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 The aim of this study is to analyze a single component heat sink design numerically and 

analytically. The analysis included various modeling assumptions: lumped parameter; one 

dimensional and two dimensional models. It is shown that the lumped model for the considered 

problem is capable to accurately predict the steady state temperature of the heat sink with a 

small discrepancy at the center of the heat sink.  Some results are presented graphically for 

various parameters to show their effect on the steady state temperature of the heat sink 

including power input; convective heat transfer coefficient; ambient temperature; thickness of 

the heat sink and the shape of the cross section of the heat sink (circular, ellipsoidal, squared). 

A few particular applications include single solar cell under high concentration; thermoelectric 

cooling device and/or high-power led. The findings of the research are twofold: educational 

and the derived formulae serve as a quick estimate tool to predict the effect of the various 

parameters on the heat sink temperature and thus aids to estimate the thermodynamic 

efficiency of the system. 
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1. INTRODUCTION 

 

Heat sinks [1-10] are devices used in high power systems to 

remove large amount of heat generated by its components [7]. 

A heat sink is used to increase the surface area which 

dissipates the heat faster and keeps the components under safe 

operating temperature ranges according to the manufacturer 

specifications [7]. The heat sink dissipates heat to its 

surroundings (ambient) passively or actively; with several 

working conditions and materials [8]. The heat is absorbed 

into the heat sink material via heat conduction and the heat is 

dissipated to the ambient either by convection or radiation [8]. 

Heat sinks are designed using thermal conductive materials—

like copper and aluminum—and they work by dissipating heat 

through liquid cooling, natural convection, forced convection, 

or radiation [1-4]. A heat sink transfers the thermal energy 

generated by an electronic assembly or any heat generating 

component into a cooling medium. The heat is transferred 

from a higher temperature region to lower temperature region 

(fluid medium gas or liquid) by conduction, convection, 

radiation or by a combination of these heat transfer modes [1-

4]. The performance of the heat sink is determined by many 

factors including the velocity of the coolant fluid, the thermal 

conductivity of the material, the thermal interface material, 

and the attachment method [1-4]. 

Specific applications are in order. Their performance and 

optimization were based on simulation. The use of high-power 

light emitting diodes (HP-LED) for public illumination is an 

emerging subject, triggered by recent developments of 

different technologies including semiconductor materials [5-

8], fluorescence techniques [9], driver electronics [10] or 

thermal control [11] among others including concentrated 

solar cells [12-15].   

In the next paragraphs, some applications and design 

parameters are reviewed briefly, just to give a few. 

Heat sink configuration is very essential in heat sink design 

and optimization. As an example, as was demonstrated in [6], 

an analytical simulation model has been developed for 

predicting and optimizing the thermal performance of 

bidirectional fin heat sinks in a partially confined 

configuration.  

As was pointed in [7], the increase in dissipated power per 

unit area of electronic components sets higher demands on the 

performance of the heat sink. The heat sink in this case, is a 

device used in computers to remove the large amount of heat 

generated by components, including integrated circuits-ICs 

such as central processing units-CPUs, chipsets and graphics 

cards, during their operation. The heat sink is used to increase 

the surface area which dissipates the heat faster and keeps the 

ICs under safe operating temperature and this is achieved by 

carful design conditions. 

Another important factor in heat sink design is related to the 

material used and its composition is described in [8]. It is 

shown that heat sinks made of composite materials containing 

non-metallic constituents, with a thermal conductivity as much 

as an order of magnitude less than typical metallic heat sinks, 

can provide an effective alternative where performance, cost 

and manufacturability are of importance. 

For high power density as was highlighted in [9], thermal 

management is very essential especially in systems with all 

components including capacitors, inductors and 

semiconductor devices. These components used in power 

converters have maximum operating temperatures defined by 

the manufacturer. Increase in power density is the main factor 

which influences the thermal management to become so 

important and have to be treated properly. 

Thermoelectric (TE) devices as was discussed in [10] can 

provide clean energy conversion and are environmentally 

friendly. The suggested application of a thermoelectric 

generator is to exploit the natural temperature differences 
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between the air and the soil to generate small amounts of 

electrical energy. Since the conversion efficiency of even the 

best thermoelectric generators available is very low, the 

performance of the heat sinks providing the heat flow is 

critical. An experimental investigation was conducted to 

evaluate the performance of a thermoelectric (TE) module 

fitted to a conventional fin heat sink with a similarly sized heat 

source. [10] 

In a different study, high-powered LED chips were 

considered [11].  The study presented a numerical analysis and 

experimental measurements of the temperature stabilization of 

high-power LED chips that they have obtained by employing 

an aluminum passive heat sink, designed to be used in a 

compact light bulb configuration. The study demonstrated that 

their system [11] kept the temperature of the LED chip well-

below 70◦C yielding long-term operation of the device. The 

simulations have been performed for a low-cost device ready 

to install in public streetlights. The experimental 

measurements performed in different configurations show a 

nice agreement with the numerical calculations [11]. 

Solar energy applications were considered for concentrated 

photovoltaic solar cells. A thermal model for concentrator 

solar cells based on energy conservation principles was 

designed as was described by [12]. The solar cell was under 

400X concentration with no cooling aid, the cell temperature 

would get up to about 1200 °C. Metal plates were used as heat 

sinks for cooling the system, which remarkably reduces the 

cell temperature. For a fixed concentration ratio, the cell 

temperature reduced as the heat sink area increased. In order 

to keep the cell at a constant temperature, the heat sink area 

needs to increase linearly as a function of the concentration 

ratio. GaInP/GaAs/Ge triple-junction solar cells were 

fabricated to verify the model. A cell temperature of 37 °C was 

measured when using a heat sink at 400X concentration [12]. 

In a different present study [13], an analysis of the benefits 

of passive cooling for high concentrator photovoltaic (HCPV) 

systems in terms of costs and kWh annual energy yields were 

provided. The performance of the heat sink has been related to 

the calculated energy yield of a standard triple-junction 

GaInP/GaAs/Ge HCPV cell in a system deployed at several 

suitable locations across the globe. Copper and Aluminum 

heat sinks have been considered and their merits have been 

compared. The finite element analysis software package 

COMSOL was employed to gain insights regarding a simple 

flat plate heat sink [13]. 

According to [14], the heat sink geometry is another 

important factor. The effect of heat sink geometry was 

addressed in [14]. The heat transfer performance of various 

commonly used fin geometries was compared. Realistic, 

manufacturable geometries were considered for minimizing 

thermal resistance at moderate laminar air velocities and 

pressure gradients. These consist of plate fins or pin fins, 

which can be round, elliptical, or square. The plate fins can be 

continuous (parallel plates) or staggered. The pin fins can be 

inline or staggered arrays [14]. 

Modeling and Experimental Evaluation of a single 

component Passive Heat Sinks for Miniature High-Flux 

Photovoltaic Concentrators were presented in reference [15]. 

The analysis was performed numerically and analytically. The 

obtained analytical results included Bessel functions which 

requires more than intuitive skills and greater effort to perform 

the design. 

To summarize, the importance of heat sink is addressed in 

the previous paragraphs and the different design parameters 

and applications were briefly reviewed. 

The currents study aims to reconsider the single component 

heat sink design for concentrated solar cell applications that 

was considered in [11-13, 15] and LED application [14] taking 

into account several design parameters in order to derive a 

simple working formula which is capable to demonstrate these 

effects, easily and with acceptable accuracy. The methods of 

analysis used in the study are numerical and analytical in their 

nature. These methods were used to analyze different models 

which include different heat transfer modes (conduction, 

convection and radiation). The numerical analysis is used to 

check and compare the approximate analytical formulas 

derived in the following sections.  

The rest of the article is arranged as follows: the problem 

statement is given in section 2, materials and methods are 

described in section 3, lumped parameter models are addressed 

in section 4, parametric study and numerical examples are 

given in section 5, summary and conclusions are given in 

section 6, the numerical scheme of the complete model is 

given in Appendix I and finally the Microsoft excel VBA code 

is given in Appendix II. 

 

 

2. PROBLEM STATEMENT 

 

Consider a heat sink to passively dissipate an amount of 

power p (w) absorbed at its center within an area within a 

diameter of size d0 (m). The heat sink cross section could be a 

circle (Figure 1a); an ellipse (Figure 1b) or a square (Figure 

1c). The diameter of the heat sink is d (m) for the circular cross 

section.  

 

 
 

Figure 1. Schematics of the heat sink- a - circular cross 

section; b – ellipsoidal cross section; c – squared cross 

section 

 

The dimensions of the ellipse and the square are determined 

such that the volume v (m3) of the heat sink is fixed. The heat 

sink is in the shape of a plate with thickness zmax (m). The heat 

sink material is a metal with high thermal conductivity k 

(w/m/K) such as aluminum; copper; or iron. The heat energy 

is dissipated by heat convection and thermal radiation. The 

heat convection is modeled by using Newtonian heat transfer 

law with convective heat transfer coefficient h (w/m2/K) and 

the thermal radiation is modeled by using Stefan-Boltzmann 

law. Heat from the heat sink is dissipated to the surrounding 

with fixed ambient temperature Ta K. The temperature 

distribution T K of the heat sink could be determined by using 

the energy equation and the appropriate boundary conditions. 

The rate of energy E J balance with respect to time t s is given 

by (all units are expressed using SI- international system of 

units): 
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( )
E

k T
t


=  


                              (1) 

 

After applying equation (1) for cylindrical coordinates with 

a symmetric shape (circular disk) and for constant thermal 

conductivity coefficient, the energy balance equation is 

writing in the following explicit form: 

 
2 2

2 2

( ) 1cT T T T
k k

t r rr z

     
= + +     

              (2) 

 

where 𝜌 kg/m3 is the density and c J/kg/K is the heat capacity 

of the heat sinks' material (solid) and r m is the radius of the 

heat sink and z m is the vertical distance along the height of 

the disk (cylinder). 

After some mathematical manipulation and assuming 

constant thermo-physical properties of the materials, the 

energy balance equation is written as follows [16-17]: 

 
2 2

2 2

1 1T T T T

t r rr z

    
= + +     

                  (3) 

 

where 𝛼 is the thermal diffusivity (𝛼 =
𝑘

𝜌𝑐
). 

At zero radius Eq. (3) is replaced by 
1

𝛼

𝜕𝑇

𝜕𝑡
= 2

𝜕2𝑇

𝜕𝑟2 +
𝜕2𝑇

𝜕𝑧2. 

This equation is linear one dimensional partial differential 

equation in time and two dimensional in space. In order to 

fully specify the aforementioned temperature distribution, 

initial temperature condition is required Ti along with four 

boundary conditions at the edges of the heat sink. The 

boundary conditions are given as follows: 

At r=0, 

 

0
T

r


=


                                    (4) 

 

 

 

At r=R (=d/2 radius of the heat sink), 

 

4 4( ) ( )a

T
k h T T T T

r



− = − + −


                     (5) 

 

At z=0, 
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( ) ( )
2

( ) ( ) 0
2

a

a

dT
k h T T T T p r

z

dT
k h T T T T r

z






− + − + − =  


− + − + − = 
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           (6) 

 

And at z=zmax, 

 

4 4( ) ( )a a

T
k h T T T T

z



− = − + −


                    (7) 

 

Eq. (3) alongside with the boundary conditions (Eqns. 4-7) 

constructs the mathematical model of the heat sink. This set of 

equations is non-linear due to the nonlinearity of some of the 

boundary conditions, its solutions could be achieved 

numerically (the numerical method of solution will be 

discussed in the next section). Fortunately, the high 

conductivity of the solid material will simplify the partial 

differential equation from two dimensional to a lumped model. 

 

 

3. METHODS AND MATERIALS 

 

As mentioned earlier at the end of the previous section, the 

solution of the mathematical model could be achieved 

numerically (details of the numerical solution will be 

presented in appendix I – the numerical scheme and in 

appendix II – its implementation using Microsoft Excel VBA). 

The materials of the heat sink analyzed in this study include 

aluminum, copper and iron. The following table (table 1) 

summarizes the properties used in the numerical examples 

section. 

 

Table 1. Thermo-physical properties of the heat sink materials used in the study 

 
 

Material 

Thermal conductivity w/m/K Density 

Kg/m3 

Heat capacity 

J/kg/K 

Thermal diffusivity m2/s 

Aluminum type 6061-T6 167 2700 902 6.8572x10-5 

Copper 401 8960 385 11.6250x10-5 

Iron 80.4 7874 449 2.2741x10-5 

The geometry dimensions (diameter and thickness) are 

picked such that the volume is fixed to 25cc [15]. Table 2 

summarizes the value of the parameters and constant used to 

produce the plots given in the examples section. 

The combination of the high thermal conductivity of the 

solid materials and the relatively small characteristic length Lc 

with passive cooling, facilitate the simplification of the 

mathematical model by means of the Biot number (=
ℎ𝐿𝑐

𝑘
) 

[18]. The temperature distribution of the heat sink could be 

considered uniform for Biot numbers less than 0.1 [19]. For 

the vertical direction Biotz =0.00015 and for the radial 

direction Biotr=0.0012 (see table 2). These values suggest that 

the temperature of the heat sink could be considered uniform 

(lumped). This will be treated in the next section. 

 

Table 2. Geometry dimensions and other parameters and 

constants used in the calculations 
 

Name Value 

Diameter of the heat sink 

m3 

0.08 

Thickness of the heat sink - 

m 

0.005 

Surrounding (ambient) 

temperature - K 

300 

Convective heat transfer 

coefficient w/m2/K 

5 

Biot number =hzmax/k 

vertical 

Biot number =hd/2/k radial 

0.00015 

0.0012 

Stefan – Boltzmann 

constant - w/m4/K 

 

=4*Arc tan(1) 3.141592654 
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4. LUMPED PARAMETER MODELS 

 

In this section, the mathematical model will be simplified 

following the lumped system approach. Four cases will be 

considered: the complete lumped model and three 

approximations: heat convection dominated; thermal radiation 

dominated and approximate combined convection-radiation 

model. 

 

4.1 Lumped heat sink model 

 

Consider a heat sink as was introduced in section 2 (see Fig, 

1) but now the temperature is uniform all over the space. The 

power absorbed by the heat sink is dissipated by modes of heat 

convection and thermal radiation heat transfer laws. The 

energy balance equation is given by: 

 

4 4( )
( ) ( )a a

d cvT
p hA T T A T T

dt


= − − − −          (8) 

 

And the heat transfer area A is given by: 

 
2

max
2

d
A dz


= +                             (9) 

 

Eq. (9) is nonlinear with respect to temperature and could 

be solved by means of Runge-Kutta method of order fourth 

(RK4). In the following subsections, further simplifications 

allow approximate analytical solutions to predict the 

temperature of the heat sink as a function of time. 

 

4.2 Approximate convection-radiation model 

 

Eq. (8) could be simplified by introducing the following 

substitution: 

 

( ) (1 ( )) aT t t T= +                            (10) 

 

where 𝜃(𝑡) is the normalized shift of the heat sink temperature 

relative to the ambient temperature. By introducing Eq. (10) 

into Eq. (8) and after mathematical manipulations, the 

following first order ordinary differential equation for the 

normalized heat temperature shift of the heat sink is given by: 

 

2

1 2

d
c c

dt


  − = + −                           (11) 

 

where 𝜏 =
𝜌𝑐𝑣

6𝜎𝐴𝑇𝑎
3; 𝑐1 =

2

3
+

ℎ

6𝜎𝑇𝑎
3; and 𝑐2 =

𝑝

6𝜎𝑇𝑎
3. 

The solution of Eq. (11) is given by the following 

parametric relations: 
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           (12) 

 

The steady state heat sink temperature 𝜃𝑠  could be 

evaluated by the following expression: 

 

2

1

2

1

2

1 4 1
s

c
c

c
c

 =

+ +

                              (13) 

 

4.3 Heat convection model 

 

Eq. (8) could be reduced to linear form after introducing the 

radiative heat transfer coefficient ℎ𝑟 = 𝜎(𝑇2 + 𝑇𝑎
2)(𝑇 + 𝑇𝑎). 

The average temperature is used to estimate the value of hr. 

The linear form of Eq. (8) is given by: 

 

( )( ) (1 )( )r a c a

dT
cv p A h h T T p Ah T T

dt
 = − + − = − + −  (14) 

 

where 𝜉𝑐 is the ratio between the radiative heat transfer 

coefficient and the convective heat transfer coefficient. The 

solution of Eq. (14) is given by: 

 
(1 )

( ) 1
(1 )

cAh
t

cv

a

c

p
T t T e

Ah







+
− 

= + − 
 +  

             (15) 

 

4.4 Heat radiation model 

 

Eq. (8) is rewritten after introducing the ration between the 

convective heat transfer coefficient and the radiative heat 

transfer coefficient 𝜉𝑟  as follows: 

 

( )4 4(1 )r a

dT
cv p A T T

dt
  = − + −                (16) 

 

For convenience of the reader, Eq. (16) is rearranged after 

separation of variables as follows: 

 

4 4 32 r

dT dt

T  
=

−
                             (17) 

 

where 𝛽 = √𝑇𝑎
4 +

𝑝

𝐴𝜎(1+𝜉𝑟)
 is the steady state temperature and 

𝜏𝑟 =
𝜌𝑐𝑣

2𝛽3𝐴𝜎(1+𝜉𝑟)
 is a time constant of the problem. After using 

the partial fractions decomposition of Eq. (17) followed by 

integrating the appropriate fractions, the final solution of Eq. 

(17) is given by: 

 

1
ln

2

a a

a r

T TT T t
ArcTan ArcTan

T T



    

  −     +
+ − =        − +       

 (18) 

 

Eq. (18) is an implicit relation of the heat sink temperature 

with respect to time. 

 

 

5. PARAMETRIC STUDY AND NUMERICAL 

EXAMPLES 

 

5.1 Parametric study 

 

The heat sink's basic configuration is a circular disk with a 

diameter of size 0.08 m and thickness of 0.005 m. the heat 

sink's material is aluminum. The volume of the heat sink is 

approximately 25 cc. The steady state temperature of the heat 
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sink is given by Eq. (13) which is used to study its changes 

with respect to the following parameters: 

Distributed vs. limped models: the two dimensional model 

is solved numerically followed by lumped models. The 

lumped models are motivated by small Biot numbers in the 

radial and axial directions of the disk heat sink. 

Materials of the heat sink: the heat sink is made of metals 

with high conductivity coefficient. three materials are 

considered – aluminum, copper and iron. 

Power input: the power input application dependent-

concentrated solar cell, thermoelectric generator, or high 

power led. Values of the power input in the range 1-10 watts 

are used for demonstration. 

Convective heat transfer coefficient: convective heat 

transfer ranges from natural convection to forced convection 

with different values of the convective heat transfer coefficient. 

Values in the range 1-10 w/m2/K are used for demonstration. 

Ambient temperature: the ambient temperature could be 

changed seasonally or geographically or by means of air 

conditioning according to specifications and requirements. 

Values of the ambient temperature in the range zero – 35 

degrees Celsius are used for demonstration. 

Thickness of the heat sink: the thickness of the considered 

heat sink attains approximately 10 % of the heat transfer to the 

ambient. Values in the range 1-5 mm are used for 

demonstration. 

Geometric shape of the cross section of the heat sink: 

three options for the shape are considered-circular, ellipsoidal 

and squared. The area for heat dissipation from the heat sink 

for the circular shape is given by Eq. (9). Similar expressions 

are given below for the ellipsoidal and squared shapes, under 

fixed volume condition. The volumes of the disk for circular 

shape; ellipsoidal shape; and the squared shape are given by: 

 
2

2

max max max
; ; ;

4

d
v z v abz v s z = = =        (19) 

 

where a, b are the major and minor radiuses of the ellipse and 

s is the side of the square. 

For ellipsoidal shape Eq. (9) is replaced by: 

 
22

max

3
( ) 1 ;

2 10 4 3

d a b
A a b z

a b


  



−   
= + + + =   

++ −   
     (20) 

 

In Eq. (20) the perimeter of the ellipse is calculated by 

Ramanujan approximation for circumference of an ellipse 

(https://www.johndcook.com/blog/2013/05/05/ramanujan-

circumference-ellipse/). In order to fully specify the 

dimensions of the ellipse, the minor radius b is arbitrarily 

assumed to be the ratio between the major parameter a and the 

golden section ratio 𝜙 =
1+√5

2
, i.e. (𝑏 =

𝑎

𝜙
).  

Finally, for squared cross section, Eq. (9) is replaced by: 

 
2

max4
2

d
A sz= +                            (21) 

 

5.2 Numerical examples 

 

In this section, the analysis of the heat sink is demonstrated 

numerically and the results are presented graphically. The 

calculation is performed numerically and the partial 

differential equation (pde) is approximated with a forward 

finite difference scheme [16] and solved using Microsoft 

Excel's VBA. The calculation is stopped whenever steady state 

condition was reached, such that the dissipated heat to the 

ambient via convection and radiation equals the power input. 

The process of the solution was repeated for different materials 

(see Figure 2). 

 

 
 

Figure 2. Dissipated power of the heat sink vs. time for 

different materials – aluminum (upper curve), copper (middle 

curve) and iron (lower curve). The input power was 2w 

 

The steady state temperature distribution of the heat sink 

was observed for the considered materials as a function of the 

radial position measured from the center of the disk. The 

maximum temperature was observed at the center and it was 

slightly reduced towards the extreme of the disk. The 

temperature distribution is a function of the thermal 

conductivity with the following observation: the lower the 

thermal conductivity, the temperature (see Figure 3). 

 

 
 

Figure 3. Steady state temperature distribution of the heat 

sink as a function of the radial position measured from the 

center of the disk. Three materials were considered: iron 

(upper curve), aluminum (middle curve) and copper (lower 

curve) 

 

The temperature distribution suggested a uniform 

temperature of the heat sink and the distributed model was 

replaced by a lumped parameter model (Eq. 8). This equation 

was solved numerically by means of RK4 method and was 

approximated analytically (Eq. 12) and the results were plotted 

as a function of time (see Figure 4). Excellent agreement 

between the two results was observed. 
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The lumped parameter model was further simplified using 

convective model (Eq. 15) and radiative model (Eq. 18). The 

results are presented graphically (see Figure 5). 

 

 
 

Figure 4. The temperature of the heat sink vs. time as was 

produced numerically by means of RK4 method which 

solved Eq. 8 and approximated analytically which is given by 

Eq. 12 

 

 
 

Figure 5. Temperature of the heat sink of the convective 

model and the radiative model vs. time 

 

 
 

Figure 6. Steady state temperature as a function of power 

input 

 

The steady state temperature of the heat sink (Eq. 13) is 

studied parametrically to check for the effects of: power input 

(Figure 6); heat convection coefficient (Figure 7); ambient 

temperature (Figure 8); and thickness of the heat sink for 

different materials (Figure 9). 

Effect of the power input on the steady state temperature of 

the heat sink is shown graphically (see Figure 6). 

Effect of the convective heat transfer coefficient on the 

steady state temperature of the heat sink is shown graphically 

(see Figure 7). 

 

 
 

Figure 7. Steady state temperature as a function of 

convective heat transfer coefficient 

 

Effect of the ambient temperature on the steady state 

temperature of the heat sink is shown graphically (see Figure 

8). 

 

 
 

Figure 8. Steady state temperature as a function of 

ambient temperature 

 

 
 

Figure 9. Steady state temperature as a function of the 

thickness of the heat sink. Different shapes of the heat sink 

were considered 
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Effect of the thickness of the heat sink on the steady state 

temperature of the heat sink is shown graphically (see Figure 

9). 

 

 

6. SUMMARY AND COCLUSIONS 

 

In this study, a single component heat sink was considered. 

The type of applications includes high concentration solar 

cells, thermoelectric power generation, high power LED and 

more.  

The two dimensional heat sink model were solved 

numerically and its solution were compared with the lumped 

parameter model. The two dimensional model allows 

parametric studies and the effect of different materials 

(aluminum, copper and iron) was obtained. 

The lumped parameter model was solved using the RK4 

method and analytically using different approximations and 

modeling assumptions: convective, radiative and mixed. It 

was shown that the steady state temperature was in a good 

agreement while comparing the results achieved from the 

solution of the two dimensional model and from the lumped 

parameter model. This agreement is in line with the check of 

Biot numbers. The values of Biot numbers calculated radially 

and axially were less than 0.1 which means that lumped 

parameter assumption should be followed.  In fact, small 

discrepancies exist especially near the center of the heat sink.  

The good agreement of the steady state temperature 

achieved from the two dimensional model and lumped 

parameter model allowed the derivation of simple formulae to 

predict the steady state temperature of the heat sink and 

allowed parametric study of the several parameters involved 

in the problem. These parameters included: power input; 

convective heat transfer coefficient; ambient temperature; the 

thickness if the heat sink; and the effect of the geometrical 

shape of the heat sink (circular, ellipsoidal and squared). These 

effects were shown graphically (see Figures, 6-9). 

The transient response was also achieved and the response 

time of the considered problem was approximately 30 minutes. 

The proposed formulae for the steady state temperature of 

the heat sink could be used as a quick tool of the heat sink 

optimization and parametric calculations of the several 

involved parameters could be performed easily. 

Finally, we recommend extending the results of this study 

by considering the application of single solar cell and its heat 

sink design for space applications, were air currents are 

missing, both experimentally and analytically. 
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NOMENCLATURE 

 

A area, m2  

C specific heat, J. kg-1. K-1 

E 

R 

T 

Ta 

c1, c2 

d 

d0 

h 

k 

p 

energy, J 

radius of heat sink, m 

temperature of heat sink,  

ambient temperature,  

parameters used in equations 11, 12 

diameter of heat sink, m 

diameter of irradiated area, m 

coefficient of heat convection, W m-

2 K-1 

thermal conductivity, W.m-1. K-1 

power W 

R 

z 

t  

radial direction, m 

axial direction, m 

time, s 

 

Greek symbols 

 

 thermal diffusivity, m2. s-1 

 parameter used in equation 17, 18 

 desity, kg m-3 

Ɵ 

Ɵs 

dimensionless temperature used i 

equation 10 

dimensionless temperature used i 

equation 13 

 

 

Stefan Boltzmann coefficient, W. 

m-2. K-4 

time constant. S 

r 

* 

Radiation 

dimensionless temperature 

 

Subscripts 

 

n 

 

Index 

 

ir, iz  

 

 

 

time step 

 

 

 

radial step, axial step 

 

 

APPENDIX I 

 

Finite difference scheme of the heat sink model 

The first order differential of the temperature with respect 

to time is approximated with forward difference scheme, but 

for radial and axial positions, a central difference schemes 

were used for the first and second differentials. The boundary 

conditions were treated first and the pde were treated second, 

to reflect the order of the numerical calculations while 

implemented using Microsoft Excel VBA. The radial position 

is divided into nr divisions and the thickness of the heat sink 

is divided into nz divisions. The radial position is defined by 

using ir index and the axial position is defined by using iz 

index. Both indices start at zero.  The following equations are 

the finite difference version of the mathematical model. 

Boundary condition at zero radius and zero height 

(increasing height faces downwards) is given by: 

 

( )
( )4 4

(0,1) (0, 1)
( (0,0) ) (0,0)

2

n n

n n

a a

T T
p k h T T T T

dz


− −
= − + − + − (I.1) 

 

where the superscript n denotes time step and the (i,j) 

indices denote radial and axial positions respectively. Eq, (I.1) 

is used for zero height position and all radiuses except zero. 

Similarly, the boundary condition at maximum height is 

given by: 

 

( )
( )4 4

( , 1) ( , 1)
( ( , ) ) ( , )

2

n n

n n

a a

T ir nz T ir nz
k h T ir nz T T ir nz T

dz


+ − −
− = − + −  (I.2) 

 

Following the same procedure, the boundary condition at 

zero radius is given by: 

 

( 1, ) ( 1, )n nT iz T iz− = +                           (I.3) 

 

Similarly, the boundary condition at maximal radius is 

given by: 

 

( )
( )4 4

( 1, ) ( 1, )
( ( , ) ) ( , )

2

n n

n n

a a

T nr iz T nr iz
k h T nr iz T T nr iz T

dr


+ − +
− = − + −  (I.4) 

 

The pde at zero radius is given by: 

 

( )1

2

2

( , ) ( , )1 ( 1, ) 2 ( , ) ( 1, )
2

( , 1) 2 ( , ) ( , 1)

n n n n n

n n n

T ir iz T ir iz T ir iz T ir iz T ir iz

t r

T ir iz T ir iz T ir iz

z



+ − + − + −
= +

 

+ − + −



          (I.5) 

 

And finally, the pde everywhere except at zero radius is 

given by: 

 

( )

( )

1

2

2

( , ) ( , )1 ( 1, ) 2 ( , ) ( 1, )

( 1, ) ( 1, ) ( , 1) 2 ( , ) ( , 1)

2

n n n n n

n n n n n

T ir iz T ir iz T ir iz T ir iz T ir iz

t r

T ir iz T ir iz T ir iz T ir iz T ir iz

ir r r z



+ − + − + −
= +

 

+ − − + − + −
+

  

 (I.6) 

 

Convergence and stability are granted for proper choice of 

time step [20]. 

 

 

APPENDIX II 

 

Microsoft Excel VBA code 

Sub sol() 

Dim tre(-1 To 9, -1 To 3) As Double 

'temperature array 8x2 radius x thickness 

'pproximately uniform in thickness 

Pi = 4# * Atn(1#) 

Cells(1, 4) = Pi 

h = 5# 

sig = 0.00000005667 

d = 0.08 
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d0 = 0.005 

Z = 0.005 

dr = d / 2# / 8# 

dz = Z / 2# 

'aluminum type 6061-T6 

ro = 2700# 

c = 902# 

k = 167# 

' 

'copper 

'ro = 8960# 

'c = 385# 

'k = 401# 

'iron 

'r = 7874# 

'c = 449# 

'k = 80.4 

alfa = k / ro / c 

dt = 0.5 / alfa / (1# / dr ^ 2 + 1# / dz ^ 2) 

'result-check dt=0.036, take dt/10 for accuracy. 

'pick dt=0.004 (250 time steps = 1 sec) 

dt = 0.004 

p = 2# 

pdis = p * 4# / d0 ^ 2 / Pi 

nz = 2 

nr = 8 

dtr = alfa * dt / dr ^ 2 

dtz = alfa * dt / dz ^ 2 

Ta = 300# 

'initial state 

For iz = -1 To nz + 1 

For ir = -1 To nr + 1 

tre(ir, iz) = Ta 

Next ir 

Next iz 

'reset heat transfer 

q1 = 0# 

q2 = 0# 

q3 = 0# 

q = 0# 

Timee = 0# 

'loop over time 

For it = 0 To 1000000 

Timee = it * dt 

'print state every second 

If ((it Mod 250) = 0) Then 

Cells(2 + it / 250, 14) = Timee / 60# 

Cells(2 + it / 250, 15) = q 

Cells(1, 3) = it 

For iz = -1 To nz + 1 

For ir = -1 To nr + 1 

Cells(3 + iz, 4 + ir) = tre(ir, iz) 

Next ir 

Next iz 

End If 

'reset heat transfer 

q1 = 0# 

q2 = 0# 

q3 = 0# 

q = 0# 

'r=0, z=0 

tre(0, -1) = tre(0, 1) + 2# * dz / k * (pdis - h * (tre(0, 0) - Ta) 

- sig * (tre(0, 0) ^ 4 - Ta ^ 4))

'r=0, z=0.005

tre(0, nz + 1) = tre(0, nz - 1) + 2# * dz / k * (0# * pdis - h *

(tre(0, nz) - Ta) - sig * (tre(0, nz) ^ 4 - Ta ^ 4))

'bc at r=0, all z

For iz = 0 To nz

tre(-1, iz) = tre(1, iz)

Next iz

'bc at r=R, all z

For iz = 0 To nz

tre(nr + 1, iz) = tre(nr - 1, iz) + 2# * dr / k * (0# * pdis - h *

(tre(nr, iz) - Ta) - sig * (tre(nr, iz) ^ 4 - Ta ^ 4))

Next iz

'z=0, all r

For ir = 1 To nr

tre(ir, -1) = tre(ir, 1) + 2# * dz / k * (0# * pdis - h * (tre(ir,

0) - Ta) - sig * (tre(ir, 0) ^ 4 - Ta ^ 4))

Next ir

'z=h, all r

For ir = 1 To nr

tre(ir, nz + 1) = tre(ir, nz - 1) + 2# * dz / k * (0# * pdis - h *

(tre(ir, nz) - Ta) - sig * (tre(ir, nz) ^ 4 - Ta ^ 4))

Next ir

'pde at r=0, all z

For iz = 0 To nz

tre(0, iz) = tre(0, iz) * (1# - 4# * dtr - 2# * dtz) + 4# * tre(1,

iz) * dtr + dtz * (tre(0, iz + 1) + tre(0, iz - 1))

Next iz

'pde elsewhere

For iz = 0 To nz

For ir = 1 To nr

tre(ir, iz) = tre(ir, iz) * (1# - 2# * dtr - 2# * dtz) + dtr * (tre(ir

+ 1, iz) + tre(ir - 1, iz)) + dtr / 2# / ir * (tre(ir + 1, iz) - tre(ir

- 1, iz)) + dtz * (tre(ir, iz + 1) + tre(ir, iz - 1))

Next ir 

Next iz 

For ir = 0 To nr - 1 

tav0 = (tre(ir, 0) + tre(ir + 1, 0)) / 2# 

q1 = q1 + (h * (tav0 - Ta) + sig * (tav0 ^ 4 - Ta ^ 4)) * 2# * 

Pi * (ir + ir + 1) * dr / 2# * dr 

tav1 = (tre(ir, nz) + tre(ir + 1, nz)) / 2# 

q2 = q2 + (h * (tav0 - Ta) + sig * (tav0 ^ 4 - Ta ^ 4)) * 2# * 

Pi * (ir + ir + 1) * dr / 2# * dr 

Next ir 

For iz = 0 To nz - 1 

tavz = (tre(nr, iz) + tre(nr, iz + 1)) / 2# 

q3 = q3 + (h * (tavz - Ta) + sig * (tavz ^ 4 - Ta ^ 4)) * 2# * 

Pi * nr * dr * dz 

Next iz 

q = q1 + q2 + q3 

Next it 

End Sub. 
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