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A scalable indoor localization technique is a vital technology for future large-scale 

location-aware services covering a complex of multi-story buildings. Our research on the 

usage of ResNet for scalable building/floor categorization and floor-level position 

estimation based on Wi-Fi fingerprinting is presented in this publication. Building and 

floor-level coordinates are estimated using our new ResNet architecture, which utilizes a 

stacked autoencoder to reduce feature space and a feed-forward classifier to classify 

multiple labels of building/floor/location. This architecture is the foundation for our multi-

building and multi-floor indoor localization system based on Wi-Fi fingerprinting. On the 

Jaume I University (UJI) campus in Spain, we test the accuracy of building/floor 

estimation and floor-level coordinates estimation for three buildings with four or five 

stories each. ResNet-based indoor localization using a single ResNet has been proven to 

be feasible, with results that are close to the state of the art. One ResNet is all that is needed 

in order for the proposed indoor localization system based on Wi-Fi fingerprinting to 

function at levels close to the current state of the art, allowing it to be implemented with 

less complexity and less energy consumption on mobile devices. 
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1. INTRODUCTION

The goal of this study was to see if indoor positioning could 

be accomplished with Wi-Fi fingerprinting. The 

UJIIndoorLoc indoor location benchmark retrieved from the 

University of California Irvine (UCI) Machine Learning 

Repository was used to train, tune, and optimize a random 

forest, k-nearest neighbor, and artificial neural network [1]. In 

order to handle multi-label data, a machine learning pipeline 

was followed, and a rational technique was employed to 

combine the numerous labels into a single categorical variable. 

Research conducted by Koike-Akino et al. [2] yielded similar, 

if not superior. Results from the 2015 EvAAL-ETRI indoor 

locationing competition were comparable to those of the 

research teams who participated in the competition. In Kim et 

al. [3], they also describe their systems for the competition. 

Using satellite signals and triangulating user locations, 

global positioning systems (GPS) have long been able to solve 

the outside positioning problem, allowing even vehicles 

travelling at high speeds to be navigated with pinpoint 

accuracy [4]. Numerous concrete and other building materials 

absorb GPS signals to the point where GPS is rendered useless 

in many major indoor, multi-storey complexes, such as 

shopping malls, university buildings, public libraries and 

airports [5]. Many smartphone applications could benefit 

greatly from knowing their users' specific position in context-

aware systems in today's current day where cellphones are 

ubiquitous. The precise indoor position of these applications 

necessitates a solution [6]. 

There has been a lot of effort put into finding a solution to 

this issue. The current state of affairs is that no single remedy 

has been widely adopted as of the middle of 2018. A wide 

range of signal types (RFID, Bluetooth, Wi-Fi) and algorithms 

are used in the proposed solutions [7]. Due to the prevalence 

of various wireless access points (WAPs) in modern buildings 

and the widespread use of smartphones, Wi-Fi signals are an 

excellent option [8]. Modern approaches to this problem are 

frequently complex, comprising numerous data processing 

options and novel algorithms with numerous phases [9]. We'll 

use simple models to show that Wi-Fi signals can be used, but 

they'll still be accurate enough. A Scalable ResNet model 

designed for indoor location performance with low validation 

loss and the greatest validation accuracy at adaptive moments 

has been developed to achieve this goal. In addition, stochastic 

gradient and root mean square propagation have achieved high 

levels of precision. "Locationing" and "positioning" are used 

interchangeably in this article. 

2. LITERATURE REVIEW

There have been a number of models of deep learning 

previously discussed. At the end of this part, we'll look at 

several current state of the art models and make some 

comparisons. While location-based services are popular in the 

outdoors, they are also becoming more popular in the indoors, 

according to Árvai [10]. In order to get a precise indoor 

location, you can use a digital interior map as a reference and 

track the movement of people walking, turning, or using stairs. 

It's a framework for indoor localization and semantic 

mapping that Wei and Akinci [8] have developed. Using an 

image-based indoor localization and semantic mapping system 

has the following advantages. It only requires a picture as an 

input to provide localization, semantic interpretation, and 
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association. The feature-extraction network is used for both 

localization and semantic understanding. Component-level 

associations with 6-DoF poses and semantic labels are 

supported. 

An indoor localization framework based on Convolutional 

neural networks is presented by Zhao et al. [11]. Wi-Fi signals 

are represented as fingerprint images using Channel State 

Information (CSI) from the MIMO-OFDM PHY layer. Other 

algorithms for indoor location are presented, including a 

convolutional neural network and a Bayes adaptive Kalman 

filter. According to simulation data, our proposed strategy 

improves location accuracy by 51.8 percent over current 

methods. An improvement of up to 22% and an improvement 

of 9.8% in a real-world indoor environment are achieved by 

our strategy in the LoS scenario. 

There is an extensive database of indoor location and 

trajectory estimates using CNN provided by Zhong et al. [12]. 

Researchers at the Xian Jiatong-Liverpool University in 

Suzhou, China, have developed a new location fingerprinting 

database based on measurements of Wi-Fi received signal 

strength and geomagnetic field intensity in a multi-story 

structure. It also includes preliminary findings about location 

and trajectory prediction utilising convolutional networks 

(CNN) and long-term memory (LSTM) (LSTM). To perform 

localization, they translate RSS data into an image-like array 

and use CNN, which is widely used in image and video 

analysis, to do so. 

Adaptive deep-learning for quick indoor location is 

provided by Tiku et al. [13]. In this article, they explain how 

to reduce the computational requirements of a deep learning-

based indoor location system while maintaining accuracy 

goals. Comparing their proposed method to the most well-

known baseline deep learning-based indoor localization model, 

it has been shown to reduce prediction latency by 42 percent 

and prediction energy by 45 percent when implemented and 

confirmed across many phones. 

These methods are based on Convolutional neural networks 

provided by Mittal et al. [14]. Convolutional Neural Networks 

can be used to develop a scalable fingerprinting framework by 

transforming Wi-Fi signatures into images (CNNs). Our 

proposed CNN-LOC indoor localization framework (CNN-

LOC) has been tested in different inside situations with an 

average localization error of less than 2 metres. This new study 

outperforms the most well-known predecessors in the field. 

Using deep learning, Tiku and Pasricha [5] have developed 

an indoor location framework. However, they propose a new 

approach to preventing indoor localization from becoming 

inaccurate in the face of AP attacks. With the suggested S-

CNNLOC architecture, malicious AP attacks are up to 10 

times more resistant than with the unencrypted version of the 

neural network. 

Using a convolutional neural network, Song et al. [9] 

present a new indoor localization system. This system's 

performance is evaluated on the UJIIndoorLoc and Tampere 

datasets by comparing it to existing methods. A new Wi-Fi 

fingerprinting dataset, UTSIndoorLoc, is used to test the 

CNNLoc placement model. CNNLoc outperforms prior 

building- and floor-level localization systems, with 100% and 

95% success rates, respectively. 

Using convolutional neural networks, Bregar and Mohorčič 

[4] provide an indoor location. NLoS channel classification 

and range error regression models, both implemented in the 

Tensor Flow computational framework and using 

convolutional neural networks, form the basis of the method 

(CNNs). A number of computing platforms are used to 

evaluate how well the proposed CNN-based algorithms 

perform. They further demonstrate that the suggested CNN-

based algorithms may be used in a distributed localization 

system even on computationally restricted devices by 

evaluating their computational performance and 

appropriateness on various computer systems. 

There is combined activity recognition and indoor 

localisation provided by Wang et al. [15]. They propose a 

dual-task convolutional neural network with 1-dimensional 

convolutional layers for the dual task of activity recognition 

and indoor location. Experimentation and ablation analysis 

findings show that our strategy works effectively in this typical 

Wi-Fi sensing difficulty (see below). 

Convolutional neural networks for indoor Wi-Fi 

fingerprinting are provided by Chen et al. [16]. When they 

examined the CNN and DNN, they discovered that each model 

could automatically distinguish location-specific patterns by 

quantifying and displaying CNN (or multilayer perceptron). 

According to standard quantitative criteria, they measure how 

each model's performance is affected by the inclusion or 

exclusion of relevant or non-related information. 

There is an Indoor Localization method developed by Akino 

et al. using deep learning. There was a 99 percent classification 

accuracy, an average mean square error of 11.1 centimetres, 

and an average median error of 9.5 centimetres for the direct, 

coordinate estimation method. These intermediate channel 

readings are used in a deep learning technique for a number of 

different purposes, including 1) location-only classification, 2) 

simultaneous location and orientation classification, and 3) 

direct coordinate estimation. 

Using recurrent neural networks, Jang et al. [17] give an 

indoor location. A geomagnetic field map is created on their 

campus testbed and a million walking patterns are generated. 

Our BLErfingerprinting results show an average location 

inaccuracy of 3.14 metres, compared to 1.062 metres with an 

RNN. For the first time, fingerprints can be used to follow a 

person's whereabouts in real time, something was previously 

impossible to do with RF fingerprinting. Only 5% of the traces 

are used for localization evaluation; the rest are used for 

training. 

Instead of using the raw RSS feed, Lin et al. [18] advocate 

employing the more detailed regional features. To deal with 

inconsistencies in similarity and to better place users, they 

proposed a three-component deep learning network consisting 

of a one-dimensional convolutional neural network, a Siamese 

architecture, and a regression network for locating users. Their 

experiments reveal promising results when compared to 

current approaches. 

With a success rate of 59.5 percent and an accuracy of 1-5 

metres, the object-based indoor localization algorithm 

proposed by Li et al. [7] successfully recognised 81.7 per cent 

of the items in the photographs. To assess the method's 

accuracy, an additional set of 42 images were taken in places 

that were previously identified. To train the R-CNN and 

template matching, 600 photographs were shot around the test 

environment and tagged with specific elements. 

Deep Neural Network (DNN) architectures based on FPGA 

implementation and fingerprint-based indoor location are 

provided by Liu et al. [19]. (named "SDNNLoc"). The 

fingerprint database features are extracted using a scalable 

stacked denoising auto-encoder for durability and accuracy. 

DNN accelerator generation and optimising frameworks for 

FPGA implementation are then proposed. They also 
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demonstrate a crowd-sensing university campus Wi-Fi 

fingerprinting technology. Using the proposed DNN 

architecture, efficient and precise indoor location is attainable, 

according to the experimental results. 

In the first stage, Chen et al. [20] used a convolutional 

neural network (CNN) to extract the environment's inherent 

features for indoor identification. In the second stage, a second 

CNN uses information from the surrounding inside 

environment to accomplish interior localization. CNN has 

been found to be a critical component in aiding the real-time 

deployment of efficient low power IoT sensor networks in this 

paper's conclusions. 

Indoor localization system developed by Abbas et al. [1] 

achieves fine-grained and dependable accuracy even in noisy 

surroundings thanks to deep learning. WiDeep can achieve 

mean localization accuracy of 2.64m and 1.21m for large and 

minor testbeds, respectively. This accuracy outperforms 

current methods in every test circumstance. 

New convolutional neural networks were developed by 

Zhou et al. [21] to automatically learn the correct features. 

This technology can detect nine different types of behaviour 

with 98 percent accuracy in little over two seconds, including 

standing motionless, walking up or down the escalator or 

elevator, turning, or going upward. With the use of 

accelerometers and magnetometers, barometers, and 

gyroscope data collected from various smartphone models, 

they built an extensive database of pedestrian activity. 

A convolutional neural network is used by Zhang et al. [22] 

to offer indoor wireless localisation. Received signal strength 

indication (RSSI)-based localization models beat k-nearest 

neighbour (KNN) models 61.8 percent. The GPR approach 

improves localization accuracy even more than the CNN 

model, which boosts performance by 45.8 percent.  

 

Table 1. Comparative analysis of convolutional neural network 

 

Reference Dataset Techniques Accuracy 

Árvai, 2021  The data collection was done using a mobile 

phone as a collection device, and several 

volunteers participated in the procedure. 

Convolutional neural network (CNN) 75.3 to 91% 

Indifferent positions  

Wei & Akinci, 2019 They used a publically available dataset Image-based method 90% 

Zhao et al., 2019 ImageNet Dataset Channel State Information (CSI)  51.8% more efficient 

than previous work 

Zhong et al., 2018 The database covers the lobby on the 5th 

floor and the corridor 

On the 4th floor of the hotel. 

convolutional neural network (CNN)  

long short-term memory (LSTM) 

95% 

Tiku et al., 2021 The dataset covers four buildings. Support Vector Machines (SVMs) deep 

neural networks (DNNs)  

85% to 95% 

Mittal et al., 2018 Training dataset received signal strength indication 

(RSSI) Convolutional Neural Networks 

(CNNs) 

99.67% 

Tiku & Pasricha, 

2019 

The used dataset was used in the training 

phase of the CNN. 

secured neural network framework (S-

CNNLOC) 

90% 

Song et al., 2019 UJIIndoorLoc dataset and Tampere dataset  Stacked Auto-Encoder (SAE) CNNLoc 95% to 100% 

Bregar & Mohorcic, 

2018 

dataset with 1394 samples Channel State Information (CSI) 88.13% 

F. Wang et al., 2019  DNN learning over wireless datasets convolutional neural network (CNN) 

channel state information (CSI 

92% 

K. M. Chen et al., 

2019 

Dataset of a regular office spatial beam signal-to-noise ratios 

(SNRs) 

100% 

Koike-Akino et al., 

2020 

(iterations over entire dataset), recurrent neural network (RNN) 96% 

Jang et al., 2017     

Lin et al., 2019 Training dataset Convolutional Neural Network (CNN) 90% 

Chenning et al., 2018 Publically available data set Region-based Convolution Neural 

Network (R-CNN) 

81.7% 

Kim et al., 2018  UJIIndoorLoc dataset Deep Neural Network (DNN) 89% 

C. Liu et al., 2020 RSS dataset Deep Neural Network (DNN) 87% 

Z. Chen et al., 2020 dataset obtained from radio-frequency (RF) 

measurements 

convolutional neural network (CNN) 97.8% 

Abbas et al., 2019 Publically available data set  WiDeep 90% 

Zhou et al., 2019 Ten participants were invited to collect the 

data of nine activities 

convolutional neural network (CNN) 98% 

Zhang et al., 2019) Training dataset and five groups of test 

datasets. 

k-nearest neighbor (KNN) 45.8% better than 

previous studies  

Njima et al., 2019 Multiple datasets Received Signal Strength Indicator 

(RSSI) 

89 to 98% 

Z. Liu et al., 2019 UJIIndoorLoc dataset and Tampere dataset Support Vector Machines (SVMs) K-

Nearest Neighbor (KNN) 

80 to 84% 

Ashraf et al., 2020  publicly available magnetic dataset of Sony 

Xperia M2 

Neural Networks (NNs) 95% 

X. Wang et al., 2020 We used a CSI dataset of 5Hz channel state information (CSI), 

convolutional neural networks (DCNN) 

85% 
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To mimic three-dimensional radio images, Njima et al. [23] 

propose a fingerprint of the received signal strength indicator 

(RSSI). Results from simulations show that the parameters, 

optimization methodologies, and model designs that were used 

in this study were correct. When it comes to the trade-off 

between accuracy and computer complexity, their proposed 

solution outperforms popular approaches. 

The Ratio fingerprint and RSSI are merged into the HW-

fingerprint developed by Liu et al. [24] to enhance the 

expression of the interior environment. KNN, SVM, and CNN 

increased their average daily location accuracy by 3.39 percent, 

8.03 percent, and 9.03 percent, respectively. SVM and KNN, 

on the other hand, were beaten by the deep-learning algorithm 

by 4.19 percent and 16.37 percent in terms of average day 

location accuracy. 

A deep neural network is utilized by Ashraf et al. [25] to 

accomplish indoor localisation. At half of the four 

unmistakable gadgets, the proposed approach can accomplish 

a limitation precision of 2.64 m. LG G6, LG G7, and Galaxy 

A8 each had a mean error of 2.23 m; for the Galaxy S8, the 

LG G6, and the LG G7. There is a mean blunder of 2.84 m, a 

standard deviation of 2.24m, and a half mistake pace of 2.33 

m while utilizing the proposed strategy utilizing openly 

accessible attractive information from the Sony Xperia M2. 

Beside this, the effect of gadgets on different perspectives 

about area precision is inspected. There is a deep 

convolutional neural network for indoor location provided by 

Wang et al. [6]. For indoor localisation, they suggest using 

CiFi, DCNN, and commodity 5 GHz Wi-Fi, as well as deep 

convolutional neural networks (DCNN). A business 5GHz 

Wi-Fi framework is utilized to make the CiFi framework, 

which is then scrutinized in two delegates inside settings. A 

changed gadget driver is utilized to separate stage information 

from channel state data (CSI), which is then used to compute 

the point of appearance (AoA). 

 

 

3. METHODOLOGY 

 

In this section, we will discuss the dataset and proposed 

work in detail. The UJIIndoorLoc dataset is a set of indoor 

positioning data points collected at the Universidad Jaume I 

using over 25 Android devices varying in model and OS 

versions. Each example consists of a Wi-Fi "fingerprint" – a 

set of signal strengths received by the given device from 520 

different WAPs at the device's location. The signal strengths 

are in RSSI format, in units of decibel-mill watts (dBm), and 

take on integer values ranging from -104 (weak) to 0 (strong), 

with a value of 100 representing no signal detected. 

The dataset covers roughly 1.2 million ft2 across three 

buildings, numbered 0, 1, and 2. Buildings 0 and 1 each 

contain three floors, numbered 0, 1, and 2. Building 2 contains 

five floors, numbered 0 through 4. Several variables represent 

the location in each example: longitude, latitude, floor number, 

building number, space id (office, lab, etc.), and relative 

position (inside or outside the space's entrance door). In 

addition, the dataset contains metadata for each example – the 

user id, phone id, and a UNIX timestamp for when the example 

was recorded. 

The dataset comes in two CSV files: 

"UJIIndoorLoc_trainingData.csv" and 

"UJIIndoorLoc_validationData.csv". The former consists of 

19937 examples from 933 distinct locations. The latter 

consists of 1111 examples from 1074 distinct locations and 

includes examples generated by users and smartphones that 

did not participate/were not used in generating 

"UJIIndoorLoc_trainingData.csv".  

In this research, we have proposed Scalable ResNet model 

and compared the performances with other Models. Figure 1 

shows the complete methodology of this research. 

 

 
 

Figure 1. Proposed flow chart 

 

Table 2. Summarizes essential information about each variable 
 

Column Description Units Values 

WAP001 - WAP520 RSSI received by the device from given WAP dBm 

Integer values from -104 to 0 (weak to strong), 

100 (no signal) 

Longitude Longitude of position meters 

-7695.9387549299299000 to -

7299.786516730871000 

Latitude Latitude of position meters 4864745.7450159714 to 4865017.3646842018 

Floor Floor number --- Integer values from 0 to 4 

Building ID Building number --- Integer values from 0 to 2 

Space ID Integer identifying the space (lab, classroom, etc.) --- Various integer values 

Relative position Relative position concerning the space --- 1 - inside, 2 - outside in front of the door 

User ID User identifier --- Integer values from 0 to 18 

Phone ID Android device identifier --- Integer values from 0 to 24 

Timestamp UNIX times when the example was recorded --- Integer values 
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A. ResNet architecture 

 

It is necessary to know where people spend their time and 

how they interact with the environment in order for future 

smart and green cities to be achieved. This is where having a 

sense of where you are comes in handy. When it comes to 

location-aware services in the future, large shopping malls and 

university campuses will tremendously benefit from scalable 

indoor localization. On each floor, there are currently dozens 

of different types of spaces (such as offices, lecture halls, and 

labs) available. Our localization area would have more spots 

to choose from if we adopted a grid-based depiction. As a 

result, a scalable indoor positioning system is needed to cover 

such a large region. 

Systems for large-scale indoor localization based on ResNet 

are depicted in Figures 2 and 3. Building/floor/location 

categorization is divided into numerous subtasks, as shown in 

Figure 2, for each level of building, floor, and location. 

Traditional building, floor and location estimates are 

replaced by ResNet's hierarchical Wi-Fi fingerprinting 

methods because of the use of ResNet. It takes more time and 

effort to train the ResNet at the floor and location levels of the 

system because of the hierarchical architecture's dependency 

on several sub-data sets that are derived from a common 

dataset. 

When this happens, the system experiences a tremendous 

amount of computational stress. That's why our study is 

focused on an integrated architecture that employs a single 

ResNet to classify a structure's floor as well as its location 

using a single dataset. Each of the three buildings in the 

UJIIndoorLoc dataset has 933 distinct positions. Since the 

misfortune and precision are determined utilizing smoothed 

building/floor/area marks, it overlooks the progressive idea of 

the characterization issue and the comparing misfortune that 

outcomes from erroneously arranging a structure, floor, or area 

during the preparation stage. A current multi-class classifier 

and leveled names can be used to mirror the progressive idea 

of building/floor/area classification in a ResNet classifier. It 

may be difficult to utilize backpropagation to train a ResNet 

with flattened labels because of the convoluted loss function 

and lack of a closed-form gradient function. ResNet classifiers 

using multi-class classification have been shown to have 

scalability issues, therefore here we provide a multi-label 

classification-based scalable ResNet framework to address 

this issue. To start, successive numbers are relegated to 

building and floor IDs; the last two must be significant when 

related with more elevated level numbers; these numbers are 

encoded separately and consolidated into a vector for multi-

name order, as displayed in the picture. 

 

 
 

Figure 2. ResNet architecture 

 

 
 

Figure 3. Active WAPS per sample 
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B. Model training 

 

One could wonder why we didn't just utilize the cross-

validation score of the tweaked models. What matters most is 

how the model performs on a validation set, in this example, a 

trained ResNet. If you search across many different hyper 

parameters, it is possible that a particular collection of hyper 

parameters will yield a high cross-validation score or perform 

well in the cross-validation test set only by random chance. 

Most models have more than two or three hyper parameters to 

tweak, thus this is a legitimate worry. Hyper parameter 

combinations can be multiplicative, thus there are numerous 

trials. Overestimation of our customized model is possible if 

we use cross-validation score/validation set score as the final 

metric for measuring model performance. In order to avoid 

overestimating model performance owing to random chance, 

we provide the modified model's performance on a second test 

set as the final indicator. A "lucky" model is unlikely to be 

successful in both validation and testing. 

There are fingerprints from devices that did not take part in 

the generation of "UJIIndoorLoc trainingData.csv" in our test 

set called "UJIIndoorLoc validationdata-.csv." Because of this, 

model performance evaluations on the test set are remarkably 

accurate. Experiments with devices that the model had not 

been exposed to during training are also included in the dataset. 

However, a different strategy we could have used is to 

combine "UJIIndoorLoc trainingData.csv" and 

"UJIIndoorLoc validation- Data.csv" first (randomly 

combining the rows from each), then 1) if using cross-

validation, split the combined dataset into a training set and a 

test set, where the training is further divided into folds during 

cross-validation, 2) if not using cross-validation, split We 

believe that the strategy we choose to solving this challenge 

will make a difference in how we tackle the problem 

differently from the other. We've picked an architecture that 

relies on testing the model on data it hasn't seen before. 

Afterwards, we show it instances of models it hadn't seen and 

examples generated by devices it hadn't seen. Because it did 

so well on the test set, the optimized model must be broader, 

which is a positive thing. A different approach involves 

combining the two datasets and making sure that all devices in 

"UJIIndoorLoc validationData.csv" are included in both sets 

of training and validation data. We believe that either design 

decision can be justified, and either one meets the study's 

purpose, which is to analyse the practicality of Wi-Fi signals 

for indoor positioning.  

 

C. Data preprocessing 

 

There were no omitted values. Wi-Fi fingerprints 

(WAP001-WAP520) were employed as characteristics in this 

investigation. The received signal intensity was transformed to 

a positive number, ranging from 0 to 105 to represent weak to 

strong signals. Only a few WAPs could be identified in any 

given scenario. Thus, a sparse matrix would better describe the 

data, which necessitated that we modify the no signals 

representation from 100s to 0s. 

A place's longitude, latitude, floor, and building number are 

all that are needed to pinpoint its specific location. Notably, 

unlike a typical regression or classification problem, in which 

a single label contains two or more values or classes ("what is 

the sales volume of this product?" "what is the object in this 

image?" and "which brand does this user prefer, Sony or 

Acer?"), the problem in question contains several labels ("and 

a number of values/classes are contained in every single 

label"). As a result, the term "UNIQUE LOCATION" was 

coined to describe the situation. UNIQUE LOCATION takes 

on multiple values depending on the longitude, latitude, floor 

number, and building id, as the name says. 

Features were not mean-centered in order to preserve the 

sparse data structure. There are many advantages to using 

normalized values, such as speeding up gradient descent 

methods. For example, normalizing features in training sets for 

ResNet allows for faster convergence of gradient descent 

techniques. 

The ResNet training package requires that category 

variables be encoded into the dummy variable form using a 

one-hot-encoding algorithm. Before ResNet training, this was 

done for the UNIQUE LOCATION label. Numbers 

accompanied each feature.  

 

D. Model explanation 

 

ResNet classification uses layers made of mathematical 

constructs that loosely mimic biological neurons. We will not 

go into much detail here but give a good overview. In a ResNet, 

the features are inputted as a vector in the input layer, the first 

layer of the network. In the standard architecture, the input 

layer "neurons", or units, are connected to a series of layers, 

each containing multiple units, called the hidden layers. The 

final layer is the output layer. Since UNIQUE LOCATION 

had more than two possible classes, we used a type of output 

layer that can represent the predicted class. In this case, we 

used a Softmax output layer, which contains the same number 

of units as several classes in UNIQUE LOCATION. The value 

of each unit is interpreted as a predicted probability that the 

input example belongs to the class that the output unit 

represents. The predicted class for the input example is then 

chosen as the class with the highest predicted probability. The 

Softmax layer uses a Softmax activation function for each of 

its units. 

The hidden layer units use other activation functions. At 

each hidden layer unit, an activation function maps the (linear) 

combination of outputs from the units in the previous layer to 

a new scalar value. Nonlinear activations functions, that is, 

activation functions that perform a nonlinear mapping of the 

input to the output, enable ResNet to learn complicated and 

highly nonlinear hypotheses. Finally, the weights and biases 

used to linearly combine layer outputs for feeding into units in 

the next layer are the ResNet parameters during training. 

These values are sometimes learned using batch gradient 

descent but more often by a faster variant called stochastic 

gradient descent or other variants of stochastic gradient 

descent. Essentially, stochastic gradient descent finds the 

optimal weight and bias values by considering batches of 

training examples at each iteration instead of the entire training 

set. It then repeats this process after each training example has 

been used once, called an epoch. 

 

i) Hyper parameters tuned 

 

Epochs – the number of epochs used during training, integer. 

Batch size – the size of each batch used during one iteration 

of Adam (a variant of stochastic gradient descent used to train 

all ResNet tested), integer. 

Hidden layers – the number of hidden layers, integer. 

Neurons_per_hidden_layer – the number of "neurons", or 

units in each hidden layer, integer. Note that we did not try 
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different numbers of units in each hidden layer. 

L2_reg_lambda – L2 regularization parameter, float. 

Dropout – dropout regularization parameter, the probability 

for a unit to be killed off during an optimization iteration, float. 

All other hyper parameters were their default values as defined 

by the package. 

 

ii) Model tuning and evaluation 

 

A grid search was conducted manually. Cross-validation 

was not used due to the higher computational cost and training 

time required for each ResNet. The hyper parameter values 

that gave the highest accuracy on the validation set was chosen 

as the best model. The differences between the validation set 

accuracies and accuracies on the training set were calculated 

to give us an idea of the degree of overfitting. 

 

E. Data analysis 

 

An access point can theoretically reach 10,000 square feet, 

but our normal 1600-square-foot per access point statistic from 

above will suffice for now. Figure below shows the active 

WAPS per sample. 

Figure below shows the building and floor counts that has 

been considered in this study. 

 
Figure 4. Floors and buildings counts 

 
 

Figure 5. Distance vs intensity 

 

 
 

Figure 6. Distance vs intensity 3D plane 
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Figure 7. Latitude vs longitude 

 

 
Figure 8. Data preprocessing to check null values 

 

 
 

Figure 9. Explained variance vs components 

 

Data has been splitted into training and testing set in order 

to check the performance of algorithm. Figure below shows 

the visualization of training and testing data set. 

There are two types of access points: those that 

communicate via radio and those that connect to a wired 

network, like Ethernet or Wi-Fi. 

The measure of time and space A weak Wi-Fi signal can be 

caused by a variety of factors, the most prevalent of which is 

a lack of proximity to the router. To avoid interfering with 

other devices, wireless routers and access points can only 

transmit at low power levels, limiting their useful range to 

about 100 feet indoors. Below figure computes distance with 

intensity in WAP. 

 

 
Figure 10. Training and testing set 

 

F. Evaluation metrics 

 

For deep learning models, following are the metrics  
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Table 3. Performance metrics 

 
Metrics Description 

Building Error sum of all misclassified building samples over the total sample count * 100 (percent) 

Floor Error sum of all misclassified building samples over the total sample count * 100 (percent) 

Mean Coordinate Error Mean Euclidean error from estimated latitude and longitude against the true latitude and longitude. 

Standard Error sum of Building Penalty*Building Error + Floor Penalty*Floor Error + Coordinate Error where the Building 

Penalty is 50 and the Floor Penalty is 4 

Mean Squared Error MSE =
1

𝑛
∑ (𝑌𝑖 − �̂�𝑖)

2𝑛
𝑖=1   

Accuracy 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

(TP + TN)

(TP + FP + TN + FN)
 

Kappa It is always less than or equal to 1 for Kappa to be considered. A score of 1 indicates perfect agreement, whereas 

a score below 1 indicates agreement that falls short of perfection. Occasionally, the Kappa value may be negative. 

As a result, the degree of agreement between the two observers was smaller than what might be expected by 

chance alone. 

Confusion Matrix 

 
 

 

4. RESULTS & DISCUSSIONS 

 

The findings of the ResNet model are shown in this section. 

People's position at Jaume I University can be predicted from 

WAP signal information using ResNet. Each of the training 

and validation datasets contains information about 520 

different WAP signal strengths, as well as information about 

the buildings and levels in which they are located. It also 

contains information about where each user has logged in, as 

well as their relative position (within or outside the room). The 

information was gathered at Jaume I University. The above-

mentioned source link has additional details on the dataset. A 

user at Jaume I University connects to the internet and we 

construct models that forecast their position (building, floor, 

and coordinates) based on the WAPs signal strength. 

The figure below shows the distribution of WAPs signal 

strength for each dataset. 

To make the comparison easier to understand, the following 

graph displays the strength distribution of WAPs on the same 

histogram. 

The figure below shows the number of WAPs found per 

building in the training and validation set. 

Users' login locations in Building 1 from the training set are 

shown in the following diagram. 

We looked at areas with good, medium, and poor signals. 

Using this example, the places where consumers experienced 

signal strength of at least 60 dB are shown in the 

accompanying figure (out of 104). 

Longitude and latitude are the World Geodetic System 

coordinates used in this collection. We started with zero and 

worked my way up. 

Login locations from training and validation sets are given 

in the figure below, together with a Google Map image 

showing the buildings of JIU. 

The WAP signals in the center of the structure were the 

weakest, as shown above. Because of this, location estimates 

for this building will be less accurate later on. 

 

.  

Figure 11. Distribution of WAPs signal strength for each dataset 
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Figure 12. Distribution of WAPS testing and training sets 

 

 
 

Figure 13. WAPs found per building in the training and validation set 

 

 
 

Figure 14. Google map image showing the buildings of JIU 

 

 
 

Figure 15. Building 1 log in points 

 
 

Figure 16. Log in locations 
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Based on a person's IP address, we first developed a model 

that could predict where they had connected to the internet. 

I've decided to normalize the rows of WAPs instead of relying 

on the initial model's inaccuracy. The model's performance 

significantly improved when the parameters were set to range 

from 0 to 1. Various WAPs are not detected by either the test 

or validation sets. Only the columns that intersected remained 

after these others were deleted from both databases. This was 

further improved by adjusting the threshold for WAP signal 

intensity. The best models for normalized data are those that 

only use rows with an average value larger than or equal to 0.6. 

(Excluding non-detected WAPS). 

 

A. Building prediction 

 

It is possible to get 100% accuracy with normalized WAP 

rows in the ResNet model for predicting buildings on the 

validation set. The model's performance in terms of accuracy 

and kappa as well as confusion matrix is shown below in the 

figure below: 

 

 
 

Figure 17. Model performance for building prediction 

 

 
 

Figure 18. Confusion matrix of ResNet for building 

prediction 

 

B. Floor prediction 

 

With ResNet, the best results were reached in all three 

buildings, and the difference in performance (approximately 1 

percent) in floor projections for Building 1 and Building 3 may 

be inconsequential. 

a) Building 1 floor prediction 

 

The ResNet Algorithm produced the best results. The 

following graphs demonstrate the relationship between 

performance and mental perplexity: 

 

  
 

Figure 19. Model performance for floor building 1 prediction 

 

 
 

Figure 20. Confusion matrix of ResNet for floor building 1 

prediction 

 

b) Building 2 floor prediction 

 

 
 

Figure 21. Model performance for floor building 2 prediction 

 

This building's floor prediction has the lowest performance, 

as previously stated. Listed below are the performance and 

confusion matrixes: 
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Figure 22. Confusion matrix of ResNet for floor building 2 

prediction 

 

c) Building 3 floor prediction 

 

Performance and confusion matrix with model using 

ResNet algorithm are shown below: 

 

 
 

Figure 23. Model performance for floor building 3 prediction 

 

 
 

Figure 24. Confusion matrix of ResNet for floor building 3 

prediction 

 

C. Coordinates prediction 

 

ResNet was used to determine the final location of an 

internet user based on the strength of their signal. Longitude 

and latitude predictions necessitate their own models, resulting 

in a total of six models. 

a) Building 1 coordinates prediction 

 

Here is the model's performance on Building 1's validation 

set for longitude and latitude. 

Performance of the ResNet model for longitude: RMSE = 

7.6099567 

Latitude RMSE = 7.1845765. The visual comparison of 

anticipated and actual coordinates is shown in the following 

figure. 

 

 
 

Figure 25. Log in location predicted by ResNet 
 

Below is a graph showing the distribution of the inaccuracy 

in metres in the distance measurement. 
 

 
 

Figure 26. Error distance in measures building 1 
 

b) Building 2 coordinates prediction 
 

 
 

Figure 27. Log in locations building 2 

 

Here is the model's performance on Building 1's validation 

set for longitude and latitude. 

The RMSE for the longitude model is 9.385072. 
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RMSE = 11.4652267 for the latitude model. 

The visual comparison of anticipated and actual coordinates 

is shown in the following figure. 

 

D. Predicted by ResNet 

 

The distribution of the distance error in meters is shown in 

the figure below. 

 

 
 

Figure 28. Error distance in measures building 2 

 

c) Building 3 coordinates prediction 

 

Here is the model's performance on Building 1's validation 

set for longitude and latitude. 

 

 
 

Figure 29. Visual comparison of anticipated and actual 

coordinates 

 

 
 

Figure 30. Error distance in measures building 3 

 

There was RMSE of 12.8063785 for the longitude and 

10.7050057 for the latitude models. The visual comparison of 

anticipated and actual coordinates is shown in the following 

figure. 

Below is a graph showing the distribution of the inaccuracy 

in metres in the distance measurement. 

Table below shows the comparative performance of ResNet 

with VGG and Inception V2 for the prediction of Floor, 

Building and Coordinates: 

 

Table 4. Comparative performance of ResNet with VGG and 

inception V2 

 
Transfer 

Learning 

Model 

Accuracy 

for Building 

Prediction 

Accuracy 

for Floor 

Prediction 

RMSE (avg) 

for 

Coordinates 

Prediction 

Proposed 0.99 0.96 Long: 9 

Lat: 11 

VGG16 0.83 0.81 Long: 12 

Lat: 23 

VGG19 0.81 0.84 Long: 32 

Lat: 23 

Inception V2 0.89 0.81 Long: 24 

Lat: 12 

 

 

5. CONCLUSIONS 

 

For future large-scale location-aware applications that will 

cover a complex of multistory buildings, scalable indoor 

localization techniques will be essential. We describe in this 

publication the results of our investigation into the application 

of ResNet for scalable building/floor categorization and floor-

level position estimate based on Wi-Fi fingerprinting. Using 

our novel ResNet architecture, we are able to estimate building 

and floor-level coordinates. This design makes use of a 

stacked autoencoder to decrease feature space and a feed-

forward classifier to categorize multiple labels of 

building/floor/location. Using Wi-Fi fingerprinting, this 

architecture serves as the foundation for our indoor 

localization system, which can operate across many buildings 

and floors. Using three buildings with four or five stories each 

on the Jaume I University (UJI) campus in Spain, we tested the 

accuracy of building/floor estimation as well as floor-level 

coordinate’s estimation. A single ResNet has been used to do 

indoor localization, and the results have been shown to be 

competitive with current best practises. In order for the 

proposed indoor localization system based on Wi-Fi 

fingerprinting to function at levels close to the current state of 

the art, only one ResNet is required, allowing it to be deployed 

with less complexity and with less energy consumption on 

mobile devices. 
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