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 Vibration of double beams with an elastic connected layer has been studied in this paper 

by assuming that the beam is a Bernoulli-Euler beam. The natural frequencies equations 

of the symmetric double beam have been computed at arbitrary boundary conditions. 

The behavior of those frequencies has been investigated with a change in the stiffness 

of connected layer, modulus of elasticity of beam, length of beam, mass density of 

beam, and thickness of beam. The high effect of the elastic connected layer on the higher  

natural frequencies of a cantilever double beam is less than that in the clamped and free 

double beams. The increase in the thickness of upper and lower beams made a high 

increase in the values of lower natural frequencies in all types of beams. The change in 

the modulus of elasticity values of double beam becomes high on the lower natural 

frequencies but without enlarging the influence on the higher frequencies, especially in 

the cantilever double beam. The similar effect of change in the mass density of the beam 

resulted in the same influence on the higher and lower natural frequencies in all types 

of beams. The length of the beam enlarges the influence on the higher natural 

frequencies of clamped and free. 
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1. INTRODUCTION 

 

In many current engineering applications, double beam 

systems are commonly employed such as aircraft structures 

and civil buildings. As a result, researchers continue to be 

interested in the dynamic behavior of double beam structures. 

Li and Sun [1] developed a numerical approach for analyzing 

the mode shapes and the natural frequencies of a double beam 

structure with a general boundary and any beam mass, made 

up of double beams bonded by an elastic layer that is 

uniformly distributed between them. Hao et al. [2] enhanced 

an analytical method for investigating the vibration 

characteristics of a double beam under different boundaries. 

The current framework provides the impact of the connected 

layer stiffness on the vibration characteristics of double beam. 

Lai et al. [3] used a mix of finite sin–Fourier transforms and 

numerical Laplace transforms depending on Durbin transform 

to investigate the displacement response in the time domain of 

a double simply supported Euler–Bernoulli beam system with 

elastic connection. The Bernoulli–Euler beam theory was used 

by Zhang et al. [4] to study the characteristics of buckling and 

vibration of a double beam structure under a compression 

force. The results indicated that the system's critical buckling 

load is linked to the compression ratio of elastic connected 

layer and beams, and that the axial compressions have a 

significant impact on the parameters of the system's free 

transverse vibration. The vibrational properties of double 

beams under compressive stress were studied by Kozic et al. 

[5]. The system's two parallel beams are easily and regularly 

connected by a Kerr-type three-parameter. The impact of non-

linear elasticity on the frequencies of sandwich beams under 

varied boundary conditions was demonstrated by Abdulsahib 

and Atiyah [6]. The energy balance technique based on 

Galerkin-Petrov (EGP) and the Homotopy Perturbation 

Method were used to study the influence of the inner layer's 

non-linearity stiffness on those frequencies (HPM). By 

distinguishing between the synchronous and asynchronous 

movements of beams, Mirzabeigy and Madoliat [7] explored 

the influence of nonlinearity in connected layer on the 

vibration of double beam studied and, concluded the high 

frequencies are more accurate if ignoring the effect of the 

nonlinearity of the elastic layer. Mao [8] analyzed the 

frequencies behavior of double beams using the AMDM 

technique, The suggested technique was applied to systems 

containing any number of beams to compute vibration 

characteristics with varied parameters. Oniszczuk [9] 

demonstrated the continuous vibration characteristics of 

double beams. A uniform set of dynamic equations was solved 

using analytical technique to characterize the system's motion. 

The analytical technique was used to determine the ultimate 

shape of the vibrations. The vibration properties of a double 

beam were examined by Rezaiee-Pajand and Hozhabrossadati 

[10]. This structure consists of two beams, one end is elastic 

and the other is free, as well as the two beams are connected 

by a mass-spring mechanism. The impact of four geometric 

and material parameters on the vibration of twin beams was 

examined by Atiyah and Abdulsahib [11]. Those parameters 

of two beams were mass density, thickness, modulus of 

elasticity, and the properties of the intermediate layer. The 

Bernoulli-Euler beam was used to compute the frequencies of 

the double beams. 

In this paper, a number of variables of the elastic connecting 

layer that are believed to affect the vibration behavior of the 

double beams, which were not fully studied previously are 
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investigated. Those parameters of two beams were mass 

density, thickness, modulus of elasticity, and the properties of 

the intermediate layer. The Bernoulli-Euler beam was used to 

compute the frequencies of the double beams. the equations of 

motion are derived to calculate symmetric and asymmetric 

frequencies at different boundary conditions, which are the 

most common in various engineering applications, with 

calculating the effect of a number of connecting layers 

variables on those frequencies. 

 

 

2. THEORETICAL WORK 

 

Two beams are connected by an elastic layer with arbitrary 

boundary conditions. The two beams are symmetric and have 

the same length, as shown in Figure 1. The Bernoulli-Euler 

beam theory for free vibrations is used to describe the 

equations of motion [1]: 

 
𝜕2

𝜕𝑥2 (𝐸1𝐼1
𝜕2𝑊1

𝜕𝑥2 ) + 𝐾(𝑊1 − 𝑊2) + 𝜌1𝐴1
𝜕2𝑊1

𝜕𝑡2 = 0  (1) 

 
𝜕2

𝜕𝑥2 (𝐸2𝐼2
𝜕2𝑊2

𝜕𝑥2 ) − 𝐾(𝑊1 − 𝑊2) + 𝜌2𝐴2
𝜕2𝑊2

𝜕𝑡2 = 0  (2) 

 

where, A1, A2, ρ1, ρ2, E1, E2, I1, and I2 are the cross-sectional 

area, mass density, modulus of elasticity, and moment of area 

for the upper and lower beam, respectively, k is the stiffness of 

elastic layer, and W1, W2 are the deflection of the upper and 

lower beam, respectively. 

 

 
 

Figure 1. Double-beam with elastic connected layer 

 

The boundary conditions in general form for clamped 

beams are assumed as follows: 𝑊𝑖(0, 𝑡) = 𝑊𝑖
́ (0, 𝑡) =

𝑊𝑖(𝑙, 𝑡) = 𝑊𝑖
́ (𝑙, 𝑡) = 0, 𝑖 = 1,2. 

The boundary conditions for simply supported beams are: 

𝑊𝑖(0, 𝑡) = 𝑊𝑖
́́ (0, 𝑡) = 𝑊𝑖(𝑙, 𝑡) = 𝑊𝑖

́́ (𝑙, 𝑡) = 0, 𝑖 = 1,2. 

In addition, the boundary conditions for free beams are: 

𝑊𝑖
́́ (0, 𝑡) = 𝑊𝑖

́́́ (0, 𝑡) = 𝑊𝑖
́́ (𝑙, 𝑡) = 𝑊𝑖

́́́ (𝑙, 𝑡) = 0, 𝑖 = 1,2. 

And, the boundary conditions for cantilever beam are: 

𝑊𝑖(0, 𝑡) = 𝑊𝑖
́ (0, 𝑡) = 𝑊𝑖

́́ (𝑙, 𝑡) = 𝑊𝑖
́́́ (𝑙, 𝑡) = 0, 𝑖 = 1,2. 

The natural frequencies of the system will be got by solving 

Eqns. (1) and Eq. (2). Assume the time-harmonic motion with 

the above boundary conditions and by the separation of 

variables, the solutions of Eqns. (1) and (2) can be written as 

follow: 

 

𝑊𝑖(𝑥, 𝑡) = ∑ 𝑥𝑛(𝑥) ∙ 𝑇𝑛𝑖(𝑡)∞
𝑛=1 , 𝑖 = 1,2  (3) 

 

where, 

 

𝑋𝑛(𝑥) = 𝑐𝑜𝑠ℎ(𝑘𝑛𝑥) − 𝑐𝑜𝑠(𝑘𝑛𝑥) − 𝜎𝑛[𝑠𝑖𝑛ℎ(𝑘𝑛𝑥) −

𝑠𝑖𝑛(𝑘𝑛𝑥)], 𝑘𝑛 =
𝜋(2𝑛+1)

2𝑙
, 𝑛 = 1,2,3, … . . 𝜎𝑛 ≅ 1 … ..  

(4) 

For clamped beams, 

 

𝑋𝑛(𝑥) = 𝑠𝑖𝑛(𝑘𝑛𝑥), 𝑘𝑛 =
𝑛𝜋

𝑙
, 𝑛 = 1,2,3, … ..   (5) 

 

For simply-supported beams, 

 

𝑋𝑛(𝑥) = 𝑐𝑜𝑠ℎ(𝑘𝑛𝑥) + 𝑐𝑜𝑠(𝑘𝑛𝑥) − 𝜎𝑛[𝑠𝑖𝑛ℎ(𝑘𝑛𝑥) +

𝑠𝑖𝑛(𝑘𝑛𝑥)], 𝑘𝑛 =
𝜋(2𝑛+1)

2𝑙
, 𝑛 = 1,2,3, … . . 𝜎𝑛 ≅ 1  

(6) 

 

For free beams, 

 

𝑋𝑛(𝑥) = 𝑐𝑜𝑠ℎ(𝑘𝑛𝑥) − 𝑐𝑜𝑠(𝑘𝑛𝑥) − 𝜎𝑛[𝑠𝑖𝑛ℎ(𝑘𝑛𝑥) −

𝑠𝑖𝑛(𝑘𝑛𝑥)], 𝑘𝑛 =
𝜋(2𝑛−1)

2𝑙
, 𝑛 = 1,2,3, … . . 𝜎𝑛1 ….   

(7) 

 

For cantilever beam, the assumed general forms for time 

functions are: 

 

𝑇𝑛𝑖 = 𝐶𝑖𝑒𝑗𝑤𝑛𝑡 , 𝑖 = 1,2 (8) 

 

Substituting the above expression into Eqns. (1) and (2) will 

get: 

 

(𝐸1𝐼1𝑘𝑛
4 + 𝐾 − 𝜌1𝐴1𝜔𝑛

2)𝐶1 − 𝐾𝐶2 = 0 (9) 

 

(𝐸2𝐼2𝑘𝑛
4 + 𝐾 − 𝜌2𝐴2𝜔𝑛

2)𝐶2 − 𝐾𝐶1 = 0 (10) 

 

These equations can be solved when the two beams are 

symmetric; the lower and higher frequencies will be obtained 

as follows: 

 

𝜔1𝑛 = √
𝐸𝐼𝑘𝑛

4

𝜌𝐴𝐿4  (11) 

 

𝜔2𝑛 = √
𝐸𝐼𝑘𝑛

4+2𝐾𝐿4

𝜌𝐴𝐿4   (12) 

 

 

3. RESULTS AND DISCUSSION 

 

A convergence test is utilized to compare the accuracy of 

Eqns. (11) & (12) with the results in reference [1]. The 

numerical values are used as in reference [11], such as 

EI=4×106 N.m2, L=10 m, ρA=1×102 kg.m-1, K=1~5×105 N.m-

2, and ωn (Hz). Table 1 shows the comparison results between 

the present results and the Ref. [1] when the boundary 

conditions of double beams are simply supported. This table 

shows a good convergence of results between the present work 

and the literature by Li and Sun [1]. The maximum difference 

between the present and results of reference [1] is less than 1%. 

this convergence confirms the validity of the derived equations 

in this work. 

The natural frequencies for the clamped double beam are 

same for the free double beam, because it has the same 

dimensionless natural frequency function but it has another 

mode shape. Therefore, the behavior is same for the both cases 

in the all figures of this paper. Figure 2 manifests the behavior 

of higher frequencies with the change in stiffness of the elastic 

connected layer (k), in all cases of boundary conditions. The 

change in the values of k has not affected the lower frequencies 

(synchronous), but it caused an increasing in the higher natural 

frequencies (asynchronous) in all modes when increasing the 

k values.  
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In Table 2, it is seen that when k is increased from 100000 

to 1800000 N/m2, the higher natural frequencies 

(asynchronous) increased about 367% in the simply supported 

beam, about 265% in the clamped and free double beams, and 

about 415% in the cantilever double beam. As a result, there is 

a high effect of elastic connected layer on the cantilever double 

beam, and this effect is less in the clamped and free double 

beams. 

Figure 3 and Table 3 elucidated that for the clamped and 

free double beams, the higher natural frequencies decrease 

when the ratio (h/b) increases from 1 to 12 times. However, if 

the ratio is more than 12, the higher natural frequencies start 

increasing. The same behavior for the simply supported beam 

can be seen for the ratio (h/b) between 1 to 22 times, but the 

higher frequencies decrease with the increase in this ratio for 

more than 22 times. In the cantilever double beam, the higher 

frequencies also decrease with the (h/b) ratio increase. The 

behavior of lower natural frequencies (synchronous) with the 

changes in the values of thickness in the upper and lower 

beams (h1 & h2) is depicted in Figure 4 and Table 3. When the 

thickness increases from 0.02 to 0.38 m (h1=h2), the lower 

natural frequencies increase about 3000% in the simply 

supported beam and increase in the same ratio approximately 

3000% in the clamped, free, and the cantilever beams. 

Consequently, the effect of the change in thickness on the 

higher natural frequencies (asynchronous) is higher in the 

simply supported, and the clamped, free double beams, but it 

generally causes an increase in those frequencies with the 

thickness increase in a cantilever beam. The increase in 

thickness of the upper and lower beams made a great increase 

in the values of the lower natural frequencies in all types of 

beams. 

The effects of changing the modulus of elasticity of the 

upper and lower beams (E1 & E2) on the higher natural 

frequencies are demonstrated in Figure 5 and Table 4. When 

the modulus of elasticity changes from 10 GPa to 140 GPa 

(E1=E2), the frequencies of simply supported beams increase 

about 28%, the frequencies of clamped and free beams 

increase about 93%, and the frequencies of cantilever beam 

increase just 4%. Figure 6 and Table 4 portrays the behavior 

of lower natural frequencies when the modulus of elasticity of 

upper and lower beams changes. When the elasticity modulus 

increases from 10 GPa to 140 GPa, the lower natural 

frequencies increase about 275% in all types of beams. The 

change in the values of the elasticity modulus of double beam 

has a great effect on the lower natural frequencies but not as 

much as that effect on the higher frequencies, especially in the 

cantilever double beam. 

Figures 7-8 and Table 5 reveal the effect of changing the 

mass density of the upper and lower beams (ρ1 & ρ2) on the 

higher and lower natural frequencies, respectively. The natural 

frequencies (higher & lower) of the simply supported, clamped, 

free, and cantilever beams decrease about 45% when the mass 

density of beam (ρ1=ρ2) changes from 1500 kg/m3 to 5000 

kg/m3. Accordingly, the same effect of the change in the mass 

density of the beam results in the same effect on the higher and 

lower natural frequencies in all types of beams. 

Figure 9 and Table 6 exhibit the effect of changing the 

length of the upper and lower beams (L1 & L2) on the higher 

natural frequencies. When the length of beam (L1 =L2) 

changes from 5 m to 14 m, the higher frequencies of simply 

supported beam decrease about 58%, the frequencies of 

clamped and free beams decrease about 75%, and the higher 

frequencies of cantilever beam decrease about 23%. The 

behavior of lower natural frequencies with change in length of 

the beam is shown in Figure 10 and Table 6. If the length of 

beam changes from 5 m to 14 m, the lower natural frequencies 

for the all types of beams decrease about 83%. Consequently, 

the length of the beam enlarges the effect on the higher natural 

frequencies of the clamped and free beams and makes the 

same effect on the lower natural frequencies of the all types of 

double beams. 

 

 
 

Figure 2. Higher natural frequencies versus stiffness of 

elastic layer 

 

 
 

Figure 3. Higher natural frequencies versus thickness of 

double beam 

 

 
 

Figure 4. Lower frequencies versus thickness of beam 

 

 
 

Figure 5. Higher natural frequencies versus modulus of 

elasticity of double beam 
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Table 1. A comparison test for present work with reference [1] 

 

No. of mode 
k=1×105 N/m2 k=2×105 N/m2 k=3×105 N/m2 k=4×105 N/m2 k=5×105 N/m2 

Present Li & Sun [1] Present Li & Sun [1] Present Li & Sun [1] Present Li & Sun [1] Present Li & Sun [1] 

1 19.739 19.74 19.739 19.74 19.739 19.74 19.739 19.74 19.739 19.74 

2 48.884 48.88 66.254 66.25 78.957 78.94 78.957 78.96 78.957 78.96 

3 78.957 78.96 78.957 78.96 79.935 79.96 91.595 91.59 101.930 101.93 

4 90.742 90.74 101.164 101.16 110.608 110.61 119.307 119.31 127.413 127.41 

5 177.653 177.65 177.653 177.65 177.653 177.65 177.653 177.65 177.653 177.65 

6 183.195 183.20 188.575 188.58 193.805 193.81 198.898 198.90 203.864 203.86 

 

Table 2. Higher natural frequencies (Hz) versus stiffness of elastic connected layer 𝐸 = 70 ×
109𝑁

𝑚2 , 𝐿 = 10 𝑚, 𝑏 = 0.02 𝑚, 𝜌 =

3000
𝑘𝑔

𝑚3
, ℎ = 0.02 𝑚 

 
K *105(N/m2) Simply supported Clamped, Free Cantilever K*105(N/m2) Simply supported Clamped, Free Cantilever 

1 106.601 154.617 93.369 10 293.877 314.493 289.340 

2 140.346 179.554 130.580 11 307.729 327.474 303.399 

3 167.423 201.427 159.325 12 320.983 339.960 316.835 

4 190.693 221.147 183.624 13 333.712 352.003 329.723 

5 211.417 239.248 205.063 14 345.972 363.647 342.127 

6 230.283 256.072 224.465 15 357.813 374.930 354.096 

7 247.717 271.857 242.317 16 369.274 385.883 365.674 

8 264.002 286.774 258.942 17 380.390 396.534 376.896 

9 279.339 300.953 274.562 18 391.191 406.906 387.794 

 

Table 3. Natural frequencies (Hz) versus thickness of beam 𝐸 = 70 × 109𝑁/𝑚2, 𝐿 = 10 𝑚, 𝑏 = 0.02 𝑚, 𝜌 = 3000 𝑘𝑔/𝑚3, 𝐾 = 105 

 

Thickness of beam, h (m) 
Simply supported N.F. Clamped, Free N.F. Cantilever N.F. 

Lower  Higher  Lower  Higher  Lower  Higher  

0.020 2.753 408.258 6.240 408.296 0.980 408.249 

0.060 8.258 235.847 18.719 236.444 2.941 235.721 

0.100 13.763 183.092 31.198 185.221 4.902 182.640 

0.140 19.268 155.502 43.677 160.366 6.863 154.456 

0.180 24.773 138.319 56.156 147.214 8.824 136.369 

0.220 30.278 126.761 68.636 140.934 10.785 123.563 

0.260 35.783 118.747 81.115 139.284 12.746 113.943 

0.300 41.288 113.207 93.594 140.964 14.707 106.430 

0.340 46.793 109.515 106.073 145.105 16.668 100.408 

0.380 52.298 107.271 118.553 151.085 18.629 95.493 

0.420 57.803 106.196 131.032 158.448 20.590 91.435 

0.460 63.308 106.086 143.511 166.859 22.551 88.062 

0.500 68.813 106.779 155.990 176.067 24.512 85.250 

0.540 74.318 108.148 168.469 185.889 26.472 82.907 

0.580 79.823 110.085 180.949 196.187 28.433 80.967 

0.620 85.328 112.504 193.428 206.859 30.394 79.374 

0.660 90.833 115.330 205.907 217.826 32.355 78.086 

0.700 96.338 118.502 218.386 229.029 34.316 77.068 

0.740 101.843 121.969 230.865 240.423 36.277 76.292 

 

Table 4. Natural frequencies (Hz) versus modulus of elasticity of double beam 𝐿 = 10 𝑚, 𝑏 = 0.02 𝑚, ℎ = 0.4 𝑚, 𝜌 = 3000
𝑘𝑔

𝑚3 , 𝐾 =

105 𝑁/𝑚2 

 

Modulus of elasticity E N/m2 
Simply supported N.F. Clamped, Free Cantilever 

Lower  Higher  Lower  Higher  Lower  Higher  

1E+10 20.806 93.628 47.166 102.752 7.411 91.587 

2E+10 29.425 95.912 66.704 113.061 10.481 91.886 

3E+10 36.038 98.143 81.695 122.505 12.837 92.185 

4E+10 41.613 100.324 94.333 131.271 14.823 92.482 

5E+10 46.525 102.459 105.468 139.488 16.572 92.779 

6E+10 50.966 104.551 115.535 147.247 18.154 93.074 

7E+10 55.050 106.601 124.792 154.617 19.609 93.369 

8E+10 58.850 108.612 133.408 161.651 20.963 93.663 

9E+10 62.420 110.588 141.501 168.392 22.234 93.955 

1E+11 65.797 112.528 149.155 174.873 23.437 94.247 

1.1E+11 69.008 114.435 156.435 181.122 24.581 94.538 

1.2E+11 72.077 116.312 163.391 187.163 25.674 94.828 

1.3E+11 75.020 118.158 170.063 193.014 26.722 95.118 

1.4E+11 77.852 119.976 176.482 198.694 27.731 95.406 
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1.5E+11 80.585 121.7673 182.677 204.2161 28.70496 95.69382 

1.6E+11 83.22783 123.5322 188.668 209.5923 29.64635 95.98041 

1.7E+11 85.78928 125.2722 194.4745 214.834 30.55876 96.26615 

1.8E+11 88.27644 126.9884 200.1126 219.9509 31.44471 96.55104 

1.9E+11 90.69543 128.6818 205.5962 224.9514 32.30636 96.83509 

 

Table 5. Natural frequencies (Hz) versus mass density of double beam 𝐸 = 70 × 109 𝑁

𝑚2 , 𝐿 = 10 𝑚, 𝑏 = 0.02 𝑚, ℎ = 0.02 𝑚, 𝐾 =

105 𝑁

𝑚2 

 

Mass density of beam (ρ) kg/m3 Simply supported N.F. Clamped, Free N.F. Cantilever N.F. 

Lower Higher Lower Higher Lower Higher 

1500 77.853 150.757 176.483 218.661 27.732 132.044 

1750 72.077 139.574 163.391 202.441 25.674 122.249 

2000 67.422 130.559 152.839 189.366 24.016 114.354 

2250 63.566 123.093 144.098 178.536 22.643 107.814 

2500 60.304 116.776 136.703 169.374 21.481 102.281 

2750 57.498 111.341 130.341 161.492 20.481 97.521 

3000 55.050 106.601 124.792 154.617 19.609 93.369 

3250 52.890 102.419 119.896 148.551 18.840 89.706 

3500 50.966 98.694 115.535 143.148 18.155 86.443 

3750 49.238 95.347 111.617 138.294 17.539 83.512 

4000 47.675 92.319 108.073 133.902 16.982 80.860 

4250 46.251 89.563 104.846 129.904 16.475 78.446 

4500 44.948 87.040 101.892 126.244 16.011 76.236 

4750 43.749 84.718 99.175 122.877 15.584 74.203 

5000 42.642 82.573 96.664 119.766 15.189 72.324 

5250 41.614 80.583 94.334 116.879 14.823 70.581 

5500 40.657 78.730 92.165 114.192 14.482 68.958 

5750 39.763 77.000 90.139 111.682 14.164 67.442 

6000 38.926 75.379 88.241 109.331 13.866 66.022 

 

Table 6. Natural frequencies (Hz) versus length of double beam 𝐸 = 70 × 109 𝑁

𝑚2 , ℎ = 0.02 𝑚, 𝑏 = 0.02 𝑚, 𝜌 = 3000
𝑘𝑔

𝑚3 , 𝐾 = 105 𝑁

𝑚2 

 

Length of beam, L (m) 
Simply supported N.F. Clamped, Free N.F. Cantilever N.F. 

Lower  Higher  Lower  Higher  Lower  Higher  

5 220.200 238.372 499.169 507.447 78.437 120.356 

5.5 181.984 203.596 412.536 422.515 64.824 111.962 

6 152.917 178.092 346.645 358.463 54.470 106.303 

6.5 130.296 159.092 295.366 309.151 46.412 102.408 

7 112.347 144.759 254.678 270.544 40.019 99.674 

7.5 97.867 133.833 221.853 239.900 34.861 97.717 

8 86.016 125.427 194.988 215.299 30.639 96.292 

8.5 76.194 118.907 172.723 195.362 27.141 95.236 

9 67.963 113.808 154.064 179.079 24.209 94.443 

9.5 60.997 109.791 138.274 165.689 21.728 93.837 

10 55.050 106.601 124.792 154.617 19.609 93.369 

10.5 49.932 104.051 113.190 145.414 17.786 93.004 

11 45.496 101.996 103.134 137.731 16.206 92.714 

11.5 41.626 100.330 94.361 131.291 14.827 92.483 

12 38.229 98.969 86.661 125.871 13.618 92.297 

12.5 35.232 97.850 79.867 121.293 12.550 92.146 

13 32.574 96.925 73.841 117.413 11.603 92.022 

13.5 30.206 96.155 68.473 114.114 10.760 91.919 

14 28.087 95.510 63.669 111.297 10.005 91.834 

 

 
 

Figure 6. Lower natural frequencies versus modulus of 

elasticity of double beam 

 
 

Figure 7. Higher natural frequencies versus mass density of 

double beam 
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Figure 8. Lower natural frequencies versus mass density of 

double beam 

 

 
 

Figure 9. Higher natural frequencies versus length of double 

beam 

 

 
 

Figure 10. Lower natural frequencies versus length of double 

beam 

 

 

4. CONCLUSIONS 

 

In this paper, a good convergence in the results between the 

present work and the reference Li and Sun [1] is evinced. The 

great effect of elastic connected layer on the cantilever double 

beam, and this effect is less than that in the clamped and free 

double beams. The effect of the change in thickness on the 

higher natural frequencies (asynchronous) is higher in the 

simply supported, and the clamped, free double beams, but it 

generally causes an increase in those frequencies with the 

thickness increase in a cantilever beam. The increase in the 

thickness of upper and lower beams made a great increase in 

the values of lower natural frequencies in all types of beams. 

The change in the values of the elasticity modulus of double 

beam has a great effect on the lower natural frequencies but 

not as much as that effect on the higher frequencies, especially 

in the cantilever double beam. The higher and lower 

frequencies of the all types of beams decrease when the mass 

density of beam increases. The lower frequencies decrease 

with the increase in the beam length. The length of the beam 

enlarges the effect on the higher natural frequencies of 

clamped and free beams. 

In all cases, the same behavior in all modes is recognized; 

therefore, only the first mode has been studied in this work, 

because there is no large difference in behavior occurring in 

2nd, 3rd or nth mode.  

In the future, it is possible to study the effect of the 

properties of the elastic connecting layer of asymmetric double 

beams. 
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NOMENCLATURE 

B dimensionless heat source length 

CP specific heat, J. kg-1. K-1 

g 

k 

gravitational acceleration, m.s-2 

thermal conductivity, W.m-1. K-1 

Nu local Nusselt number along the heat source 

Greek symbols 

 thermal diffusivity, m2. s-1 

 thermal expansion coefficient, K-1 

 solid volume fraction 

Ɵ dimensionless temperature 

µ dynamic viscosity, kg. m-1.s-1 

Subscripts 

p nanoparticle 

f fluid (pure water) 

nf nanofluid 
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