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ABSTRACT 

 
The effects of heat and mass transfer on the flow of an oscillatory convective MHD channelflow of an electrically 

conducting viscous incompressible fluid in a slip flow regime in the presence of Hall current and thermal radiation are 

studied. A magnetic field of uniform strength is applied normal to the plates of channel. The two vertical porous plates 

of the channel are subjected to a constant injection/suction. The entire system rotates about an axis normal to the plates 

with a uniform angular velocity . A closed form analytical solutions to the equations governing the fluid motion are 

obtained for the velocity, temperature and concentration fields. The numerical calculations for the velocity, temperature 

and concentration fields, and the coefficient of skin friction, rate of heat and mass transfer at the plates are performed. 

The results are presented graphically for different values of the physical parameters involved. It is seen that primary fluid 

flow is retarded due to angular velocity of the system.  
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1. INTRODUCTION 

The phenomenon of heat and mass transfer has been the 

object of extensive research due to its application in science 

and technology. Such phenomenon is observed in buoyancy 

induced motions in the atmosphere, in the bodies of water, 

quasi-solid bodies such as earth and so on. Oscillatory flows 

are associated with higher rates of heat and mass transfer. 

Many studies have been done to understand its characteristics 

in different systems such as reciprocating engines, pulse 

combustors and chemical reactors etc. Unsteady oscillatory 

free convective flows play an importance in aerospace 

technology, turbo machinery and chemical engineering. Such 

flows arise due to either unsteady motion of a boundary or 

boundary temperature. In nature and industrial applications 

many transport processes exist where the transfer of heat and 

mass takes place simultaneously as a result of combined 

buoyancy effects of thermal diffusion and diffusion of 

chemical species. Cooper et al. [1] has made a detailed study 

on fluid mechanics of oscillatory and modulated flows and 

associated applications in heat and mass transfer. 

Muthucumaraswamy [2] has studied the effect of heat and 

mass transfer on flow past an oscillatory vertical plate with 

variable temperature. Ahmed & Kalita [3] discussed the 

combined heat mass transfer effects on Oscillatory MHD free 

and forced convection flow through a porous medium in 

presence of a heat source with variable suction. The 

hydrodynamic rotating flow of an electrically conducting 

viscous incompressible fluid has gained considerable 

attention because of its numerous applications in physics and 

engineering. In geophysics, it is applied to measure and study 

the positions and velocities with respect to a fixed frame of 

reference on the earth, which rotates with respect to an 

inertial frame in the presence of its magnetic field. Boundary 

layer flows in a rotating fluid system are important due to 

various applications in science and technology. Debnath [4] 

presented exact solutions of the hydrodynamic and hydro 

magnetic boundary layer equations in such systems. 

Oscillatory hydro magnetic Couette flow in a rotating fluid 

system is investigated by Guria et al. [5] 

When the density of an electrically conducting fluid is low 

and/or applied magnetic field is strong, a current is induced in 

a direction which is normal to both the electric and magnetic 

fields. Thus if an electric field is applied at right angle to the 

magnetic field, the total current will not flow along the 

electric field. This tendency of the electric current to flow 

across an electric field in the presence of a magnetic field is 

called Hall effects and the resulting current is known as Hall 

current. Hall effects are important when the Hall parameter, 

which is the ratio between the electron-cyclotron frequency 

and the electron-atom-collision frequency, is high. This 

happens when the magnetic field is strong or when the 

collision frequency is low. Hall currents are of great 

importance in many astrophysical problems, Hall accelerator 

and flight MHD as well as flows of plasma in a MHD power 

generator. Aboeldahab and Elbarbary [6] considered effects 

of Hall current on MHD free convection flow with heat and 

mass transfer over a vertical in the presence of a strong 
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external magnetic field. Sarkar et al [7] investigated effects of 

Hall currents and radiation on MHD free convection flow 

past an oscillating vertical plate with oscillatory plate 

temperature in a porous medium. 

It is assumed that the boundary condition for a viscous 

fluid at a solid surface is one of “no - slip” at the macroscopic 

level. While no – slip boundary condition has been proven 

experimentally to be accurate for a number of macroscopic 

flows, it remains an assumption that is based on physical 

principles. In fact nearly two hundred years ago, Navier’s [8] 

proposes a general a boundary condition that incorporates the 

possibility of the fluid slip at a solid boundary. Navier’s 

proposed condition assumes that the fluid slip velocity at a 

solid surface is proportional to the shear stress at the surface. 

The mathematical form of the Navier’s proposed condition on 

the slip velocity as emphasized by Goldstein [9] is 




 
  

 

u
u  ; where  is the slip strength or slip coefficient, 

u is the slip velocity and  is the normal coordinate. If 

0  then no-slip boundary condition is obtained. If  is 

finite, fluid slip occurs at the wall but its effect depends upon 

the length scale of the flow. The effect of slip condition on 

MHD steady flow in a channel with permeable boundaries 

has been discussed by Makinde and Osalusi [10]. Marques et 

al. [11] has considered the effect of fluid slippage at the plate 

for Couette flow. Ahmed and Kalita [12] have studied MHD 

oscillatory free convective flow past a vertical plate in slip-

flow regime with variable suction and periodic plate 

temperature 

Recently Singh and Pathak [13] have studied the effects of 

Hall current and thermal radiation on MHD convective flow 

in a vertical rotating porous channel in slip flow regime in 

presence of uniform magnetic field where the entire system 

rotates about the axis perpendicular to the planes of the plates 

of the channel. 

The method of the present work is similar to the work of 

Singh and Pathak [13] although the flow geometries are not 

identical. Further in the present work the effect of mass 

transfer is taken into account which was not considered in the 

work of Singh and Pathak [13].  

The objective of the present work is to investigate the 

effects of Hall current and thermal radiation on MHD 

oscillatory convective mass transfer flow through a 

rectangular channel bounded by two vertical porous plates in 

a rotating system with slip flow regime. 

2. MATHEMATICAL MODELOF THE PROBLEM 

The equations governing the unsteady motion of an 

incompressible, viscous, electrically conducting fluid with a 

vertical channel system in presence of magnetic field areas 

follows: 

Continuity equation: 

 

.V 0                                                                                  (1) 

 

Gauss’s law of magnetism: 

 

. B 0                                                                                 (2) 

 

Kirchhoff’s first law: 

.J 0                                                                                    (3) 

 

General Ohm’s law: 

 e e
e

e

1
J J B E V B p

B e

  
       

   

                          (4) 

Momentum equation: 

  2V
V V. V p J B V

t

                                            g T g C

 
         

 

    

                 (5) 

Energy equation: 

 

  2

p

T
C V. T k T .q

t

 
        

                      (6) 

Species continuity equation: 

  2C
V. C D C

t


    


                                                       (7) 

We now consider an oscillatory MHD convective flow of 

an electrically conducting viscous incompressible fluid 

through a channel bounded by two infinite vertical porous 

plate separated by distance‘d’, taking into account the Hall 

current. One of the plates of the channel is subjected to slip 

velocity. The X axis is taken oriented vertically upward 

along the centreline of the channel, the Z axis is taken 

normal to the planes to the plates which is the axis of rotation 

and Y is taken along the width of the either plate.  

                                                     

 
 

Figure 1. Physical model of the problem 

In order to make the mathematical model of the present 

work idealized, the present investigation is restricted the 

following assumptions: 

i. All the fluid properties are considered constant except 

the influence of the density with temperature and 

concentration in the buoyancy force. 

ii. The viscous and Ohmic dissipations of energy are 

negligible. 

iii. The magnetic Reynolds number is small that the 

induced magnetic field can be neglected. 
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iv. The plate is electrically insulator and the plate 

temperature as well as the plate concentration varies 

linearly as the distance along the plate. 

v. No external electric field is applied for which the 

polarization voltage is negligible leading to E 0  

Let  V u ,v ,w   denote the fluid velocity,  0,0,     

be the angular velocity,  0,0, oB B  be the magnetic flux 

density and  x y , zJ j , j j   be the current density at the point 

 , , ,   P x y z t in the fluid. As the plates of the channel are 

infinite in X and Y directions, therefore all the physical 

quantities are independent of x and y . 

Equation (1) yields  

u v w
0

x y z

    
  
    

 

w
0

z


 


 

 

which holds for ow w  (constant) 

The equation (2) is trivially satisfied by the magnetic flux 

density distribution  oB 0,0,B  

The equation (3) gives, 
zj 0
z





, which is satisfied with 

zj is constant. 

Further, as the plates are electrically insulators, so zj 0   

on the walls and, hence 0 zj  for the entire fields. 

Again on the basis of the above assumptions, equation (4) 

takes the form 

   
 

   e eJ J B V B
B

                                                (8) 

 

Splitting the equation (8), we derive the following 

equations 

 

 0 
  x y oj m j B v                                                            (i) 

x y om j j B u 0 
                                                        (ii) 

 

Solving (i) and (ii), we obtain 

 

 o

x 2

B mu v
j

1 m


  


  

and
 o

y 2

B mv u
j

1 m


  



 

 

where 
e em  is the Hall parameter. 

Under the above assumptions, the governing equations (5), 

(6) and (7) reduces to  

 

 

 
   

22

2 2

1
2

1

                       




 

 

       
       

       

    

o

o

o o

B mv uu u p u
w v

t z x z m

g T T g C C

   (9) 

 

 

22

2 2

1
2

1




 

       
       

       

o

o

B mu vv v p v
w u

t z y z m
  (10) 

2

p o 2

T T T q
C w k

t z z z

      
           

                                   (11)                                                                                                                     

 
2

o 2

C C C
w D

t z z

    
 

      

                                                     (12) 

 

The last term in the energy equation (11) stands for 

radiative heat flux is given by  

2

o

q
4 (T T )

z


  


                                                            (13) 

where   is the mean radiation absorption coefficient 

The appropriate boundary and slip flow conditions for the 

present problem are 

o o

u v  d
u L  ,   v  = L  ,    T  = T  ,   C = C    at  z  =  

z z 2

   
    

  
 

0  u v , 
oT T (1 cos t )     ,  1 cos   oC C t  at 

2
 

d
z                                                                                 (14) 

where L is the mean free path which is constant for an 

incompressible fluid. 

The non dimensional quantities are 

,



z

d

x
x

d


 ,  

y
y

d


 ,  

u
u

U


 ,  




v
v

d
,  o

o

T T
T

T

 
 ,  

 
 o

o

C C
C

C
,  




t U
t

d
,

d

U


 ,  

2

p
p

U





                     (15) 

With the help of non dimensional quantities (15), equations 

(9) to (12) reduces to 

 

 

22

2 2
e e e e

r m

e e

M mv uu u p 1 u 2
v

t R x R R R 1 m

G G
                      T C

R R

     
     

    

 

         (16)

 

 

22

2 2
e e e e

M mu vv v p 1 v 2
u

t R y R R R 1 m

     
     

    
     

    (17) 

 
2 2

2

e r e r e

T T 1 T N
T

t R P R P R

   
  

  
                                    (18)   

 
2

2

e c e

C C 1 C

t R S R

   
 

  
                                                  (19) 

where, 

e

Ud
R ,


 

2

,



 

d
,


 ow d

 

2

,



 o

r

g d T
G

U
  

 
2

o
m

g d C
G ,

U






p

r

C
P ,

k


  

cS
D


   
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2
,  

 


  o

d
N M B d

k
 

All the physical quantities are defined in nomenclature. 

The boundary conditions in the non-dimensional form 

becomes 

 

1 u v
:     u h ,   v h ,   T 0,   C 0

2

 
     

 
 

1
:         u v 0,   T cos t,   C cos t

2
                        (20) 

 

where L
h

d
    is the slip flow parameter. 

We assume that the fluid flow under the influence of a 

non-dimensional oscillatory pressure gradient varying 

periodically with the time in the direction of x-axis of the 

following form 

 

cos


 


p
P t

x
 

3. SOLUTION OF THE PROBLEM 

We introduce a complex velocity function of the form 

     , , ,   F t u t iv t                                                (21) 

Equations (16) and (17) can be combined to give 

 

 

22

2 2
e e e e

r m

e e

M 1 imF F 1 F 2i
Pcos t F F

t R R R R 1 m

G G
                     T C

R R

    
     

   

 

      (22) 

The boundary conditions (20) in complex form become 

1 F
 :       F h ,       T 0,       C 0

2


    


 

1
    :       0,   cos ,   cos

2
     F T t C t                (23) 

In order to solve equations (18), (19) and (22) under the 

boundary condition (23), we assume in complex form the 

solution of the form 

           i t i t i t

o o o

i t

F , t F e ,  T , t e ,  C , t e  

p
and  Pe

x

  



          


 


  (24) 

The boundary condition (23) reduces to 

o
o o o

F1
:    F h ,    0,    0

2


      


 

0

1
:      F 0,    1,    1

2
     o o                                 (25)            

Substituting equation (24) in equations (18), (19) and (22), 

we get 

2
20 o

o e r o m o2

d F dF
c F PR G G

d d
       

 
                       (26)    

 
2

20 o
r 02

d d
P a 0

d d

 
   

 
                                                  (27) 

 
2

20
02

0
 

 


  o
c

d d
S b

dd
                                                 (28) 

where, 

 

 

2

2

2

1
2

1



   


e

M im
c i R i

m
,    2 2 P  r ea N i R ,   

2   c eb i S R  

The ordinary differential equations (26), (27) and (28) are 

solved under the boundary condition (25) and we get the 

following expression for the velocity, temperature and 

concentration fields 

     

   

1 2

2 1
1 2

2 1
1 2

c c e
3 4 2

a a
a a

2 2 2 2 i t2 2

1 2 2 1 1

b b
b b

2 2 2 22 2

2 2 2 1 1

PR
A e A e

c

F , t A a a c e a a c e e

A b b c e b b c e

 

   
        

   
    

   

 
 

  
 

   
         

   
 

   
       

   

 

                                                                                            (29) 

 

2 1
1 2

a a
a a

2 2
i t

1 2

e e
T , t e

a a
2sinh

2

   
    

   


 
 
  

  
    

                                       (30) 

 

 

2 1
1 2

b b
b b

2 2
i t

1 2

e e
C , t e

b b
2sinh

2

   
    

   


 
 
  

  
    

                                      (31) 

3.1 Skin friction 

The non dimensional skin friction at the left plate is given 

by 

  

  

1 21 2

1 2

1

2

2 22 2
3 1 4 2 1 2 1 1 2

2 2

2 2 1 1 2

   










 
   
 

 
 
 

 
  

 

 
    

  
 
    

L

a ac c

i t

b b

F

A c e A c e A a a a a c e
e

A b b b b c e

 

                                                                                          (32)   
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3.2 Heat transfer coefficient 

The dimensionless expressions for the rate of heat transfer 

at the left plate is given by 

 
1 2a a

2

1 2 i t

u
1 1 2
2

a a eT
N e

a a
2sinh

2

 
 
 





 
  
        

    

                        (33) 

3.3 Mass transfer coefficient 

In non-dimensional form, the rate of mass transfer at the 

left plate is given by 
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4. RESULTS AND DISCUSSION 

In order to have a physical insight into the problem, the 

numerical calculations for the velocity, temperature and the 

concentration fields, and the coefficient of skin friction, rate 

of heat transfer and rate of mass transfer at the plates are 

performed by assigning by some specific values to the 

physical parameter involved in the problem namely rotation 

parameter Ω, Reynolds number 
eR , injection/suction 

parameter  , slip-flow parameter h, Hartman number M, 

Hall parameter m, thermal Grashof number 
rG , solutal 

Grashof number 
mG , Prandtl number 

rP , Schmidt number 

cS , radiation parameter N, pressure gradient P, the frequency 

of oscillation  and time t. The values of Schmidt number 

cS  are chosen to be 0.3, 0.6 and 0.92 to represent Helium, 

Water Vapour and Carbon dioxide respectively. The 

numerical results are demonstrated through different graphs 

and results are interpreted.  

Figures 2 to 4 demonstrate the behaviour of the primary 

fluid velocity distribution against the normal coordinate η 

under the influence of rotation parameter Ω, Schmidt number 

cS and mass Grashof number mG . It is observed from Figure 

2 that there is a steady fall in primary fluid velocity for 

increasing values of the rotation parameter Ω. Figure 3 

indicates the fact that an increase in Schmidt number 
cS  

decelerates the fluid flow marginally. In other words high 

mass diffusivity causes the velocity to increase. 
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Figure 2. Primary velocity distribution versus η for Pr=0.71, 

Sc=0.3, Re=1, N=1, M=1, P=5, h=1, m=1, Gr=1, Gm=1, λ=1, 

ω=5, t=0 

 

 
 

Figure 3. Primary velocity distribution versus η for Pr=0.71, 

Re=1, N=1, M=1, P=5, h=1, m=1, Gr=1, Gm=1, λ=1, ω=5, 

Ω=5, t=0 

An interesting behaviour of fluid velocity under solutal 

Grashof number 
mG is observed in Figure 4. It is observed in 

this Figure that the flow is accelerated due to solutal 

buyonacy force near the right wall and opposite trend of 

behaviour is marked near the left wall.  

 

 
 

Figure 4. Primary velocity distribution versus η for PR=0.71, 

Sc=0.3 Re=1, N=1, M=1, P=5, h=1, m=1, Gr=1, λ=1, Ω=5, 

t=0 

The variations in the secondary velocity v versus  , 
mG  

and   are presented in Figures 5 and  6. It  is  inferred  from 

Figure 5 that there is a substantiall  fall  in  the  magnitude  of 

the  secondary  fluid  velocity  under  the  effect   of   rotation  

 

parameter   where as Figure 6 shows that an increase in 

solutal Grashof number 
mG  results in steady increase in the 

secondary velocity.  

 
 

Figure 5. Secondary velocity distribution versus η for 

Pr=0.71, Sc=0.3, Re=1, N=1, M=1, P=5, h=1, m=1, Gr=1, 

Gm=1, λ=1, ω=5, t=0 

 
 

Figure 6. Secondary velocity distribution versus η for 

Pr=0.71, Sc=0.3, Re=1, N=1, M=1, P=5, h=1, m=1, Gr=1, 

λ=1, ω=5, Ω=5, t=0 

Figures 7 to 9 demonstrate the behaviour of concentration 

field under the effects λ, 
cS and

eR . From these figures we 

see that there is steady fall in concentration for the increasing 

values of λ, 
cS and

eR . In other words concentration 

boundary layer rises for enhancement of mass diffusivity and 

viscosity. 

 

 
 

Figure 7. Concentration distribution versus η for Sc=0.3, 

Re=1, ω=5, t=0 
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Figure 8. Concentration distribution versus η for Re=1, λ=1, 

ω=5, t=0 

 

 
 

Figure 9. Concentration distribution versus η for Sc=0.3, λ=1, 

ω=5, t=0 

 
 

Figure 10. Temperature distribution versus η for Pr=0.71, 

N=1, λ=1, ω=5, t=0 

The effect of Reynolds number eR  on temperature field 

against η is displayed in figure 10. It is marked from this 

figure that the temperature boundary layer decline with the 

increase of
eR . 

Figure 11 presents the variation of skin friction ζx due to 

primary velocity versus frequency parameter ω under the 

influence on 
eR  . The figure 11 shows wavy character of the 

skin friction ζx under ω. It is also observed in figure 11 that 

the magnitude of ζx rises as 
eR  increases. We recall that 

eR  

increases means viscosity drag falls gradually as fluid friction 

increases. Further it is noticed that for large values ω the 

effect of 
eR on ζx is not so pronounced.  

 
 

Figure 11. Primary skin friction versus ω for Pr=0.71, Sc=0.3, 

N=1, M=1, P=5, h=1, m=1, Gr=1, Gm=1, λ=1, Ω=5, t=0.3 

The effect of 
eR  on ζy, the skin friction due to secondary 

velocity is demonstrated in figures 12. This figure shows that 

the change of behaviour of ζy under
eR  and ω are analogous 

to the corresponding behaviour of ζx under the same 

parameters. That is magnitude of ζy increases as 
eR  

increases. Further, figure 12 registers the fact that ζy is not 

influenced by 
eR  for large ω. 

 
 

Figure 12. Secondary skin friction versus ω for PR=0.71, 

Sc=0.3, N=1, M=1, P=5, h=1, m=1, Gr=1, Gm=1, λ=1, Ω=5, 

t=0.3 

 
 

Figure 13. Nusselt number versus ω for Pr=0.71, Re=1, N=1, 

t=0.3 

The wavy character of behaviour of the Nusselt number Nu 

like ζx and ζy under ω are reflected in the figure 13. This 

figure depicts that the magnitude of Nusselt number rises as 

injection / suction parameter λ decreases. In other words 

injection / suction causes of heat transfer to decrease 

substantially. 
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Figures 14 and 15 illustrate the variation in Sherwood 

number under the effect of 
cS and

eR . It is marked from this 

figures that curves are wavy as like figures 15 to 20 and for 

increasing values of 
cS or

eR , magnitude of Shewood 

number Sh increases. In other words rate of mass transfer 

decreases for enhancement of mass diffusivity and viscosity. 

Further it is noticed that for small values of ω, the effect of 

cS  and 
eR  is almost unpronounced. 

  

Figure14. Sherwood number versus ω for Re=1, λ=1, t=0.3 

 

 

Figure 15. Sherwood number versus ω for Sc=0.3, λ=1, t=0.3 

8. CONCLUSIONS 

1. High mass diffusivity accelerates the flow. 

2. There is a substantial fall in the magnitude of the 

secondary velocity under the effect of rotation. 

3. Thickness of the concentration boundary layer gets 

enhanced due to mass diffusivity as well as internal 

friction of the fluid. 

4. The pressure gradient has significant contribution for 

increasing the viscous drag in the mean flow direction. 

5. The magnitude of Sherwood number increases for 

increasing values of Sc or Re 

6. The study of the present problem finds wide scope of 

applications in civil engineering, chemical engineering, 

a mechanical engineering, geophysics, astrophysics etc.  
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NOMENCLATURE 

   B               magnetic induction vector,  

   
oB             magnetic inductance, Tesla 

   
oC

    
        mean concentration, K. mol. m-3 

   pC             specific heat at constant pressure, J. kg-1. K-1 

   C              dimensional concentration,  K. mol. m-3 
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     D              molar mass diffusivity, m2. s-1 

    E              electric field,   

     e               electron charge, ampere  

   mG
    

       solutal Grashof number,  

   rG             thermal Grashof number,   

     g               acceleration due to gravity, m. s-2  

     h               slip flow parameter, 

    J               current density vector,  

     k               thermal conductivity, W. m-1. K-1 

    M              Hartmann number,   

     m              Hall parameter,  

     N              radiation parameter,  

     P               pressure gradient, N. m-3 

    rP              Prandtl number, 

     p               pressure, N. m-2. 

    ep
             

electron pressure,  

     q               radiative heat, W. m-2 

    eR            Reynolds number,  

    cS              Schmidt number, 

    oT             mean temperature, K 

    T             dimensional temperature, K 

     t             time, sec 

     U              mean axial velocity, m. s-1 

    u              x – component of V , m. s-1  

     u              non dimensional velocity in x direction 

    v              y – component of V  , m. s-1 

       v               non dimensional velocity in y direction 

    ow            injection/suction velocity, m. s-1 

                  angular velocity of the field, 

                uniform angular velocity, sec-1 

                  rotation parameter, 

     
             density, kg. m-3 

                  coefficient of viscosity, kg. (m. s)-1 

                 kinematic viscosity,   m2. s-1 

                  electrical conductivity, (ohm. m)-1 

    e            electron frequency, sec-1 

     e             electron collision time, sec 

     e            number density of electron, m-3 

                  injection/suction parameter, 

                 dimensional frequency of oscillation, sec-1 

                 frequency of oscillation.  

     
             volumetric coefficient of thermal expansion, K-1 

     
             volumetric coefficient for solutal expansion,  

                      (K. mol)-1 
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