
An Analysis of Maintainability Index Influencing Metrics and Their Behavior on Similar Open

Source Gaming Application Developed in C, C++ and, JAVA

Gokul Yenduri*, Naralasetti Veeranjaneyulu

Department of IT, VFSTR Deemed to be University, Vadlamudi 522213, Guntur-AP, India

Corresponding Author Email:yenduri.gokul@gmail.com

https://doi.org/10.18280/isi.240112 ABSTRACT

Received: 5 December 2018

Accepted: 3 February 2019

Gaming is a major entertainment to the world. It plays an important role in reducing the stress

of many people. Constructing a game with high Quality is an important aspect. The quality of

gaming software depends on many factors such as reliability, usability, maintainability, and

other factors. Maintainability is a predominant factor among them as it affects the cost of open

source gaming projects. It is important to forecast the consequence of such a crucial factor

ahead of releasing the games as they are nonprofitable to the developers. In this paper, we

collected 25 open source gaming application developed in various programming languages

with the help of visualization and statistical approach to examine the maintainability of gaming

applications. OSS gaming has an acceptable level of maintainability with a vast behavioral

difference between metrics.

Keywords:

maintainability metrics, software quality,

SDLC, MI, code smell

1. INTRODUCTION

Maintainability is one of the important quality factors of

software. Software Maintenance has been a major issue in the

software development life cycle. Since the structure oriented

and object-oriented programming are being used to develop

software. A lot of research is carried out towards

maintainability prediction of structure and object-oriented

programming. Software maintainability can be calculated

based on code-level and design level metrics. Gaming

software maintenance has a huge effect on cost and endeavor.

As a result, gaming software systems must be maintainable.

On the other hand, Several empirical research studies are done

to investigate the maintainability of software. This paper

considers these following important aspects.

(1). How maintainable are similar open-source gaming

applications developed in various programming languages?

(2). How the behavior of various code-level metrics will

be in similar open source applications developed in various

programming languages?

(3). What extent MI is a superior measure to predict

maintainability of various programming paradigms?

2. SOFTWARE MAINTENANCE METHODS

2.1 Maintainability Index

Maintainability Index (MI) is a measurement blended with

various other metrics referred to predict the maintainability of

source code. MI uses various metrics in its formula to arrive at

the result, metrics include programmed Lines (LOC),

Cyclomatic Complexity (G) and Halstead volume (V) [1]. MI

is calculated as shown below

𝑀𝐼 = 171 − 5.2 ∗ 1𝑛(𝑎𝑣𝑔𝑉𝐻) − 0.23 ∗ 𝑎𝑣𝑔𝑉𝐻(𝑐) − 16.2
∗ 1𝑛(𝑎𝑣𝑔𝐿𝑂𝐶)

where

V=(ln(N1+N2)*log((n1+n2)))

G =(e-n+2p)

Table 1. MI ranges and maintainability of any software

MI RANGE MAINTAINABILITY

00-10 LOW

10-20 MEDIUM

20-100 HIGH

3. ITERATURE REVIEW

Researchers from past estimated maintenance using various

models and methods.

McCall et al., projected a model for software quality and

distinct sub-factors for quality and categorized those factors

into three diverse parts product amendment, product function,

and product conversion. ease, succinctness, and modularity as

the software quality sub-factors [4].

Boehm et al., proposed a quality model for software and

described testability, understandability, and elasticity as the

software quality sub-factors [4].

Peercy et al., defined a model to signify structure of

maintainability of software depending on modularity,

descriptiveness, reliability, ease, expandability and

instrumentation sub-factors [5].

Sneed and Mercy projected a model and described

maintainability as a gauge of factors of software [6].

Matinlassi et al., “maintainability classification is not only

very important but also the scientific aspects of maintainability

are significant”. This model was anticipated and described the

effect of quality attributes on system, construction and module

scope of the software system [7].

Ingenierie des Systemes d'Information
Vol. 24, No. 1, February, 2019, pp. 83-87

Journal homepage: http://iieta.org/Journals/isi

83

Hayes et al., anticipated a model that measures adaptive

software maintenance attempt in requisites of variation outline

of code i.e. the quantity of new, deleted and updated lines [8].

Hayes and Zhao, developed a maintainability model, which

differentiates software modules as ‘simple to maintain’ and

‘complex to maintain’. The evaluation shows that different

maintainability models highlight on its sub-factors during the

development of such models [8]. Mattson et al., developed a

structure for software maintainability by making an allowance

for two aspects like artifact and practice [9]. Kazuya et al.,

developed a model for error detection as well as liability

correction process. This model also provided an outline to

assess the software maintainability [10]. Maintainability

model by Heitlager et al., is a Customized version of ISO 9126

where all features are customized and system level factors are

mapped to properties on the level of cause code [11].

Singh et al., developed a model, it is used to review the

software maintenance. The factors such as Readability of

cause Code, annotations Ratio, documents quality,

Understandability of Software and standard Cyclomatic

Complexity were used as contribution variables in the planned

model. [12].

Khan et al., developed a model for the pre-release

maintenance process and to conduct post deliverance

maintenance stage effectively [13].

4. PHASES OF IMPLEMENTATION

4.1 Investigation phase

In this phase, various gaming applications are downloaded

from web which is developed in various programming

paradigms, from them twenty-five gaming applications are

selected which are similar and developed in C, C++, and java.

4.2 Preparation phase and data retrieval phase

In this, the selected gaming applications codes are given as

an input to tools (CCCC and HM tools) and the output of tools

are measurements; so-called metrics are obtained for all

similar gaming applications developed in various paradigms.

4.3 Testing phase

In this phase, the metrics obtained are converted into a

dataset. Data visualization is done all three paradigms and

statistical analysis is applied to two programming paradigms.

Based on this phase results are obtained which leads us to

conclusions.

5. RESULTS

Figure 1. The behavior of lines of code (overall)

Figure 2. The behavior of lines of code (Per module)

Figure 3. The behavior of Cyclomatic complexity(overall)

Figure 4. The behavior Cyclomatic complexity(Per module)

Figure 5. The behavior of comments (overall)

Figure 6. The behavior of the number of modules (overall)

84

Figure 7. The behavior of comments (Per module)

Figure 8. The behavior of comments per LOC (overall)

Figure 9. The behavior of comments per module(overall)

Figure 10. The behavior of distinct operators

Figure 11. The behavior of distinct operands

Figure 12. The behavior of total of distinct operators

Figure 13. The behavior of total of Distinct operands

Figure 14. The behavior of program length

Figure 15. The behavior of program Vocabulary

Figure 16. The behavior of estimated length

85

Figure 17. The behavior of purity ratio

Figure 18. The behavior of Volume

Figure 19. The behavior of program difficulty

Figure 20. The behavior of program effort

Figure 21. The behavior of programming time

Figure 22. Heat map of pearsons correlated distance,

behavior MI influencing metrics in similar gaming

application developed in C and Java

6. CONCLUSION AND FUTURE WORK

Based on the above visualization results, There is a vast

difference in the behavior of maintainability metrics as

observed in the Figures (1-21)and statistical analysis

performed related to MI metrics using pearsons correlation

distance on lines of code(l), cyclomatic complexity(m) and

Halsted volume (v) in C and Java with help of heat map as

shown in Figure (22) leads to conclusions.metrics used to

predict maintainability of gaming applications shows a vast

difference between them there is no consistency between

metrics and it creates confusion for predicting maintainability.

Maintainability index looks promising but it uses the same

metrics for both structural and object-oriented paradigm which

is arguable. Based on visualization and basic statistical

analysis it is hard to determine the exact behavior of different

programming languages. A good statistical analysis on a huge

data set can help in determining the behavior of

maintainability metrics.

In the future, we aim to study the dependencies and

interdependencies between the metrics and propose a new

model or a metric to predict Maintainability of different

programming paradigms.

REFERENCE

[1] Zhuo F, Lowther B, Oman P, Hagemeister J. (1993).

Constructing and testing software maintainability

assessment models. IEEE Computer Society 61-70.

https://doi.org/10.1109/METRIC.1993.263800

[2] Coleman D, Ash D, Lowther B, Oman P. (1994). Using

metrics to evaluate software system maintainability.

Computer 27(8): 44-49.

https://doi.org/10.1109/2.303623

[3] https://blogs.msdn.microsoft.com/zainnab/2011/05/26/c

ode-metrics-maintainability-index

[4] Samadhiya D, Wang SH, Chen DJ. (2010). Quality

models: Role and value in software engineering. 2nd

International Conference on Software Technology and

Engineering 25: 3-5.

https://doi.org/10.1109/ICSTE.2010.5608852

[5] Peercy E. (1981). A software maintainability evaluation

methodology. IEEE Transactions on Software

Engineering 7(4): 343-351.

https://doi.org/10.1109/TSE.1981.234534

[6] Sneed H, Mercy A. (1985). Automated software quality

assurance. IEEE Trans. Software Eng 11Bi 9: 909-916.

86

https://doi.org/10.1109/TSE.1985.232548

[7] Matinlassi M, Niemelä E, Dobrica L. (2002). Quality-

driven architecture design and quality analysis method:

A revolutionary initiation approach. Tech. Report VTT

Technical Research Centre of Finland.

[8] Hayes JH, Zhao L. (2005). Maintainability prediction: A

regression analysis of measures of evolving systems. In

21st IEEE International Conference on Software

Maintenance (ICSM'05) 21: 26-29.

https://doi.org/10.1109/ICSM.2005.59

[9] Mattsson M, Grahn H, Frans F. (2006). Software

architecture evaluation methods for performance,

maintainability, testability, and portability. Second

International Conference on the Quality of Software

Architectures. https://doi.org/10.1007/11921998

[10] Kazuya S, Koichiro R, Tadashi D, Hiroyuki O. (2007).

Quantifying software maintainability based on a fault-

detection/correction model. 13th Pacific Rim

International Symposium on Dependable Computing

(PRDC 2007), pp. 17-19.

https://doi.org/10.1109/PRDC.2007.57

[11] Heitlager I, Kuipers T, Visser J. (2007). A practical

model for measuring maintainability. 6thinternational

conference on the quality of information and

communications technology (QUATIC 2007). IEEE

https://doi.org/ 10.1109/QUATIC.2007.8

[12] Singh Y, Bhatia PK, Sangwan OP. (2009). Predicting

software maintenance using fuzzy model. ACM

SIGSOFR SEN 34(4): 1-6.

https://doi.org/10.1145/1543405.1543425

[13] Khan AS, Kajko-Mattsson M, Tyrberg T. (2009).

Comparing the EM3 pre-delivery maintenance model

with its industrial correspondence. (IMCSIT), 573-582.

https://doi.org/10.1109/IMCSIT.2003.5352783

87

