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In this paper, the behavior of an elastic barrier subjected to isothermal laminar flow of 

Al2O3-water nanofluid in a channel has been studied numerically by the finite element 

method. A CFD based on the arbitrary Lagrange-Euler (ALE) formulation, has been 

developed in an attempt to solve the Navier-Stokes and stress-strain equations of the 

structure. The objective is to study the effects of inertia (Re) and nanoparticle volume 

fraction (φ) on the overall hydrodynamic behavior, as well as on the nanofluid-structure 

interface. The results showed that the deformation of the structure was mainly caused by 

the pressure loading of the nanofluid and the viscous drag imposed on the structure walls. 

In addition, the structure was strongly affected by the increase in Reynolds number and 

volume fraction of the nanoparticles. Finally, a numerical correlation was established to 

determine the maximum displacement caused by the bending of the structure. 
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1. INTRODUCTION

The industrial field is hardly devoid of the fluid-structure 

interaction phenomena particularly between fluids and baffles 

inside pipelines. Heat exchangers, for instance, contain such 

baffles to limit the fluid movement for cooling or heating 

purposes. In the context of heat transfer, nanofluid are of high 

interest due to their ability to improve the performance of 

exchangers. However, introducing nanoparticles modifies the 

physical properties of the nanofluid, to which investigating 

their effect on solid structures becomes necessary. On the 

other hand, the fluid flow imposes forces on the boundaries of 

the structure, which forces it to displace. This movement will 

in turn influence the conditions of the flow. Solid structures 

are generally in contact with at least one fluid. Therefore, the 

fluid and solid movements are not independent, but are 

coupled by a number of kinematic and dynamic conditions. 

The fluid and the structure, considered as a whole, thus behave 

as a coupled dynamic system. 

The fluid-structure interaction field is a growing research 

subject, to which the addressed problems are very frequent in 

industrial applications involving two concurrent sub-fields, a 

fluid and a structure. Mehryan et al. [1] numerically studied 

the hydrodynamic and thermal performance of a Newtonian 

fluid in the computational domain of the L-shaped cavity, 

including the flexible baffle. Presented the formulation of the 

equations in the arbitrary Lagrangian-Eulerian (ALE) 

coordinate system the study of the motion of a fluid within a 

solid poses numerous key question in fluid mechanics.  

Later, in the sixties of the last century. Ghalambaz et al. [2] 

has given a numerical study of a fluid-structure interaction 

representing an elastic oscillating fin fixed to the hot vertical 

wall of a square cavity. Shahabadi et al. [3] have studied the 

flow of a non-Newtonian fluid and the heat transfer in a cavity 

with an elastic flexible fin fixed to the hot wall of the cavity. 

They examined the solid-fluid interaction (FSI). The Arbitrary 

Lagrangian-Eulerian method is used to describe the fluid 

motion with the elastic wall in the fluid-structure interaction 

model. Nithyadev et al. [4] using the finite volume method. 

They investigated the effects of the aspect ratio of the cavity 

and different relative positions. Berry and Reissner [5] studied 

the behavior of a cylindrical shell filled with pressurized fluid. 

Coale and Nagano [6], on the other hand, calculated the 

axisymmetric modes of a cylindrical shell, joined to a 

hemispherical shell, both filled with liquid. 

Later, Paidoussis et al. [7] presented a comprehensive study 

on the dynamics and stability of structures subjected to a fluid 

flow. Paidoussis and Li [8] then studied the dynamics of pipes 

transporting fluid and presented a selective assessment of the 

research undertaken. Lindholm et al. [9] was then the first to 

experimentally calculate the resonance frequencies of 

cantilever plates totally or partially immersed in water. This 

was also compared against theoretical results, making it 

possible to better assess the influence of the flow on the 

structure. 
Later, Lakis and Paidoussis [10] developed a 

circumferential hybrid finite element model, based on the 

classical shell theory, to analyze the dynamic behavior of a 

vertical cylindrical reservoir partially filled with liquid. 

Lindholm et al. [11] was another pioneer to investigate 

vibrations of cylindrical shells partially filled with liquid. On 

the other hand, Mittal and Tezduyar [12] studied the variation 
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of the acoustic velocity as a function of the ratio between tubes’ 

thickness and radius, i.e. closing a valve to increase the 

pressure inside pipes, which caused waves to propagate along 

the channel. Meanwhile, Messahl et al [13] numerically 

investigated the industrial problem of a fluid-structure 

interaction and cavitation in a single-bend pipe system. Later, 

Raoul et al. [14] examined the solid-fluid coupling, via 

numerical modelling, for a thin body solid. In this case, the 

flow was described by the Navier-Stokes equations, the 

deformation of the body followed the Neo-Hooke a model, and 

the coupling between the fluid and the structure was 

implemented via Lagrange multipliers. 

Goura et al. [15] then formulated an interpolation technique 

for displacement data between fluidic and structural numerical 

simulation meshes. On the other hand, Tijsseling and Lavooij 

[16] explored the interaction between water hammers and pipe 

movements. Meanwhile, Jhung et al. [17] investigated the 

reliability of fluid filled tanks on the modal characteristics, 

taking into account fluid-structure interaction effects. They 

utilized the finite element method for the structure, while 

making use of the method of mass added to the structure to 

simplify the problem. This allowed them to obtain the 

displacement and natural frequency of filling the tank, 

showing that the added mass resulted with higher frequencies. 

Furthermore, Lin et al. [18] was successful in numerically 

simulating the flow through a micro channel equipped with an 

elastic membrane. This allowed them to study the effects of 

various parameters, mainly the elasticity of the membrane, the 

viscosity of the liquid, and the geometry of the elastic 

membrane, on the displacement of the membrane tip, its 

maximum shear stress, and it is bending moment. Later, Sigrist 

et al. [19] conducted a modal analysis of an industrial structure 

coupled with a fluid via numerical techniques of fluid-

structure couple of calculations. The nature of the structure 

was ax symmetric in geometry, where by the modeling of the 

problem was carried out using an ax symmetric finite elements 

approach implemented using Fourier series discretization in 

finite elements. On the other hand, Liu et al. [20] studied, 

through numerical simulations, the interaction between a fluid 

and a flexible structure using Navier-Stokes and Euler-

Bernoulli equations. In this study, both laminar and turbulent 

flows were investigated. In another study, Grandmont and 

Maday [21] studied, via mathematical and numerical analyses, 

the phenomena of interaction between a fluid and a mobile 

solid, rigid and deformable structures. Later, De Ridder et al. 

[22] presented a study on the vibratory behavior of a flexible 

cylinder subjected to axial flow.  

In addition, Lin and Tsai [23] then presented a finite element 

study to analyze the nonlinear vibrations of fluid transport 

pipes using Timoshenko theory. Their model consisted of 

three degrees of freedom, nodal, beam elements, whereby the 

expressions of kinetic energy and deformations of the structure 

and fluid were used to determine rigidity, mass, and damping 

matrices of the problem. Their results elaborated on the 

influence of flow induced vibrations on the natural frequencies 

of the structure. On the other hand, Stein and Tobriner [24] 

presented a numerical solution to the equation of motion which 

describes the behavior of an elastic-supported pipe of infinite 

length carrying an ideal pressurized fluid. This allowed them 

to interpret the effects produced due to internal pressure forces 

and mass and damping matrices, as well as to evaluate the 

influence of flow induced vibrations on the natural frequencies 

of the structure later Kohli and Nakra [25] conducted a 

dynamic stability analysis of a fluid-filled stepped pipe using 

the Euler-Bernoulli theory, implemented in finite elements, 

whereby eigen frequencies were compared with respect to a 

pipe section.  

A similar work was conducted by Aldraihem [26], in which 

the dynamic stability of a fluid in a rigid collared pipe was 

examined using the Euler-Bernoulli beam theory, via the finite 

element tool, to predict the dynamic stability of the pipe. 

Meanwhile, Chadi et al. [27] studied heat exchangers, with 

different mini channels geometry sections, using three 

different nanoparticles. The results obtained showed that the 

increase in the surface area between the walls of the mini 

channels and the cooling fluid increases the exchange 

coefficient, along an increase in Reynolds number. Later, 

Koribi et al. [28] presented a numerical study on flow 

characteristics and thermal fields surrounding a rotating 

cylinder, subjected to small Reynolds numbers Lastly, 

Srinivasa et al. [29] investigated the fluid-structure interaction 

resulting from the sole effects of the flow of water on the 

deformation of the structure. 

Sabbar et al. [30] studied unsteady mixed convection in a 

cavity-channel ensemble. They solved the governing 

equations for the interaction between the fluid and the elastic 

wall, the effects of elastic modulus, buoyancy/viscosity ratio 

and inertia/viscosity ratio. They showed that the presence of 

the elastic walls improves the heat transfer compared to the 

rigid cavity walls. 

To come now to the main subject of this article, the 

obstacles implanted in a channel are subjected not only to the 

base fluid (water), but also to the nanoparticles carried by the 

base fluid (nanofluid). To the authors' knowledge and 

according to the existing literature, the behavior of a structure 

subjected to the flow of a nanofluid has not yet been studied. 

The objective of this research was therefore to study, in fluid 

dynamics, the effects of the Reynolds number and the volume 

fraction of the nanoparticles, present in the base fluid, on the 

flow.  

Thus, the objective of this paper is to study the behavior of 

the elastic structure and the flow and their interaction in the 

channel, we have conducted a thorough investigation to find 

out if the FSI is used in such a setup. From the results of the 

investigation, we found that this problem has not been studied 

yet. In the future, the study can be extended for higher 

Reynolds numbers, different position of obstacle; different 

types of nanofluid. 

 

 

2. MATHEMATICAL MODEL 

 

A schematic of the physics of the problem is shown in 

Figure 1. A horizontal flow channel, in the middle of which 

there exists an obstacle, a narrow vertical structure, is 

considered. The nanofluid flows from left to right, unless the 

obstacle forces it into a narrower passage in the upper part of 

the channel and places a force on the walls of the structure 

resulting from the viscous drag and pressure of the fluid. As 

the obstacle is made of a deformable material, it bends under 

the applied load. The thermophysical proprieties of water and 

Alumina are given in Table 1. 

In this work, a single-phase model, which considers the 

nanofluid as a continuous medium, is used. Assuming that the 

nanoparticles are well dispersed in the base fluid, the 

properties of the nanofluid can therefore be calculated 

according to the following formulas: 

The effective density of the nanofluid is calculated by: 
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(1) 

 

The effective dynamic viscosity of the nanofluid is given by 

Brinkman relation as follows: 
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2.5
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−

= −
 

(2) 

 

where, μf is the dynamic viscosity of the water. 

 

 
 

Figure 1. Flexible structure subjected to a horizontal flow 

 

Table 1. Physical properties of the base fluid and the 

nanoparticles 

 
Physical 

thermo property 

Base fluid 

(water) 

Alumina 

(Al2O3) 

𝜇(Ns/m2) 8.55 × 10−4  
𝜌(kg/m3) 997.1 3970 

𝐶𝑝(J/kg k) 4179 765 

k (w/m k) 0.613 40 

α (m2 /s) 1.47 × 107 1.32 × 10−5 

β (K−1) 21 × 10−5 0.85 × 10−5 

 

2.1 Constitutive model simplifications 

 

To simplify the considered problem, the following 

assumptions are made: 

• The nanofluid flow is two-dimensional laminar 

• The fluid is isothermal 

• The properties of the nanofluid are constant 

• The properties of the solid are constant 

The dimensional equations governing this flow, in Cartesian 

coordinates, thus become: 
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The structural domain is governed by nonlinear elasto-

hydrodynamics behavior as follow: 
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the elastic deformation of the fin, resulting from the fluid and 

pressure forces can be expressed in terms of the Kirchhoff 

stress tensor as: 

sJ =
 

(7) 

 
T

J FSF = −  
(8) 

 

where, 𝐹 = (1 + ∇ s ), j = det(f), s is the second piola-kirchhoff 

stress tensor. consider the following dimensionless parameters: 
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The dimensionless behavior of Eqns. (3) to (6) can be 

formulated as:  
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The structural bahavior for the elastic fin is described by the 

following equation 
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where, Re, Ca and ρr are respectively the Reynold number, the 

Cauchy number and the relative density between the base fluid 

and the solid fin. They are defined by: 
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Notations appearing in Eqns. (1)-(12) are: V =(u, v) are the 

velocity vectors of fluid and the moving coordinate system, 𝑃∗ 

is the dimensionless fluid pressure, Fvis the body force acting 

on the fin (it is taken zero in this study),ds is the fin 

displacement vector, ρs is the density of solid structure ρf is the 

water density, ρp is the nanoparticles density and σ is the stress 

tensor. 

 

Initial-boundary conditions  

The initial conditions at τ = 0 are: 𝑈∗=𝑉∗ = 0 and 𝑈𝑆
∗ = 0. 

The dimensionless boundary conditions are grouped together 

in Table 2. 

 

Table 2. Boundary conditions 

 
Inlet structure High and low walls Outlet 
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3. NUMERICAL MODEL 

 

The system of equations governing the nanofluid flow and 
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the behavior of the structure was solved via the finite element 

method. A dynamic and triangular mesh, refined at the level 

of the walls of the structure, was adopted by Figure 3. A 

convergence criterion where the relative error is strictly less 

than 10-6 was adopted. A mesh sensitivity analysis was 

conducted, as illustrated by Figure 2, with respect to the 

nanofluid velocity measured at the midline of the channel. 

Table 3 shows the results of this test an optimal mesh of 25704 

elements and 526 boundaries showed to be accurate to obtain 

the appropriate numerical tolerance. 

 

 
 

Figure 2. Velocity profile for different meshes 

 

 
 

Figure 3. Dynamic mesh of the area of interest, at the level 

of the obstacle 

 

Table 3. Mesh dependance 

 
Element number Maximum velocity Max displacement 

2531 1.47309 0.0812759 

3248 1.49661 0.0825469 

7443 1.50150 0.0831062 

25704 1.50282 0.0831262 

56643 1.50229 0.0831276 

 

In efforts of validating the model, the obtained results were 

then compared against the study of Srinivaza Rao et al. [29], 

as shown in Figure 4. 

 

 
Srinivaza Rao et al. [29]            The current model 

 

Figure 4. Validation of the current model against Srinivaza 

Rao et al. [29] 

 

 

4. RESULTS AND DISCUSSION 

 

In this section, the results obtained from the numerical 

simulation of the hydrodynamic phenomenon as well as the 

behavior of a stainless-steel structure during the flow of a 

nanofluid (alumina-water) inside a pipe are presented. The 

effect of certain control parameters, mainly the Reynolds 

number (1 < Re <7) and the nanoparticles volume fraction (0 

<φ<10%), is highlighted. Results presented include the 

velocity field, streamlines, pressure distribution, and 

maximum displacement. It is noted that the flow of the 

nanofluid was unsteady; however, results were collected at a 

fixed dimensionless instant, τ = 1332, corresponding to a state 

of stability. 

 

4.1 Streamlines and velocity 

 

Among the most critical parameters when analyzing 

hydrodynamic results is the Reynolds number. This number 

describes the relationship between inertial and viscous. In this 

study, the procedure to change the Reynolds number (Re) is 

associated with a change in inertial forces, particularly, via an 

increase in the rate of entry of the nanofluid to the pipeline. 

Figure 5 presents the velocity field (a) and streamlines (b) 

distribution, for different Reynolds numbers (Re = 1, 3, 5 and 

7), an alumina nanoparticles volume fraction of φ = 4%, and 

when the system is close to its stationary state at the 

dimensionless instant τ>1332. 

In general, the flow of the nanofluid in the pipe caused the 

structure to deform by bending in the direction of the flow. 

This deformation was due to the viscous drag and pressure 

loads imposed by the fluid on the structure. On one hand, as 

the Reynolds number increased, the laminar flow of the 

nanofluid prompted the structure to deform with a large degree 

of tilt. On the other hand, there was a considerable increase in 

flow intensity in the narrow area of the channel above the 

structure, with an enlargement of the vortex zone produced 

downstream of the structure. It is noted that, for low Reynolds 

numbers (Re = 1 in this case), the vortex zones occur upstream 

and downstream of the structure, where their intensity is 

greater in the downstream side. 
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Figure 5. (a) Velocity and (b) Streamline profiles for different 

Re at φ = 0.04 

 

This latter finding indicates that, although the structure 

presents an obstacle to the flow of the nanofluid, its flexural 

deformation under inertial loads gives a certain fluidity in the 

movement f the fluid downstream. 
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The existence of alumina nanoparticles suspended in water 

contributes to a relative increase in the viscosity of the 

nanofluid when compared with that of the base fluid. This 

increase in viscosity, as described by Brinkmann's law, leads 

to an increase in impact forces resulting from the laminar flow 

viscous drag. Figure 6 shows the effect of changing the volume 

fraction of the nanofluid (the addition of alumina 

nanoparticles) on the hydrodynamic behavior, as particularly 

illustrated by the velocity and streamlines distribution. In this 

case, Reynolds number was fixed at 3. Results indicated that 

the displacement of the structure increased with the increase 

in the nanoparticles concentration, i.e., the presence of the 

nanoparticles resulted with more deformation of the structure. 
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Figure 6. (a) Velocity and (b) Streamline profiles for 

different φ at Re = 3 
 

  

Re = 1 Re = 5 

  

Re = 3 Re = 7 

 

Figure 7. Velocity profiles in different positions along the 

channel 
 

Figure 7 shows the velocity distribution throughout the 

channel and across the obstacle, for different Reynolds 

numbers and nanofluid volume fractions. It is noted that the 

laminar flow of the nanofluid was almost identical to that of 

the base fluid (water) as all profile curves coincided, 

regardless of the Reynolds number. Furthermore, the effect of 

the volume fraction was noticeable for Re = 7, particularly in 

the immediate vicinity of the structure. 

In addition, the velocity profile showed the same parabolic 

shape along the channel, where the maximum was registered 

at the level of the horizontal axis. However, these maxima 

appeared close to the upper wall of the channel, at the level the 

obstacle (0.75 < X * <2), as shown by Figure 7. 

As Reynolds number increased, Figure 8 showed a 

widening in the vortex zone downstream of the structure, 

along an absolute stagnation zone occurring for large inertia 

forces. This is noticeable at X* = 1.25 position, downstream 

of the structure, where the velocity in this zone formed a 

straight line (zero) at Re = 7. 
 

 
Re = 1                               Re = 5 

 
Re = 3                         Re = 7 

 

Figure 8. Velocity profile along the axis of the channel 
 

Figure 8 shows the effects of volume fraction and inertia on 

the axial velocity, along the median longitudinal line of the 

channel, for Reynolds numbers of 1, 3, 5, and 7. In general, 

the increase in Reynolds number was associated with an 

increase in velocity throughout the channel. On the other hand, 

regardless of Reynolds number, an increase in velocity was 

observed between the nanofluid entry and the upstream of the 

structure. A sharp drop was then noticed immediately after the 

obstacle, interpreted by the existence of recirculation in this 

zone. The velocity seemed to have then stabilized again at its 

initial pace beyond the obstacle, but with a sharp increase 

nearby the end of the channel.  

As for the effect of the alumina nanoparticles effect on the 

axial velocity profile, this was only observed upon the increase 

in Reynolds number, ergo, upon an increase in the entrance 

velocity to the pipeline. In particular, a more nanoparticles 

concentrated fluid was associated with a relative decrease in 

axial velocity. 

 

4.2 Pressure distribution 

 

In this subsection, the effects of the nanoparticles addition 

on the hydrodynamic behavior of the nanofluid, as well as on 

the mechanical behavior of the structure represented by the 

baffle, were investigated. It is noted that the ultimate goal of 

this study was to investigate the effect of the concentration of 

nanoparticles on the deformation of the presented obstacle, 

which all prior studies hitherto lacks. 

Figure 9 shows the pressure distribution and iso-pressure 

lines in the structure, for a nanofluid with 4% alumina 

nanoparticles concentration, and for several Reynolds 

numbers. A noticeable decrease in pressure was observed upon 

the increase in Reynolds number. On the other hand, pressure 
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recorded the highest values upstream of the deformed structure, 

particularly at the bottom of the pipe. 
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Figure 9. Pressure profiles. (a) Pressure and (b) Iso-pressure 

lines 
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Figure 10. Pressure profiles. (a) Pressure and (b) Iso-

pressure lines 
 

Figure 10 shows the pressure distribution and iso-pressure 

lines in the structure, for different nanoparticles volume 

fractions, and at Re = 3. Ultimately, an increase in the volume 

fraction was highly associated with an increase in the 

nanofluid pressure. 

Figure 11 presents the pressure distribution, as a function of 

the structure entry length, for different volume fractions. In 

general, the nanofluid laminar flow was characterized by a 

pressure drop for all Reynolds values. Interestingly, this was a 

sudden drop after the obstacle. The upstream pressure then 

exhibited a linear behavior for low Reynolds number. 

On the other hand, the increase in the nanofluid alumina 

concentration was associated with an increase in the fluid 

pressure, especially at the entrance to the channel. 

 

 
Re = 1                         Re = 3 

 
Re = 3                            Re = 7 

 

Figure 11. Nanofluid pressure distribution along the axis of the 

channel 

 

4.3 Maximum structure displacement 

 

Figure 12 represents the strain of the structure for φ = 4% 

and for different Reynolds numbers. The maximum 

displacement has been observed at the free end of the structure. 

In addition, the increase in Reynolds number, Re, was 

associated with an increase in strain. This was due to the 

increase in flow intensity, upstream of the structure, which in 

turn affected the wall stresses. 

On the other hand, Figure 13 represents the strain of the 

structure for Re = 3 and for different nanoparticles volume 

fractions (φ). Upon fixing Reynolds number, the maximum 

recorded displacement was at the free end of the structure. It 

also increased with increasing the volume fraction, but at a 

slower pace than that of the Reynolds number case. 

The major contribution in this study was to investigate the 

effects of Reynolds number and nanoparticles volume 

concentration on the deformation of the structure. As such, for 

design purposes, it seemed desirable for the authors to add a 

mathematical relation, based on the current results, allowing 

to determine the maximum design displacement of the 

structure as a function of both, Reynolds number and 

nanoparticles volume fraction represented in Table 4. To 

obtain this, the least squares and Lagrange interpolation 

methods were adopted: 

In order to give a mathematical character to the present 

numerical simulations, a correlation between the maximum 

displacement of the structure, the Reynolds number and the 

volume fraction of the nanoparticles was made by the use of 

least squares method.  
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Re = 1 Re = 3 
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Figure 12. Deformation of the metallic structure and displacement vectors for different Re 
 

φ = 0% φ = 4% 

  

φ = 6% φ = 10% 

  

 

Figure 13. Deformation of the metallic structure and displacement vectors for different φ 
 

Table 4. Maximum displacement of the structure [×10-2] 

 
Volume fractions Re = 1 Re = 3 Re = 5 Re = 7 

0.00 2.58 7.55 12.06 15.97 

0.02 2.71 7.92 12.59 16.59 

0.04 2.85 8.31 13.15 17.23 

0.06 3.01 8.72 13.73 17.90 

0.08 3.17 9.17 14.35 18.60 

0.10 3.35 9.64 15.00 19.32 
 

The maximal displacement is given by: 
 

( ) ( ) ( )max 1 2Re, Re Red f f = +
 (15) 

 

With  
 

( )
2

1 Re Re Ref   = + +
 and 

( )2 Re Ref  = +
 (16) 

Thus, the maximum strain can be expressed as: 

 

( )
2

max Re, 0.005Re 0.088Re

0.022Re 0.005 0.006

d   



= − +

+ + +  

(17) 

 

 

5. CONCLUSION 

 

This study focused on the effects of fluid flow, particularly 

suspensions such as nanofluid, on the behavior of a submerged 

structure. The objective was mainly to study the effects of 

nanoparticles volume concentration and Reynolds number on 

the behavior of the structure. The solid and fluid models were 

treated as two complementary domains, where by their 

mechanical properties, such as deformation, are governed by 

the fluid-structure interaction they undergo. Without 
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modifying the intrinsic topology of the mesh of each of these 

two domains, the nodes can properly displace without going 

through a systematic remeshing. The solid was modeled via a 

Lagrangian formulation, whereby the associated mesh was 

free to displace according to its current position. For a well-

defined rigidity (Assigned Young's modulus), the deformation 

of the structure depended on the nature of the flow, which in 

turn exerted pressure load son the structure. Results showed 

that this deformation increased as a result of increasing either 

of both, Reynolds number and nanoparticles volume fraction. 
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NOMENCLATURE 

L height of the canal 

H Fin length 

W displacement vector 

E dimensional Young’s modulus 

Fv vector of volume force 

P pressure filed 

Re Reynolds number 

t time in dimensional form 

cp specific heat, (J kg-1 K-1) 

u, v Velocity components 

U,V Dimensionless velocity components 

x, y Cartesian coordinates 

Greek symbols 

α coefficient of the thermal diffusivity 

(m2.s-1) 

β coefficient of the volumetric thermal 

expansion K-1 

σ field of the tensor of stress 

τ dimensionless time 

φ fraction volumique 

μ the fluid’s dynamic viscosity 

𝜐 Poisson’s ratio 

ρ Density (kg m-3) 

𝜌𝑝 the ratio of fluid to solid-structure 

density 

Subscripts 

f the fluid property 

h the hot property 

nf nanofluid 
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