )( )
( )( ) ( )( )

( )( )
( )( ) ( )( )

( )( )
( )( ) ( )( )

1 1

1

1 2

1 1

1

, ,...,

,1 1 ,

1 1

j j j j

j j

j j

j

n

n nR R R R

j j

n R R

j

PFCGM

   

 

 



  

 



+ +

+

− −

= =

−

=

− −

=

− −

 



 

 

where, (j) denotes a permutation on C such that α(j) ≤ α(j+1), j = 

1, 2, ⋯, n-1 and R(j) = {S(j), S(j+1), ⋯, S(n)} with R(n+1) = ϕ. 

 

1045



 

3. PICTURE FUZZY CHOQUET INTEGRAL 

OPERATORS AND SOME OF ITS PROPERTIESS 

 

The Choquet integral based CIPFGA operator is defined in 

this section and it is combined with the FMs of criteria and the 

weights of positions to define the CIPFHGA operator. 

 

3.1 CIPFGA operator 

 

Wei [8] and Garg [10] presented certain AOs to aggregate 

PF environment for MADM problems under the premise of 

independent criteria. In this part, we propose the Choquet 

integral operator for the PF environment, which provides for 

the interaction phenomena between the criteria represented by 

FM. The CIPFGA operator is defined as follows. 

Definition 7: Let 𝛼𝑗 = ⟨𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
⟩ (𝑗 = 1,2, . . . , 𝑛) and ϑ 

be a family of PFNs and FM on S. The discrete choquet 

integral CIPFGA operator of αj with respect to ϑ is define as 

 

( )

 ( ) ( )
( )

 ( ) ( )
( )

 ( ) ( )
( )

 ( ) ( )
( )

 ( ) ( )
( )

 ( ) ( )
( )

1 1

2 2

1 2

1 1

1

1

2 2 2

2

1

1

, ,...,

j j

j j

n n

j j

n

R P C

n

j j j

j R P C

R P C

n

j j j

j R P C

n n n

R P C

n n

j j j

j R P C

CIPFGA

R S R

R S R

R S R

R S R

R S R

R S R

  

 



 

 



 

 



 



= 



= 



= 

 −

= 

 −

 −



 −

 −



 −



 



 



 

 (3) 

 

where, 𝑅𝑗 ⊆ 𝑃𝑗(𝑆), 𝑃𝑗(𝑆) = 𝑃(𝑆{𝑆𝑗}) Indicates the power of S. 

For convenience, let

 ( ) ( )
( )

 ( ) ( )
( )1

,
j j

j j

j j j

R P C

j n

j j j

j R P C

R S R

R S R

 



 



= 

 −

=

 −



 
 then Eq. (3) can 

be simplified as ( )1 2
1

, ,..., .j

n

n j
j

CIPFGA


   
=

=   

Theorem 1: Let 𝛼𝑗 = ⟨𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
⟩ (𝑗 = 1,2, . . . , 𝑛) and ϑ 

be a family of PFNs and FM on S. Using the CIPFGA operator, 

their aggregated value is also a PFN and 

 

( )1 2

1 1

1 1

, , ,

( ) ( ) ,

( ) ,1 (1 )

j j

j j j

j j

j j

n

n n

j j

n n

j j

CIPFGA

 

  

 

 

  

  

 

= =

= =

+ −

=

− −

 

 

 
(4) 

where, 

 ( ) ( )
( )

 ( ) ( )
( )1

,
j j

j j

j j j

B P C

j n

j j j

j R P C

R S R

R S R

 



 



= 

 −

=

 −



 
 𝑅𝑗 ⊆

𝑃𝑗(𝑆), 𝑃𝑗(𝑆) = 𝑃(𝑆{𝑆𝑗}). 

 

Proof 

From the definition (4), the first results come quickly Below, 

we use mathematical induction on n to show that Eq. (4). 

When n=2, since: 

 

( ) ( )1 11

1 1 11 11

1 1
, ,1 1


 







 
     + − − −=  

( ) ( )2 22

2 2 22 22

2 2
, ,1 1


 







 
     + − − −=  

 

Then, 𝐶𝐼𝑃𝐹𝐺𝐴(𝛼1, 𝛼2, … , 𝛼𝑛) = 𝛼1
𝛽1 ⊗ 𝛼2

𝛽2 =

⟨
(𝜇𝛼1

+ 𝜂𝛼1
)

𝛽1
(𝜇𝛼2

+ 𝜂𝛼2
)

𝛽2
− 𝜂𝛼1

𝛽1𝜂𝛼2

𝛽2 ,

𝜂𝛼1

𝛽1𝜂𝛼2

𝛽2 , 1 − (1 − 𝜈𝛼1
)

𝛽1
(1 − 𝜈𝛼2

)
𝛽2

⟩. 

 

If Eq. (4) holds for n=k, that is: 

 

( )1 2

1 1

1 1

, , ,

( ) ( ) ,

( ) ,1 (1 )

j j

j j j

j j

j j

k

k k

j j

k k

j j

CIPFGA

 

  

 

 

  

  

 

= =

= =

+ −

=

− −

 

 

 

 

Then, for n=k+1, we have: 

 

( )1 2 1

1 1

1 1

, ,...,

( ) ( ) ,

( ) ,1 (1 )

j j

j j j

j j

j j

k

k k

j j

k k

j j

CIPFGA

 

  

 

 

  

  

 

+

= =

= =

+ −

=

− −

 

 

 

1 1

1 1 1

1 1

1 1

( ) ( ) ,

( ) ,1 (1 )

k k

k k k

k k

k k

 
  

 
 

  

 

+ +

+ + +

+ +

+ +

+ −

− −
 

1 1

1 1

1 1

1 1

( ) ( ) ,

( ) ,1 (1 )

j j

j j j

j j

j j

k k

j j

k k

j j

 

  

 

 

  

 

+ +

= =

+ +

= =

+ −

=

− −

 

 

 

 

That is to say, the condition n=k+1 is satisfied by Eq. (4). 

As a result, Eq. (4) obtains for all n, concluding the proof of 

Theorem 1. 

Theorem 2: (Idempotency) Let 𝛼𝑗 = ⟨𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
⟩ (j = 1, 

2, ..., n) and ϑ be a family of PFNs and FM on S. If all αj are 

equal, i.e., αj = α: ∀j, then CIPFGA (α1, α2, ..., αn) = α. 
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Proof 

Since αj = α = ⟨μα, ηα, να⟩ according to theorem 1, we have: 

 

( )1 2

1 1

1 1

, ,...,

( ) ( ) ,

, ,

( ) ,1 (1 )

j j

j j j

j j

j j

n

n n

j j

n n

j j

CIPFGA

 

  

  

 

 

  

  

   

 

= =

= =

=

+ −

= =

− −

 

 

 

 

where, 

 ( ) ( )
( )

 ( ) ( )
( )1

,
j j

j j

j j j

B P C

j n

j j j

j R P C

R S R

R S R

 



 



= 

 −

=

 −



 
 𝑅𝑗 ⊆

𝑃𝑗(𝑆), 𝑃𝑗(𝑆) = 𝑃(𝑆{𝑆𝑗}). 

Theorem 3: (Monotonicity) Let 𝛼1𝑗 = (𝜇𝛼1𝑗
, 𝜂𝛼1𝑗

, 𝜈𝛼1𝑗
) 

and 𝛼2𝑗 = (𝜇𝛼2𝑗
, 𝜂𝛼2𝑗

, 𝜈𝛼2𝑗
) (j=1, 2, ..., n) be two family of 

PFNs on S and ϑ be a FM on S. If 𝜇𝛼1𝑗
≤ 𝜇𝛼2𝑗

, 𝜂𝛼1𝑗
≥ 𝜂𝛼2𝑗

and 

𝜈𝛼1𝑗
≥ 𝜈𝛼2𝑗

,  then 𝐶𝐼𝑃𝐹𝐴𝐴(𝛼11, 𝛼12, . . . , 𝛼1𝑛) ≤

𝐶𝐼𝑃𝐹𝐴𝐴(𝛼21, 𝛼22, . . . , 𝛼2𝑛). 
 

Proof 

( )11 12 1, ,..., nCIPFGA   

1 1 1

1 1

1 1

1 1

( ) ( ) ,

( ) ,1 (1 )

j j

j j j

j j

j j

n n

j j

n n

j j

 

  

 

 

  

 

= =

= =

+ −

=

− −

 

 

 

( )

2 2 2

2 2

21 22 2

1 1

1 1

, ,...,

( ) ( ) ,

( ) ,1 (1 )

j j

j j j

j j

j j

n

n n

j j

n n

j j

CIPFGA

 

  

 

 

  

  

 

= =

= =

+ −

=

− −

 

 

 

 

Since 𝜇𝛼1𝑗
≤ 𝜇𝛼2𝑗

, 𝜂𝛼1𝑗
≥ 𝜂𝛼2𝑗

 and 𝜈𝛼1𝑗
≥ 𝜈𝛼2𝑗

 we have: 

 

1 1 1

1 1

( ) ( )j j

j j j

n n

j j

 
    

= =

+ −  2 2

1

( ) j

j j

n

j


  

=

 + 2

1

( ) ,j

j

n

j




=

−  

( ) ( )
1 2

1 1

j j

j j

n n

j j

 

  

= =

  and
1 2

1 1

1 (1 ) 1 (1 ) .j j

j j

n n

j j

 
  

= =

− −  − −   

 

Hence 

 

1 1 1 1 1

1 1 1 1

( ) ( ) ( ) 1 (1 )j j j j

j j j j j

n n n n

j j j j

   
        

= = = =

+ − − − − −     

2 2 2 2 2

1 1 1 1

( ) ( ) , ( ) ,1 (1 )j j j j

j j j j j

n n n n

j j j j

   
        

= = = =

 + − − −     

 

i.e.,  

𝐶𝐼𝑃𝐹𝐺𝐴(𝛼11, 𝛼12, . . . , 𝛼1𝑛) ≤ 𝐶𝐼𝑃𝐹𝐺𝐴(𝛼21, 𝛼22, . . . , 𝛼2𝑛). 
 

Theorem 4: (Boundedness) Let 𝛼𝑗 = ⟨𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
⟩ (j = 1, 

2, ..., n) and ϑ be a family of PFNs and FM on S. 

If 𝛼− = ⟨𝑚𝑖𝑛
𝑗

(𝜇𝛼𝑗
) , 𝑚𝑎𝑥

𝑗
(𝜂𝛼𝑗

) , 𝑚𝑎𝑥
𝑗

(𝜈𝛼𝑗
)⟩  and 𝛼+ =

⟨𝑚𝑎𝑥
𝑗

(𝜇𝛼𝑗
) , 𝑚𝑖𝑛

𝑗
(𝜂𝛼𝑗

) , ( )min
jj

  then 𝛼− ≤

𝐶𝐼𝑃𝐹𝐺𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) ≤ 𝛼+. 
 

Proof 

Using theorem 2, α- and α+ can be defined as CIPFGA(α-, 

α-, ..., α-) and CIPFGA (α+, α+, ..., α+) respectively.  

Since 

 

( ) ( ) ( )min ,max ,max , ,
j j jj j j

     
      − − −
− = =  

( ) ( ) ( )max ,min ,min , ,
j j jj jj

     
      + + +
+ = =  

 

Then 𝜇𝛼− ≤ 𝜇𝛼𝑗
, 𝜂𝛼− ≥ 𝜂𝛼𝑗

, 𝜈𝛼− ≥ 𝜈𝛼𝑗
, 𝜇𝛼+ ≥ 𝜇𝛼𝑗

, 𝜂𝛼+ ≤

𝜂𝛼𝑗
 and 𝜈𝛼+ ≤ 𝜈𝛼𝑗

 ∀𝑗. According to Theorem 3, we have: 

 

( ) ( )

( )

1 2, ,..., , ,...,

, ,..., .

nCIPFGA CIPFGA

CIPFGA

     

  

− − −

+ + +




 

 

Theorem 5: (Permutation) “Let 𝛼𝑗 = (𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
)  and 

𝛼(𝑗) = (𝜇𝛼(𝑗)
, 𝜂𝛼(𝑗)

, 𝜈𝛼(𝑗)
) (j=1, 2, ..., n) be two family of PFNs 

on S and ϑ be a FM on S, where (j) indicates an arbitrary ” 

permutation of j. then 𝐶𝐼𝑃𝐹𝐺𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) =

𝐶𝐼𝑃𝐹𝐺𝐴(𝛼(1), 𝛼(2), . . . , 𝛼(𝑛)). 

 

Proof 

 

( )1 2

1 1

1 1

, ,...,

( ) ( ) ,

( ) ,1 (1 )

j j

j j j

j j

j j

n

n n

j j

n n

j j

CIPFGA

 

  

 

 

  

  

 

= =

= =

+ −

=

− −

 

 

 

( ) ( )

( )

( )
( )

( )

( )

( )

( )

( )

( )

( )( )

1 1

1 1

( ) ( ) ,

( ) ,1 (1 )

j j

j j j

j j

j j

n n

j j

n n

j j

 

  

 

 

  

 

= =

= =

+ −

=

− −

 

 
 

( ) ( ) ( )( )1 2
, ,..., .

n
CIPFGA   =  

 

The proof of Theorem 5 is complete. 

 

Example 1: Let α1 = ⟨0.4, 0.2, 0.3⟩, α2 = ⟨0.3, 0.1, 0.5⟩, α3 = 

⟨0.6, 0.2, 0.1⟩ be three PFNs on S, S={S1, S2, S3} and ϑ be a 

fuzzy measure on S. ϑ(S1) = 0.2, ϑ(S2) = 0.3, ϑ(S3) = 0.4, ϑ(S1, 

S2) = 0.5, ϑ(S1, S3) = 0.6, ϑ(S2, S3) = 0.7, ϑ(S1, S2, S3) = 1. Then: 
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( )1 2 3, ,

0.71 1.03 1.35
0.4,0.2,0.3 0.3,0.1,0.5 0.6,0.2,0.1

3.09 3.09 3.09

CIPFGA   

= + +
 

( ) ( )

( )

( ) ( ) ( )( )

0.2298 0.33330.2298

0.43690.3333 0.4369

0.2298 0.3333 0.4369

0.2298 0.3333 0.4369

0.4 0.2 0.2 0.3 0.1
,

0.1 0.6 0.2 0.2

0.2 0.1 0.2 ,

1 1 0.3 1 0.5 1 0.1

 + −  +
 
 −  + − 

=  

− −  −  −

 

0.4356,0.1587,0.3016 .=  

 

3.2 CIPFHGA operator 

 

We propose the CIPFHGA operator, which is motivated by 

the PFHA operator (Wang et al. [9]). 

Definition 8: Let 𝛼𝑗 = ⟨𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
⟩ (𝑗 = 1,2, . . . , 𝑛) and ϑ 

be a family of PFNs and FM on S and has an weight vector w 

= (w1, w2, ..., wn)T with 0≤wj≤1 and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . The (discrete) 

CIPFHGA operator of αj with respect to w and ϑ is defined as: 

 

( )1 2 ( )
1

, ,..., j
n

w

n j
j

CIPFHGA    
=

=   

 

where, �̃�(𝑗) is the jth largest of the �̃�𝑗 , 

 

 ( ) ( )
( )

 ( ) ( )
( )1

,
j j

j j

j j j

R P C

j j n

j j j

j R P C

R S R

n

R S R

 

 

 



= 

 −

=  

 −



 
 

 

If FM ϑ is additive and the FMs of Sj(j=1, 2, ⋯ , n) are 

equivalent, then 𝑅𝑗 ⊆ 𝑃𝑗(𝑆),  Pj(S)=P (S{Sj}) and n is the 

balancing coefficient, which functions as a balancing factor in 

this situation, i.e., reduces to weight (
1

𝑛
,

1

𝑛
, ⋯ ,

1

𝑛
)

𝑇

 then the 

vector reduces to (α1, α2,…, αn)T. 

 

 ( ) ( )
( )

 ( ) ( )
( )

 ( ) ( )
( )

 ( ) ( )
( )

 ( ) ( )
( )

 ( ) ( )
( )

1 1

2 2

1 1 1

1

1

2 2 2

2

1

1

,

,

,

j j

j j

n n

j j

R P C

n

j j j

j R P C

R P C

n

j j j

j R P C

n n n

R P C

n n

j j j

j R P C

R S R

n

R S R

R S R

n T

R S R

R S R

n

R S R

 



 

 



 

 



 



= 



= 



= 

 
  −
 

 
 

 − 
 
 

 − 
 

 
  −
 
 
 

 − 
 
 
  −
 
 



 



 



 

 

 

For convenience, 

let 

 ( ) ( )
( )

 ( ) ( )
( )1

,
j j

j j

j j j

R P C

j n

j j j

j R P C

R S R

R S R

 



 



= 

 −

=

 −



 
 it can be found 

that the CIPFHGA operator is three phases:  

• To obtain the 𝑛 ⋅ 𝛼𝑗 ⋅ 𝛽𝑗 , it multiplies the importance 

degrees of the PFNs j by the appropriate FM ϑ as well 

as multiply these PFNs by a balancing coefficient n. 

• It orders every 𝑛 ⋅ 𝛼𝑗 ⋅ 𝛽𝑗(𝑗 = 1,2, … , 𝑛) in descending 

order (�̃�(1), �̃�(2), ⋯ , �̃�(𝑛)), where �̃�(𝑗) is the jth greatest 

of 𝑛 ⋅ 𝛼𝑗 ⋅ 𝛽𝑗 . 

• It gives each of these ordered PFNs �̃�(𝑗) a weight wj 

(𝑗 = 1,2, … , 𝑛)  and then adds aggregated of the 

weighted PFNs ( )j into a single one. 

Theorem 6: Let 𝛼𝑗 = ⟨𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
⟩ (𝑗 = 1,2, … , 𝑛) and ϑ be a 

family of PFNs and FM on S and has an weight vector w=(w1, 

w2,…,wn)T with 0≤wj≤1 and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 ,  �̃�(𝑗) =

⟨𝜇�̃�(𝑗)
, 𝜂�̃�(𝑗)

, 𝜈�̃�(𝑗)
⟩ be the jth largest of �̃�𝑗 , 

 

 ( ) ( )
( )

 ( ) ( )
( )1

,
j j

j j

j j j

R P C

j j n

j j j

j R P C

R S R

n

R S R

 

 

 



= 

 −

=  

 −



 
 

 

Then, using the CIPFHGA operator, their aggregated value 

is also a PFN 

 

( )

( ) ( ) ( )

( ) ( )

1 2

1 1

1 1

, ,...,

( ) ( ) ,

( ) ,1 (1 )

j j

j j j

j j

j j

n

n n
w w

j j

n n
w w

j j

CIPFHGA

  

 

  

  

 

= =

= =

+ −

=

− −

 

 

 

 

Theorem 7: (Idempotency) Let 𝛼𝑗 = ⟨𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
⟩  (j=1, 

2, ..., n) and ϑ be a family of PFNs and FM on S and has an 

weight vector w=(w1, w2, ..., wn)T with 0≤wj≤1 and 
∑ 𝑤𝑗 = 1𝑛

𝑗=1 .  If all 𝛼𝑗(𝑗 = 1,2, … , 𝑛) are equal, i.e., 𝛼𝑗 =

𝛼: ∀𝑗, then 𝐶𝐼𝑃𝐹𝐻𝐺𝐴(𝛼1, 𝛼2, ⋯ , 𝛼𝑛) = 𝛼. 

Theorem 8: (Monotonicity) Let 𝛼1𝑗 = (𝜇𝛼1𝑗
, 𝜂𝛼1𝑗

, 𝜈𝛼1𝑗
) 

and 𝛼2𝑗 = (𝜇𝛼2𝑗
, 𝜂𝛼2𝑗

, 𝜈𝛼2𝑗
) (j=1, 2, ..., n) be a family of PFNs 

and  be a FM on S and has an weight vector w=(w1, w2, ..., 

wn)T with 0≤wj≤1 and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 .  if 𝜇𝛼1𝑗

≤ 𝜇𝛼2𝑗
, 𝜂𝛼1𝑗

≥

𝜂𝛼2𝑗
and 𝜈𝛼1𝑗

≥ 𝜈𝛼2𝑗
, then 𝐶𝐼𝑃𝐹𝐻𝐺𝐴(𝛼11, 𝛼12, ⋯ , 𝛼1𝑛) ≤

𝐶𝐼𝑃𝐹𝐻𝐺𝐴(𝛼21, 𝛼22, ⋯ , 𝛼2𝑛). 

Theorem 9: (Boundedness) Let 𝛼𝑗 = ⟨𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
⟩ (𝑗 =

1,2, . . . , 𝑛) and ϑ be a family of PFNs and FM on S  and has a 

weight” vector w= (w1, w2, ... ,wn)T with 0 ≤ wj ≤ 1 and 
∑ 𝑤𝑗 = 1𝑛

𝑗=1 . 
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If 𝛼− = ⟨𝑚𝑖𝑛
𝑗

(𝜇𝛼𝑗
) , 𝑚𝑎𝑥

𝑗
(𝜂𝛼𝑗

) , 𝑚𝑎𝑥
𝑗

(𝜈𝛼𝑗
)⟩  and 𝛼+ =

⟨𝑚𝑎𝑥
𝑗

(𝜇𝛼𝑗
) , 𝑚𝑖𝑛

𝑗
(𝜂𝛼𝑗

) , 𝑚𝑖𝑛
𝑗

(𝜈𝛼𝑗
)⟩ , then α-≤CIPFHAA(α1, 

α2, ⋯, αn)≤α+. 

Theorem 10: (Permutation) let 𝛼𝑗 = (𝜇𝛼𝑗
, 𝜂𝛼𝑗

, 𝜈𝛼𝑗
) 𝛼(𝑗) =

(𝜇𝛼(𝑗)
, 𝜂𝛼(𝑗)

, 𝜈𝛼(𝑗)
) (j=1, 2, ..., n) be two familys of PFNs on S, 

ϑ be a fuzzy measure on S and has an weight vector w= (w1, 

w2, ..., wn)T with 0≤wj≤1 and ∑ 𝑤𝑗 = 1𝑛
𝑗=1 . where (j) denotes 

an arbitrary permutation of j. Then 

𝐶𝐼𝑃𝐹𝐻𝐺𝐴(𝛼1, 𝛼2, . . . , 𝛼𝑛) = 𝐶𝐼𝑃𝐹𝐻𝐺𝐴(𝛼(1), 𝛼(2), . . . , 𝛼(𝑛)). 

Theorem 2 - Theorem 5 proofs are similar to Theorem 7 - 

Theorem 10 proofs, which are ignored here. 

Example 2: Suppose w=(0.2429, 0.5142, 0.2429)T by 

referring to (Xu [26]) then, the example 1, by using the 

CIPFHGA operator we have: 

 
1

2

3

1

2

3

0.2298 0.4,0.2,0.3 0.1984,0.6908,0.0787

0.3333 0.3,0.1,0.5 0.2726,0.4642,0.2063

0.4369 0.6,0.2,0.1 0.4121,0.4950,0.0449 .













=  =

=  =

=  =

 

 

Then, 𝑆(𝛼1
𝛽1) = −0.5711 , 𝑆(𝛼2

𝛽2) = −0.3989  and 

𝑆(𝛼3
𝛽3) = −0.1278. 

Following the rules of section 2.2, we may conclude that 

based on these comparative laws, 

 

33
1 3 0.3734,0.3297,0.2180

 = =  

23
2 2 0.2999,0.1207,0.5000

 = =  

13
3 1 0.6251,0.1213,0.1287 .

 = =  

 

then, 

 

( )1 2, , ,

0.2429

0.5142

0.3734,0.3297,0.2180

0.2999,0.1207,0.50

0.242

00

0.6251,0.1213,0.1289 7

nCIPFHGA   











 

0.1556,0.1543,0.3621 .=  

 

 

4. MADM PROBLEM 

 

To begin, we discuss MADM problem with correlative 

criteria in a PF environment. Then, we provide a MADM 

problem that is using CIPFHGA operator. 

 

4.1 Description of MADM problems 

 

Let Ai={A1, A2, ⋯ Am} (i=1, 2,⋯ , m) is the finite set of 

alternative, Sj={S1, S2, ⋯ Sn} (j=1, 2, ⋯ n) is the finite set of 

criteria and the importance degree of Sj is denote as FM ϑ. The 

evaluation of the alternatives under each criteria is provide by 

the decision making and is denoted by the PFNs where 𝜇𝛼𝑖𝑗
, 

𝜂𝛼𝑖𝑗
, 𝜈𝛼𝑖𝑗

 denotes the extent to which the decision-making 

analyses whether alternative Ai should satisfy, neutral satisfy 

and non satisfy of the criteria Sj. The evaluation of matrix is 

constructed as followes. 

 

11 12 1

21 22 2

1 2

n

n

n n mn

E

  

  

  

 
 
 =
 
 
 

 

 

A flowchart for the proposed MADM problem is shown in 

Figure 1 and the detailed steps are presented as follows. 

Steps of MADM problem: 

Following are the steps aimed at solving the MADM 

problem with PF environment using the proposed operator. 

Step 1: The normalized PF decision matrix is generated by 

defining the attribute set Sj into S1 and S2, with S1 representing 

benefit attributes and S2 representing cost attributes. Eq. (5) is 

used to convert the benefit type to the cost type: 

 

, , ; for cost type attribute

, , ; for benefit type attribute

ij ij ij

ij ij ij

ij

  

  

  


  




= 



 (5) 

 

Step 2: Calculate the FM on Sj using definition 5. 

Step 3: Confirm the weighting vector w=(w1, w2, ..., wn)T 

with respect to the orders 0≤wj≤1 and ∑ 𝑤𝑗 = 1.𝑛
𝑗=1  

Step 4: Use the CIPFHGA operator to combine the 

evaluation for each alternative under each criteria, such that 

𝛼𝑖 = 𝐶𝐼𝑃𝐹𝐻𝐺𝐴(𝛼𝑖1, 𝛼𝑖2, ⋯ , 𝛼𝑖𝑛).  
Step 5: Select the best alternative by ranking the 

alternatives based on the score and accuracy values of αj. 

 

 
 

Figure 1. Flowchart for the selection of the best alternative 
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5. NUMERICAL EXAMPLE 

 

In this part, we will use the numerical example below to 

demonstrate the proposed approach. Assume that decision 

makers must select between four alternatives A1, A2, A3 and A4. 

Four attributes S1, S2, S3 and S4 where the attributes are cost 

attributes. The PF ratings of alternatives {Ai}i=1, 2, ..., m 

according to attributes{Sj}j=1, 2, ..., n are evaluated by 

decision makers and form the decision matrix is given below 

and the weight information of attribute w=(0.1550, 0.3450, 

0.3450, 0.1550)T by referring to (Xu [26]). 

 

1 2 3 4

1

2

3

4

0.5,0.2,0.3 0.2,0.3,0.1 0.2,0.3,0.3 0.7,0.2,0.1

0.4,0.3,0.2 0.6,0.2,0.1 0.4,0.3,0.3 0.5,0.2,0.3

0.6,0.1,0.1 0.4,0.2,0.3 0.5,0.2,0.3 0.3,0.4,0.1

0.5,0.3,0.1 0.7,0.1,0.1 0.4,0.3,0.2 0.6,0.1,0.2

A A A A

S

S

S

S

 












 

 

Step 1: There is no need to convert the criteria because they 

all cost. 

Step 2: Evaluate the FM on Sj. The FM are sets as follows:  

 

( ) ( ) ( )1 2 30.23, 0.31, 0.18,S S S  = = =  

( ) ( )4 1 20.24, , 0.5482,S S S = =  

( ) ( )1 3 1 4, 0.4148, , 0.4764,S S S S = =  

( ) ( )2 3 2 4, 0.4964, , 0.5586,S S S S = =  

( ) ( )3 4 1 2 3, 0.4249, , , 0.7396,S S S S S = =  

( ) ( )1 2 4 1 3 4, , 0.8033, , , 0.6663,S S S S S S = =  

( ) ( )2 3 4 1 2 3 4, , 0.7501, , , , 1.S S S S S S S = =  

 

Step 3: Confirm the weighting vector w=(0.1550, 0.3450, 

0.3450, 0.1550)T by referring to (Xu [26]). 

Step 4: Calculate the evaluations. As an example, consider 

the calculation of A1. 

 

Since 
0.2468

0.5,0.2,0.3 0.2435,0.6722,0.0843 ,=  

0.3114
0.2,0.3,0.1 0.1185,0.6873,0.0823 ,=

0.1938
0.2,0.3,0.3 0.0824,0.7919,0.0663=  and 

0.2480
0.7,0.2,0.1 0.3033,0.6709,0.0258=  

 

Their respective score values are -0.523, -0.6511, -0.7763, 

and -0.3934. We get their order as: 

 

0.3033,0.6709,0.0258 0.2435,0.6722,0.0843

0.1185,0.6873,0.0823 0.0824,0.7919,0.0668 .

 


 

 

Hence, we have: 

 

( )11 12 13 14

4 0.1550

4 0.3450

4 0.3450

4 0.1550

, , ,

0.3033,0.6709,0.0258

0.2435,0.6722,0.0843

0.1185,0.6873,0.0823

0.0824,0.7919,0.0668

CIPFHGA    
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( )

( )

( )
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0.62 0.62

1.38 1.38

1.38 1.38

0.62 0.62

0.62 1.38 1.38 0.62

0.62 1.38

1.3

0.3033 0.6709 0.6709

0.2435 0.6722 0.6722

0.1185 0.6873 0.6722

0.0824 0.7919 0.7919 ,

0.6709 0.6722 0.6722 0.7919 ,

1 0.0258 1 0.0843
1

1 0.0823

+ −

 + −

 + −

=  + −

  

−  −
−

 − ( )
8 0.62

1 0.0668

0.0134,0.0252,0.6839

 
 
  − 

=

 

 

At the same reason, A2 = ⟨0.0016, 0.2426, 0.2300⟩, A3 = 

⟨0.0015, 0.1988, 0.2449⟩ and A4=⟨0.0033, 0.1831, 0.1473⟩. 
Step 5: Rank the alternatives. The Ai(i =1, 2, 3, 4) score 

values are -0.6957, -0.4710, -0.4422 and -0.3271 respectively. 

Hence alternative can be ordered as A4>A3>A2>A1 the best 

alternative A4. 

 

 

6. COMPARATIVE ANALYSIS 

 

We evaluated the proposed MADM problem to the existing 

AOs to demonstrate the utility and effectiveness of the 

obtained results. 

 

6.1 Comparison with existing approaches 

 

The following Table 3 compares the proposed CIPFHGA 

operator with several existing aggregation operators. 

 

Table 3. A comparison of various existing approaches and 

the proposed approach 

 

Authors 
Aggregate 

Operators 
Ranking Order 

Wei [8] PFWG 𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 

Wang et al. [9] PFWG 𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 

Garg [10] PFWA 𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 

Wei [11] PFHWA 𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 

Jana et al. [16] PFHWG 𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 

Khan et al. [17] PFEWA 𝐴4 > 𝐴2 > 𝐴3 > 𝐴1 

Proposed operator CIPFHGA 𝐴4 > 𝐴3 > 𝐴2 > 𝐴1 

 

We compare the proposed CIPFHGA operator with six 

existing AOs [8-11, 16, 17] in Table 3. It can be noted that all 

the existing AOs obtain the same ranking results and the same 

optimal alternative, while the proposed operator also optimal 

alternative is same, which is A4 but obtain different ranking 

results from the existing AOs. 
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The suggested approach select option A4 as the best choice, 

which is consistent with the findings produced by previous 

AOs. This validates the suggested operators practicality. 

Combining the Choquet integral with the OWG operator, the 

CIPFHGA operator ensures that all criteria establish 

correlative relationships and position weights are taken into 

consideration, providing a robust solution for dealing with 

MADM problems. 

 

6.2 Advantages of the proposed operators 

 

The benefits of our proposed approach can be described 

based on the aforementioned comparisons [8-11, 16, 17]. 

• The computation for fuzzy measure is easier and may 

accurately deliberate the importance degree of each 

distinct criteria. 

• To maintain consistency during the computation 

process, the types of criteria are evaluated and the 

benefit criteria are converted into their cost types. 

• There are several MADM problems that could be 

solved using the proposed operators. 

 

 

7. CONCLUSIONS 

 

A PFS is a more effective way of dealing with uncertainty 

in given information and it has a various of applications in DM. 

AOs are especially important in the DM process since they 

combine all of the provided individual assessment values into 

a single form. The correlative relationships between criteria 

sets in fuzzy information systems are well defined by FMs, 

which may be further dealt with using the Choquet integral. 

We introduced the CIPFGA operator as an aggregation 

operator inspired by the Choquet integral and also proposed 

the CIPFHGA operator further by combining weights position. 

Some main properties of these proposed operators have been 

demonstrated and the functioning of the operators have been 

validated with illustrations. Further, the proposed operators 

enable us to solve a numerical example in MADM problem 

with PF environments. Finally, we have compared the 

proposed operators with some existing AOs. The viability of 

the proposed technique is demonstrated by different results of 

the ranking alternatives. 

The specified AOs can be enhanced in future to handle more 

complex environments, such as interval valued PF 

environments, triangular PF environments and trapezoidal PF 

environments. In addition, we will continue to work on 

extending and applying the proposed operators to other 

domains. 
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