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 Transversal cross-section pores of lotus-type porous materials are generally considered 

circular; however, they exhibit various pore geometries, which affect their effective 

properties. The main objective of this work is to develop a generalized model which 

allows estimating the effective Young’s modulus of multi-void shape porous 

microstructures by exploiting a relationship developed to evaluate the effective Young’s 

modulus of porous materials with single-void shape. A procedure based on free software 

is then proposed to allow the application of the proposed generalized model on real lotus-

type porous material images to estimate the effective Young’s modulus. The free tool 

allows the processing of real porous materials images to obtain multi-void shape 

microstructures and their pores parameters data. The validation of the generalized model 

has been established by confronting the obtained results with experimental data taken 

from literature; an excellent agreement was observed. Therefore, it can be concluded that 

the proposed procedure associated with the generalized model can be used efficiently for 

predicting the effective Young’s modulus of the multi-void porous materials, particularly 

lotus-type porous materials. 
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1. INTRODUCTION 

 

Predicting effective physical and mechanical properties of 

porous materials is of great interest in large research sciences 

and industrial applications. The development of estimation 

models is motivated by the availability of several experimental 

data in the specialized literature.  

For example, Kee et al. [1] experimented with the tensile 

and compressive behavior of GASAR porous copper, which 

confirmed a finite element computational simulation model. 

Nakajima et al. [2] described the fabrication of porous copper. 

They observed that its mechanical properties, such as ultimate 

tensile strength and yield strength, are superior to conventional 

porous materials such as sintered and foamed materials. Hyun 

et al. [3] examined the anisotropy in the tensile behavior of the 

porous copper. The ultimate tensile strength and yield strength 

were studied in two cases when the tensile is parallel and 

perpendicular to the pore axis. A model based on Balshin [4] 

was proposed. An experimental and computational work 

performed by Ichitsubo et al. [5], measured the elastic 

constants of a lotus-type porous copper. It presented a 

micromechanics calculation prediction model which 

confirmed experimental anisotropic elastic constants. Ikeda et 

al. [6] studied the tensile behavior of a lotus-type porous 

stainless steel. They found that the ultimate tensile strength 

model obeys the same one of lotus-type porous copper in the 

direction perpendicular to the pore axis. The compressive 

behavior of porous copper has been investigated by Hyun and 

Nakajima [7]. The variation of the porosity confronted yield 

strength. 

Tane et al. [8] studied the elastic properties of lotus iron 

experimentally and found that they obey the well-known stress 

concentration model. In the study by Sueno et al. [9], the effect 

of the specimen thickness variation on the ultimate tensile 

strength of lotus-type porous copper was investigated. It has 

observed a significant effect when the width of the specimen 

is larger enough than the pore diameter. Predicting yield 

behaviors of porous metals was the object of the work of Tane 

et al. [10]. Using the mean-field method, the proposed model 

has taken account of the pore morphology in the anisotropies 

of the metal matrix. It has been validated by comparing the 

numerical results of the lotus-type porous iron with the 

experimental ones. Ide et al. [11] studied the compressive 

behavior of lotus-type porous TiAl characterized by high 

temperature and high strength. He has fitted the Boccaccini 

model to experimental results and concluded that both pore 

morphology and matrix ductility significantly affect 

compressive properties. 

Nakajima [12] developed three techniques to fabricate 

lotus-type metals, and he observed that the behaviors of the 

mechanical and physical properties are due to the anisotropic 

porous structure. The fitting of the Boccaccini model to 

experimental results showed good precision. He also 

concluded that the anisotropic mechanical strength is due to 

the phenomenon of the stress concentration around the pores. 

Many works have focused on modeling the pore 

morphology effect on porous materials' physical and 

mechanical properties by exploiting the experimental data 

from the studies cited above. For example, using the series 

model, parallel model, effective medium theory, and Maxwell 

models, Kaddouri et al. [13] proposed an estimation model for 

the effective thermal conductivity of porous materials. 
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Masmoudi et al. [14] proposed a model for the prediction of 

the effective ultimate tensile strength of lotus-type porous 

copper using the multi-scale numerical homogenization 

technique where the obtained numerical results were 

compared to the analytical model of Boccaccini et al. [15] and 

confronted to experimental data of [12]; the proposed formula 

was in good agreement. 

In recent work, Bourih et al. [16] developed a model which 

estimates the pore shape effect on the effective Young's 

modulus of porous microstructures with a single identical 

circular or elliptical shape. The multi-scale homogenization 

technique based on the representative volume element was 

used, and the results were validated by comparison to 

experimental data taken from the literature. 

The main object of the present study is to develop a more 

general model, based on the one developed by Bourih et al. 

[16], allowing estimation of the effective Young's modulus by 

considering microstructures with not a single pore shape but 

several pore shapes. 

The procedure is based on using the mean-field 

homogenization technique to develop the generalized model, 

which will be validated by application to 2D porous 

microstructures pictures obtained by the Image J software. 

 

 

2. REPRESENTATIVE MODEL 

 

2.1 Presentation of the employed model 

 

The model that will be generalized in this study was 

suggested by Bourih et al. [16]; it predicted the effective 

Young's modulus of porous materials considering the pore 

shape effect. This model relates to a type of two-phase porous 

matrix where the microstructure is characterized by a random 

distribution of pores having a single type of cross-sectional 

contour morphology. 

 

       
 

Figure 1. Examples of porous microstructures studied by 

Bourih et al. [16]  

 

Figure 1 illustrates examples of porous microstructures that 

the considered model can treat.  

It is noted, here, that these microstructures with a single 

pore shape are not real but virtual. They are considered to 

investigate the pore shape effect on the effective property 

studied and to model this effect. 

The following equation expressed the model:  

 

Eeff

Em

=(1-P)
0.6(

1
r
+3)

 (1) 

 

Eeff is the effective Young’s modulus (EYM) of the porous 

material, Em is Young’s modulus of the fully dense material, 

P is the porosity is the ratio of the total pores area and matrix 

area, and r is the ratio of the minor and major radii of the 

elliptical pores, see Figure 2. 

2.2 Proposed generalized model 

 

In this paper, it should be noted that since the studied multi-

void shape lotus type porous microstructures contain several 

elliptical pore shapes with different aspect ratios, these 

microstructures are considered multiphase, i.e., the matrix is 

the phase containing different pores with different shapes; 

each pore is regarded as a different phase.  

The employed model, which has been developed by Bourih 

et al. [16] for porous microstructures with a single pore shape, 

given by equation (1), is generalized to multi-void porous 

microstructures by using the two-step mean-field 

homogenization technique, which has mainly been used to 

estimate the effective properties of multiphase materials, see 

[8] and [17-26]. 

 

 
 

Figure 2. Pore geometry 

 

The generalized model is deduced by applying the mean-

field formulation. The Eq. (1), applied as a model to estimate 

the effective Young's modulus of porous microstructures with 

a single-shape, is used in the first step of the mean-field 

technique to compute the effective partial property of each 

decomposed volume containing one phase shape. The mean-

field second step is then applied to calculate the average of the 

properties of the different volumes obtained in the first step; 

the obtained relationship represents the proposed generalized 

model given by expression (2). 

 

Eeff

Em

= ∑
Pi

P

nph

i=1

 (1-P)
0,6(

1
ri

+3)
 (2) 

 

Eeff  is the effective Young’s modulus, Em is the matrix 

Young’s modulus, nph is the phase or pore number, Pi is the 

phase porosity, P is the total porosity and ri is the phase aspect 

ratio.  

 

 

3. APPLICATION OF THE PROPOSED MODEL 
 

The application of the proposed model, represented by Eq. 

(2), requires the parameters 𝑃𝑖  and 𝑟𝑖  of each phase. These 

parameters are obtained by the use of an image processing tool. 

In this study, the free ImageJ software is used. 
 

3.1 Description of the ImageJ software 

 

The purpose of the ImageJ tool, in this study, is to process 

the images of the lotus-type porous material microstructures 

by fitting the contour shape of the cross-section of the pores. 

By inspecting the pictures, it can be seen that the contour shape 

of the pores, obtained by a moulding process called Gasar and 

which is supposed to be circular, is, however, irregular. The 

used tool approaches these contours to be elliptical or circular 
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shapes. The obtained porous microstructures, containing 

different pore shapes, will be used to computational the 

effective Young’s modulus. The ImageJ tool processed the 

real pictures of lotus-type porous copper in three steps, see 

Table 1. The obtained porous microstructure is considered a 

randomly dispersed multiphase porous material containing np 

non-overlapped pores. 

 

Table 1. Processed porous microstructures 

 
 

Step Processing description Result 

0 
The picture of real lotus porous copper 

microstructure is used to be processed. 

 

1 

The real microstructure picture is 

transformed into 8 bits-greyscale and the 

matrix and pores are identified. 
 

2 

Separation of the different color phases to 

obtain matrix and pore phases which are 

numbered. Pore shapes are irregular. 

The different pore shapes are identified by 

the different colors. 
 

3 

Fitting the irregular morphology of pores 

to obtain the different aspect ratios of 

elliptical pores. 
 

 

After the final step 3, the ImageJ tool gives the results which 

are considered data as the example shown in Table 2. It must 

be noted that in step 2 of ImageJ software, described in Table 

1, this configuration of microstructures with the different 

colors is cited just for information and is not used in the 

proposed procedure. 

   

Table 2. Obtained results by ImageJ processing 

 
Pore 1 2 3 … 208 

Area 5,436 8,713 41,324 … 1,349 

Xi 190.296 468.549 906.794 … 364.438 

Yi 33.492 28.578 114.175 … 3,752.932 

Major 124.094 200.566 238.480 … 523.83 

Minor 55.775 55.312 220.628 … 96.385 

Angle 178.428 179.982 112.506 … 17.820 

 

The ImageJ tool processing results of real porous 

microstructures are composed of RVE images with pores fitted 

by ellipses. See Table 1, step 3 and the pore parameter values 

(data); see Table 2. The data will be used to apply the proposed 

model and the RVEs for the numerical computation of the 

effective properties by the multi-scale homogenization 

technique. The application results will be compared to 

numerical homogenization to be validated. 

 

3.2 Computational procedure  

 

3.2.1 Porous microstructures processing  

Stationarity is a morphological analysis characteristic of 

heterogeneous mediums random sets. A set (volume) is said to 

be stationary if the property of the medium remains invariable 

by translation (change of position) of the volume [27], see 

Figure 3. The effective properties computation is carried out 

using the multi-scale finite element homogenization technique 

based on the representative volume element RVE, which must 

satisfy the stationarity criteria. 

In this study, the RVE is taken equal to 200 voids as in the 

study of ref. [16]. This section will check the considered 

microstructures for this stationarity condition. The strategy 

translates the predefined volume to different positions on the 

studied microstructure picture to obtain different 

configurations. To satisfy the RVE stationarity condition, the 

calculated effective property for all formats must be the same.  

Five positions have been considered; each is represented by 

a different colored frame in Figure 4. 

 

 
 

Figure 3. RVE stationarity characteristic 

 

 
 

Figure 4. The different considered positions of RVE 

 

The five positions give the different RVEs represented in 

Figure 5. 

 

                                
(a) position 1                (b) Position 2               (c) Position 3 

                 
(d) Position 4               (e) Position 5 

 

Figure 5. The five different RVE configurations 

 

All these RVE porous microstructure pictures in Figure 5 

must be processed using the ImageJ software by applying the 

three-step process as illustrated in section 3.2. The obtained 

parameters of the green RVE (position 1) processing are 

shown, as an example, in Table 2. Due to the considerable 

number of results, only the first three lines and the last, number 

208, are displayed. 

 

3.2.2 Application of the proposed model 

It must be noted that only parameters: matrix area (Am), pore 

area (Ai), minor, and major, obtained by the ImageJ processing, 

are helpful in the application of the proposed model 

represented by Eq. (2). Note that the ratio is defined as the 

quotient of minor and major. 

The processing results of the five RVEs presented in Figure 

5 are all displayed in Tables 3, 4, 5, 6, and 7. Only the first 
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three and the last line are represented. 

It must be remembered that the adopted RVE in this study 

is equal to 200 pores, the same as determined by Bourih et al. 

[16] and as mentioned in section 3.2.1. This RVE is used to 

determine the five different positions, which allow for 

verification of the stationarity condition. The results obtained 

by the ImageJ software processing applied to the five porous 

microstructures pictures show a difference in the pore numbers; 

this can be explained by the fact that this RVE is numerical, 

unlike the picture RVEs, which are real. 

 

Table 3. Green RVE (position 1) results matrix area Am = 

14,686,705 

 
Pore i 1 2 3 … 208 

Ai 5,436 8,713 41,324 … 1,349 

Ratio 0.449 0.275 0.925 … 0.184 

Porosity  0.00037 0.00059 0.0028 … 0.00091 

 

Table 4. Pink RVE (position 2) results matrix area Am = 

12,870,921 

 
Pore i 1 2 3 … 189 

Ai 12,597 21,424 6,882 … 2,101 

Ratio 0.642 0.325 0.606 … 0.253 

Porosity 0.00097 0.00166 0.00053 … 0.00016 

 

Table 5. Blue RVE (position 3) results matrix area Am = 

13,658,593 

 
Pore i 1 2 3 … 194 

Ai 3,026 36,192 1,079 … 1,090 

Ratio 0.195 0.506 0.122 … 0.207 

Porosity 0.00022 0.00264 0.00007 … 0.00007 

 

Table 6. Yellow RVE (position 4) results matrix area Am = 

14,590,625  

 
Pore i 1 2 3 … 211 

Ai 10,510 66,204 3,845 … 4,077 

Ratio 0.286 0.388 0.539 … 0.415 

Porosity 0.00072 0.00453 0.00026 … 0.00027 

 

Table 7. Black RVE (position 5) results matrix area Am = 

13,275,201 

 
Pore i 1 2 3 … 192 

Ai 17,593 11,973 28,554 … 2,986 

Ratio 0.384 0.391 0.434 … 0.818 

Porosity 0.00132 0.00090 0.00215 … 0.00022 

 

The parameters of Tables 3, 4, 5, 6, and 7 are defined as 

follows:  

Ai: area of the pore number i. 

Ratio: the quotient of the minimum. and maximum radii. 

Porosity: pore porosity rate.    

The results show that the areas and the shapes of the pores 

are all different; therefore, every pore can be considered a 

phase so that the pore number can replace the phase number of 

Eq. (2).  

The expression of the proposed model becomes 

 

Eeff

Em

= ∑
Pi

P

p

i=1

 (1-P)
0.6(

1
ri

+3)
 (3) 

The effective Young’s modulus of the multiphase porous 

microstructure is computed according to the organigram of 

Figure 6 by applying the model represented by Eq. (3) to the 

data issued from ImageJ software processing displayed in 

Tables 3, 4, 5, 6, and 7. 

 

 
 

Figure 6. Computation Organigram of the effective Young’s 

modulus (EYM) of multiphase porous material 

 

The iterative computation procedure begins from the first 

pore and is repeated until reaching the last one; the multi-pore 

EYM is the sum of all EYM pores computed by Eq. (1) applied 

to each pore. The results which are obtained using the 

proposed model for the five different RVE configurations are 

presented in Table 8.  

 

Table 8. The EYM computed by the proposed model 

 

RVE Porosity P 
Eeff

Em

 

Green (position 1) 0.3991 0.2831 

Pink (position 2)  0.3765 0.3085 

Blue (position 3)  0.4012 0.2805 

Yellow (position 4)  0.4063 0.2744 

Black (position 5) 0.4038 0.2769 

 

To validate the EYM computed by the proposed model, 

obtained results were compared to experimental data found in 

the literature [12]. 

Figure 7 shows the variation of the normalized EYM as a 

function of the volume fraction P. The results of the four 

configurations, represented by positions 1, 3, 4, and 5 having 

volume fractions of 0.4, coincide with the experimental data 

of the same volume fraction. Since the results of the last four 

configurations, which have the same volume fraction, are 

equal, it can be concluded that the stationarity condition is 

satisfied. 

For the configuration of position 2, whose volume fraction 

is 0.37 and which does not correspond to any volume fraction 

of the experimental data, and for a better comparison, the 

experimental data of the study in ref. [12] have been fitted. The 
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comparison of the position 2 configuration results to the fitted 

curve showed good agreement. This has been proven by an 

error calculation whose results are given in Table 9. The 

maximum relative error doesn’t exceed 3.22 %. which would 

be appreciable. 

 

 
 

Figure 7. Comparison of the proposed model results to 

Nakajima’s 2010 experimental data 

 

Table 9. Comparison of the proposed model EYM to the 

experimental data 

 

RVE P 
Eeff

Em

 

Fitted  

experimental  

data 

Relative  

error  

[%] 

Position 1 0.3991 0.2831 0.2915 2.89 

Position 2 0.3765 0.3085 0.3187 3.22 

Position 3 0.4012 0.2805 0.2890 2.96 

Position 4 0.4063 0.2744 0.2831 3.09 

Position 5 0.4038 0.2769 0.2860 3.20 

 

Hence, since all relative error values are around 3% for all 

configurations as seen in Table 9, it can be concluded that the 

proposed model provides a very good estimation of the EYM 

of the multi-shape porous microstructures. 

 

 

4. COMPUTATIONAL HOMOGENIZATION 

 

In addition to the results exploited as data by the model 

proposed in section 3.2.2, the ImageJ tool provides a second 

alternative which is the estimation of the EYM of the five 

porous microstructures using the RVE-based multi-scale finite 

elements homogenization technique applied to the 

microstructure images obtained by applying step 3 of Table 1, 

to the five configurations of Figure 5. The fitted elliptical pore 

images of considered porous microstructures are presented in 

Figure 8. 

 

 
 

Figure 8. The fitted elliptical porous microstructures 

The application of the numerical homogenization procedure 

to the considered porous microstructures is described in 

section 4.1. 

 

4.1 Effective bulk modulus and effective shear modulus 

  

The effective Young’s Modulus 𝐸𝑒𝑓𝑓  is computed 

according to the relation  

 

Eeff=
4

1

µeff
  +  1

k
eff

 (4) 

 

µeff and k
eff

 are the effective shear modulus and the effective 

bulk modulus. which must be determined by applying specific 

kinematic uniform boundary conditions (KUBC) on a volume 

element V as in the study of ref. [16], see Figure 9.  

At a point x of the boundary ∂V the imposed deformation 

causes a displacement u  

 

u = D.x (5) 

 

D is a symmetrical second-rank tensor independent of x. 

 

 
 

Figure 9. Boundary conditions for -a- effective bulk modulus 

and -b- effective shear modulus  

 

The strain tensor is given by  

 

〈ε〉=
1

V
∫ ε dV=D (6) 

 

Then, the macroscopic stress tensor is given by the spatial 

average 

 

∑=〈σ〉
1

V
∫ σ

V

dV (7) 

 

For the specific boundary values used, specific values of D 

must be chosen. 

 

Dk= [
1/2 0

0 1/2
]  and  Dμ= [

0 1/2

1/2 0
] (8) 

 

The effective bulk modulus 𝑘𝑒𝑓𝑓  and the effective shear 

modulus 𝜇𝑒𝑓𝑓 are defined by  

 

k
eff

 = 
1

2
(〈σ11〉+〈σ22〉) (9) 

 

μeff = 〈σ12〉 (10) 
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For meshing microstructures, the finite element mesh used 

in this study is the same as the study of ref. [16]; it’s a regular 

mesh grid with quadratic 8-node elements.  

The effective moduli k
eff

 and μeff are computed for the five 

RVEs images represented in Figure 8 and are shown in Figure 

10 with the stress iso-values results. 

 

 
 

Figure 10. Stress iso-values and k
eff

, μeff results [GPa] 

 

Finally, the EYM is determined using Eq. (4). The results 

of the five positions are given in Table 10. which shows that 

the results are pretty close to those of the proposed model. 

 

Table 10. The EYM computed by the numerical 

homogenization technique 

 

RVE Porosity P 
Eeff

Em

 

Green (position 1)  0.4026 0.2906 

Pink (position 2) 0.3791 0.3052 

Blue (position 3) 0.4043 0.2840 

Yellow (position 4) 0.4092 0.2800 

Black (position 5) 0.4070 0.2729 

 

Figure 11 shows good agreement between the results of the 

EYM computed by the multi-scale numerical homogenization 

technique. represented by green points, and both results of the 

EYM estimated by the proposed model, described by red 

points, and the experimental data [12], represented by black 

points. It must be remembered that the comparison was carried 

out for the RVE volume fraction of the five porous 

microstructures configurations considered in this study.  

Results of this section are summarized in Table 11 and 

compared to experimental data [12] with a calculation of errors 

which shows that the proposed model is entirely accurate; the 

maximum relative error is less than 4%. 

 

 
 

Figure 11. Numerical homogenization. the proposed model 

and experimental data [12] comparison 

 

Table 11. Comparison between the EYM of the proposed 

model and the experimental data 
  

 

RVE 𝑷 
Eeff

Em

 

Fitted  

experimental  

data 

Error  

[%] 

Position 1 0.39 0.2906 0.3023 3.88 

Position 2 0.3789 0.3052 0.3158 3.36 

Position 3 0.4043 0.2840 0.2854 0.51 

Position 4 0.4093 0.2800 0.2797 0.10 

Position 5 0.4069 0.2729 0.2824 3.38 

 

 

5. CONCLUSIONS 

 

The main purpose of this article was to propose a new 

simplified procedure for estimating Young's modulus of 

porous materials and especially of the lotus-type porous ones 

characterized by not a single pore shape but by multi-shape-

pores. This study is considered a continuation of the study by 

Bourih et al. [16] which proposed a model for estimating the 

effective Young's modulus of 2D porous microstructures with 

identical circular or elliptical pores, particularly of lotus-type 

porous materials by considering microstructures with only a 

single pore shape.  

In this work, a generalized model is developed to model 

better as much as possible the effective Young’s modulus of 

the lotus-type porous materials considered as multi-pore. 

The generalized model is developed using the mean-field 

homogenization principle. The single pore-shape model of the 

study in ref. [16] is used in the first step of the mean-field 

homogenization technique to compute the partial effective 

Young’s modulus of each decomposed volume containing one 

phase-shape. The mean-field second step is then applied to 

calculate the effective Young’s moduli average of the different 

volumes obtained in the first step; the obtained relationship 

represents the proposed generalized model. 

The free ImageJ software, which allows the processing of 

real composite microstructure images, gives two different 

results: geometrical parameters data of the lotus-type porous 

materials characterized by irregular multi-pore shapes and 

microstructure pictures with fitted pore shapes.  
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The originality of the new simplified procedure resides in 

the fact, on the one hand, that the proposed model could be 

applied to a real microstructure using the obtained data results 

of the ImageJ software, on the other hand, and in the case 

where no model is available, the application of a numerical 

homogenization on the obtained microstructure images is 

possible. 

The two types of results, data, and pictures give two 

alternatives: the first is that the data contain processing results 

of aspect ratios and porosities of pores which are needed to 

compute the effective Young’s modulus of the multiphase 

porous microstructures by applying the generalized proposed 

model. This alternative is exploited to verify the RVE 

stationarity condition considering five different positions; the 

calculations gave the effective property for the five positions. 

The validation has been ensured by comparing obtained results 

to literature experimental data. and good agreement was noted.  

The second alternative allows the estimation of the effective 

Young’s modulus by applying the multi-scale finite element 

homogenization technique based on the representative volume 

element RVE on the obtained microstructure images with 

fitted pores. The five different configurations used in the first 

alternative were exploited in this computational technique. 

The obtained results were confronted with both literature 

experimental data and the generalized model; a very good 

agreement and a low relative error were observed for all the 

results. 

Finally, it could be concluded that the application of the 

proposed generalized model on real microstructures can 

accurately predict the effective Young’s modulus of the multi-

shape porous microstructures. 
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NOMENCLATURE 

Ai Area of pore number i 

Am Area of the matrix 

D Symmetrical second-rank tensor 

dV Volume differential 

Eeff Effective porous material Young’s modulus 

Em The matrix Young’s modulus  

k Effective bulk modulus 

nph Number of phases 

np Number of pores 

P Porosity 

Pi Porosity of pore number i 

r Ratio  

u Displacement tensor 

V Volume 

Xi X coordinate of pore i 

Yi Y coordinate of pore i 

Greek symbols 

µeff Effective shear modulus  

〈ε〉 Strain tensor 

〈σ〉 Stress tensor 

∑ Macroscopic stress tensor 

Subscripts 

m Matrix 

i Pore number 

p Pore 

ph Phase 

Superscripts 

eff Effective 
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