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We know that a vast amount of research has recently been done on dehazing single images. 

More work is done on day-time images than night-time images. Also, enhancement of low 

light images is another area in which lots of research going on. In this paper, a simple yet 

effective unified variational model is proposed for dehazing of day and night images and 

low-light enhancement based on non-local global variational regularization. Given the 

relation between image dehazing and retinex, the haze removal process can minimize a 

variational retinex model. Estimating of ambient light and transmission maps is a key step 

in modern dehazing methods. Atmospheric light is not uniform and constant for hazy night 

images, as night scenes often contain multiple light sources. Often lit and non-illuminated 

regions have different colour characteristics and cause total variation colour distortion and 

halo artifacts. Our work directly implements a non-local retinal model based on the L2 norm 

that simulates the average activity of inhibitory and excitatory neuronal populations in the 

cortex to overcome this problem. This potential biological feasibility of the L2 norm of our 

work is divided into two parts using a filtered gradient approach, the reflection sparse prior 

and the reflection gradient fidelity before the observed image gradient. This unified 

framework of NLTV-Retinex and DCP efficiently performs low-light enhancement and 

dehazing of day and night images. We show results obtained using our method on daytime 

and night-time images and a low-light image dataset. We quantitatively and qualitatively 

compare our results with recently reported methods, which demonstrate the effectiveness of 

our method.  
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1. INTRODUCTION

During the past decade, a lot of research has enhanced the 

quality of hazy or foggy images. In computer vision 

applications for outdoor environments, the visibility and 

contrast of images captured in foggy weather are rigorously 

reduced [1-3]. Since photo quality is mainly affected by the 

existence of small dust particles in the air which scatter the 

original light reflected by object in the scene before absorbed 

by sensor, this leads to poor contrast quality and the depth 

details lost. Image dehazing is desirable in feature extraction 

applications such as digital video surveillance, aerial survey, 

and driverless car, thereby enhancing the scene visibility and 

appropriate correction in the color shift. 

Haze occurs due to the scattering of light through the 

microscopic water droplets. The Number of pixels in a frame 

can be enhanced by removal of noise in video. Noise present 

degrades per pixel image hence lessening robustness and 

efficiency. The proposed work deals with removal of haze 

from noisy atmospheric images. It helps to overcome the 

problem of haze and poor visibility. This reduces trade-off 

between contrast and saturation of images, thus preserving the 

quality of the recovered image. 

The method used enhances the quality of an image by 

removing atmospheric noise like haze and fog and performs 

effective denoising of images considering Retinex properties 

such as illumination and reflectance components of images. 

The algorithm used in denoising atmospheric images is Dark 

Channel Prior Algorithm. It first computes the parameters such 

as airlight estimate and rough depth of the scene. There are 

various techniques based on DCP are discussed. They found 

solutions simply by using the single input hazy image. Even 

though these techniques are very effective and have been 

widely used on hazy daylight scenes, they perform poorly with 

restrictions on hazy night-time scenes. Since, several light- 

emitting objects causes a non-uniform brightness, haze 

removal from images captured at night becomes intricate. So 

only a limited number of researches have been carried out on 

the night-time haze elimination issues. 

The main research aim is to enhance the low-light night-

time hazy scenes. To achieve this goal, a novel method which 

combines DCP and non-local retinex algorithms is developed 

to achieve contrast enhancement and preserve edges. 

Experimental results of the proposed system on LoL database 

images provide promising results in terms of Peak Signal-to-

Noise Ratio (PSNR), Structural Similarity Index Measure 

(SSIM). The proposed system achieves ~15% more PSNR, 

20% more SSIM than Ancutis algorithm and also it 

outperforms other existing algorithms in section 2 in 

evaluating the LoL image dataset. 

The organization of the paper is as follows: Section 2 

reviews the current literature on low-light image enhancement. 

The proposed system is discussed in section 3 with the help of 

haze image-atmospheric scattering model, estimation of dark 

channel and atmospheric light, non-local retinex, transmission 

optimization, and scene radiance recovery. Section 4 discusses 

the experimental results of the proposed system on LoL 

database images and evaluated in terms of PSNR and SSIM. 
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The conclusions are provided in the last section. 

 

 

2. RELATED WORK 

 

In past few years, there is plenty of research works carried 

out with enormous progress to improve the visibility of hazy 

images. In the domain research of improving the contrast and 

clarity of hazy images, various methods like dark channel prior, 

color attenuation prior, fusion-based dehazing, histogram 

equalization, wavelet method and retinex method.  

Narasimhan and Nayar [4] proposed that scene radiance the 

structure can be recovered from the hazy scene using multiple 

images and spatial information. In literature, plenty of prior 

based methods for dehazing of single images. Dark channel 

prior [1-5] is one of the popular priorities, improving the 

quality of hazy images with poor visibility. Pal [6] compared 

the DCP on real-time, and the experimental foggy image 

quality improved, but the time taken to process successive 

frames was longer. Berman et al. [7] proposed an algorithm 

for dehazing using haze lines to estimate atmospheric light. 

The color attenuation prior [8] is presented, and this algorithm 

thereby efficiently restores the degraded hazy images. 

Learning-based dehazing is discussed by Cai et al. [9] for end-

to-end haze removal process. Wang et al. [10] proposed dark 

channel prior based single image dehazing with a physical 

model which overcomes the artifacts generated in the single 

image dehazing by DCP method. Meng et al. [11] suggested 

an efficient image dehazing with boundary constraint using 

contextual regularization. Chen et al. [12] discussed robust 

image and video dehazing with visual artifact suppression via 

residual gradient minimization. 

Various night-time dehazing methods are presented [13-17]. 

Anucti et al. [13] suggested fusion-based night image dehazing. 

Zhang et al. [14] addressed night-time low illuminated images. 

A local air- light component generates a maximum reflectance 

prior, which estimates the varying air light. Li et al. [15] 

presented dehazing of night-time images by reducing the glow 

effects and artifacts, but the image’s contrast is affected. 

Dehazing of day and night time images is discussed in the 

studies [18-20]. Ancuti et al. [21] introduced a novel method 

to improve daytime and hazy night-time images. It estimates 

the ambient light on local patterns with small size tracts and 

not the whole image. At night, the illumination originates from 

several unnatural, non-uniform sources. The problem in 

selecting patch size is overcome by fusing more samples of 

inverted images using Laplacian decomposition. Xie et al. [19] 

have addressed dehazing algorithm, which uses dark channel 

prior and multi-scale retinex. On combining the dark channel 

prior, they recovered a quality output image but still, in 

processing, obtained poor form of transmission map. 

Different Retinex methods are discussed in the studies [22-

25]. The homomorphic filter method [22] is presented but fails 

to address the halo issues. The SSR algorithm [23] of the 

center and surround method using Gaussian kernel was 

introduced, resulting in increased computational complexity. 

To overcome these difficulties in removing turbidity using 

multi-scale Retinex, Guo et al. [24] proposed a method by 

suppressing the luminance component. Still, unfortunately, 

this algorithm leads to strong color distortion. Multi-scale 

Retinex with a colour restoration (MSRCR) scheme [25] have 

been suggested to eliminate the color distortion of MSR. 

In image processing, non-local means techniques have been 

demonstrated to recuperate pictures containing surfaces 

successfully and are generally utilized in grayscale handling. 

The primary thought is to use comparative squares throughout 

the picture to appraise the present pixel esteem. Gilboa and 

Osher [26] bound together with the non-local mean approach 

into a regularization system by characterizing a non-local 

Total Variation (TV) model, in particular, the Non-local Total 

Variation (NL-TV) model-L1, NL-TV-L2 including models 

and Generalized Model of Total Non-local Variation (NL-

TVG), individually, proposed calculations. From that point 

forward, Buades et al. [27] summed up non-nearby technique 

and proposed a notable neighbourhood denoising filter, 

particular non-local mean (NLM). The NL-TV model can 

safeguard both edge and textures, with great application 

impact. The conventional NLM strategy joined with 

variational retinex investigates image similarities for noise 

expulsion by supplanting the nearby correlation of individual 

pixels with the non-local examination of image patches [28]. 

Zosso et al. [29] proposed a unified framework by merging TV 

regularization with NLM retinex technique. Chung et al. [30] 

presented a novel white patch-based retinex-based modified 

dark channel prior technique for dehazing single images 

observed during daytime. 

Ancuti et al. [31] resolved a novel submerged image 

enrichment utilizing different fusion methods and further 

developed the low light pictures caught underwater. Li et al. 

[32], Al-Hashim and Al-Ameen [33] and Wang et al. [34] and 

Park et al. [35] examined different low light improvement 

strategies and noise removal procedures. Guo et al. [36] 

proposed a Low-light Image Enhancement Method (LIME) to 

take advantage of the illumination design by evolving the 

smoothing model. Gupta and Agarwal [37] proposed another 

color differentiation upgrade approach for dim images with 

non-uniform brightening in the HSI space. The luminance part 

I in the HSI color space is isolated and irrelevant to the 

chrominance part H of an image and further enhances the 

image details. Rivera et al. [38] utilized an adaptive 

transformation function for augmentation low light images, 

but failed for recovery of data from shadow regions.  

The DCP technique is simple but more efficient single 

image dehazing algorithm. Nonetheless, it ineffective in 

processing sky images and involves acute computations. A 

few better algorithms [39-43] are proposed to eradicate the 

shortcoming of the DCP approach. For effectiveness, He et al. 

[39], Zhu et al. [40], Xiao and Gan [41], Adams et al. [42] 

supplant the tedious DCP approach soft-matting with guided 

joint bilateral filtering and guided image filtering by adaptive 

filtering and standard median filtering, fast high-dimensional 

filtering respectively. Single image dehazing is discussed by 

Ancuti et al. [43] using D-Haze dataset. Wang et al. [44] 

applied the multi-scale convolutional networks that 

accomplish an end-to-end trainable model and can naturally 

distinguish hazy regions and retrieve poor texture details. Ren 

et al. [45] developed a multiscale deep neural network for 

single image dehazing by learning the mapping between haze 

images and their transmission maps. The proposed technique 

comprises a coarse-scale net that predicts a comprehensive 

transmission map given the whole image and a fine-scale net 

that locally refines desired output image. Kimmel et al. [46] 

proposed a variational model for the retinex problem by 

utilizing the spatial correlation that exists in the reflectance 

and illumination images. Rudin et al. [47] introduced the total 

variation (TV) regularizer which is very effective in 

recovering edges of images. 

The low-light images suffer from two main problems such 
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as low-visibility and noises. Though the image enhancement 

algorithms increase the visibility, the noises in the images also 

increase. Most of the noise removal techniques remove the 

edge information which degrades the quality of the images. 

The retinex based algorithms are performed poorly with the 

unnatural images. The main disadvantage of multi-scale 

retinex is that they are unable to remove the halo effects near 

strong edges. Also, it is very important to remove the haze in 

both day and night time hazy images and enhancement of low-

light images. To attain this and remove the drawbacks in the 

existing systems, DCP and non-local retinex algorithms are 

combined to enhance contrast and preserve edges as well. 

 

 

3. PROPOSED WORK 

 

This paper suggests a novel method for dehazing both day 

and night images and low light (LoL) enhancement by fusing 

DCP and non-local retinex (NLR). Light plays an essential 

role on dehazing in colour images. How select atmospheric 

light value is a challenging problem. In our work, the new 

value is obtained by first estimating the top 0.1 percentage of 

the brightest pixels in the dark channel, which mostly is an 

opaque and hazy portion of the scene. Then the retinex 

component of the image is computed using non-local 

differential equations. The following Figure 1 shows the 

schematic diagram of the proposed method. 

The proposed method includes steps as follows: 

• The dark channel prior Idark is computed in opaque 

part of the image on the brightest track. 

• Compute the non-local retinex of the low light or 

hazy image �̂�. 

• Evolve the prior, which is obtained by combining Idark 

and �̂�. 

• Next, we computed the atmospheric light Â. 

• Then initial transmission τ (x) is computed. 

• Refined transmission �̃� computation guided filter. 

 

 
 

Figure 1. Schematic diagram of proposed method 

• haze-free or LoL enhanced output images are 

obtained 
 

𝐽(𝑥) =
𝐼(𝑥) − �̂�

𝑚𝑎𝑥( �̃�(𝑥), to )
+ �̂�  

 

In this work, a total average of dark channels pixels and 

NLR are computed and are used before estimating 

atmospheric light. This technique drives away the shortfall of 

the DCP and diminishes the artifacts of bright elements on the 

whole image.  
 

3.1 Modeling haze image-atmospheric scattering model 
 

3.1.1 Daytime haze imaging model 

The optical atmospheric attenuation model [1] represents 

the hazy image. Figure 2 shows the atmospheric scattering 

model. From He et al. [1] the equation of that model is given 

by 
 

I(x) J(x) (x) (1 (x))A = + −  (1) 

 

where, I is the captured haze image, A is an ambient light, J is 

the true radiance, and τ is the scene transmission parameter to 

be evaluated. 

 
Figure 2. The daytime atmospheric scattering model 

 

The transmission map is evaluated using equation which is 

given by  
 

• ( )( ) d xx e  −=  (2) 

 

where, β is the scattering parameter and d(x) is the distance 

between the object and camera. 
 

3.1.2 Reflectance prior 

We propose a prior which depends on evaluating haze-free 

image patches observed during daytime. Generally, in most 

image patches, each color channel has huge intensities at 

certain pixels, and the maximum powers in such a patch have 

high grayscale values. Based on this an image I, the prior can 

be mathematically defined as 

 

max
max maxj j j j jI L R

   = =  (3) 

 

where, 𝜌𝑚𝑎𝑥
𝜆  is the maximum intensity in patch Ω at colour 

channel λ, Lj is the light intensity that falls on object surface, 

and Rλ
j is the reflectance. For images captured in the daytime, 

which are clear and visibly vivid, there is uniform light 
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intensity, and hence Lj is assumed to be unity. Therefore, the 

pixels with maximum intensity in the local patch at a particular 

color channel indicate the objects with high reflectance. So Eq. 

(3) has the following equivalent form 

 

max
max j jI

 =  (4) 

 

The objects such as sky, road, windows of buildings, 

flowers, surfaces with various colors and soon have maximum 

reflectance. Since in most of haze-free daytime image patches, 

the above mentioned objects are common in the outdoor 

scenes, each color channel have a maximum intensity value of 

unity, i.e., 

 

max
1   (5) 

 

In like manner, the derived perception is called as the 

maximum reflectance prior.  

 

3.1.3 Nighttime haze imaging model 

Eq. (1) indicates the ambient light A is supposed to be the 

only light source for daytime haze atmosphere. Hence similar 

attenuation characteristics exist for all channels, which means 

the captured image is independent of the wavelength. However, 

night-time scenes naturally consist of several colored light 

sources with different wavelengths, emerging in a non-

uniform varicoloured ambient illumination. Hence the local 

ambient illumination is added to day-time haze imaging model 

to obtain the night-time hazy imaging model as follows: 

 

𝐼𝜆 = 𝐽𝜆𝑡 + 𝐴𝜆(1 − 𝜏) (6) 

 

where, Iλ is the observed image, Jλ is the scene radiance for the 

corresponding wavelength. But the scene radiance depends on 

ambient light Aλ and reflection Rλ i.e., Jλ = AλRλ. 

 

𝐼𝜆 = 𝐴𝜆𝑅𝜆𝑡 + 𝐴𝜆(1 − 𝜏) = 𝐿𝜂𝜆𝑅𝜆𝑡 + 𝐿𝜂𝜆(1 − 𝜏) (7) 

 

where, L represents the illumination intensity and ηλ is the 

colour of ambient illumination. 

 

3.1.4 Estimation of reflectance prior for night image 

In the hazy night-time scenario, lights emitted from several 

light sources vary steadily in space, except for some 

obstructions, which causes abrupt changes among dark and 

luminous regions. In the whole image, such extremities are 

sparse. Hence, Fogg scatters light in multiple directions and 

synthesizes smoothly varying ones. So, we assume the 

ambient illumination Aλ
j on each local patch j ∈  Ω to be 

constant. We also assumed 𝜏 to be a constant on Ω and written 

as 𝜏Ω. Following the assumptions, on maximizing both side of 

Eq. (3), we get 
 

𝜌𝑚𝑎𝑥
𝜆 = max

𝑗𝜖Ω
𝐼𝑗

𝜆  

= max
𝑗𝜖Ω

(𝐿Ω
𝜆 𝜂Ω

𝜆  𝑅𝑗
𝜆𝑡Ω + 𝐿Ω

𝜆 𝜂Ω
𝜆 (1 − 𝜏Ω)) 

= max
𝑗𝜖Ω

 𝑅𝑗
𝜆(𝐿Ω

𝜆 𝜂Ω
𝜆  𝑡Ω + 𝐿Ω

𝜆 𝜂Ω
𝜆 (1 − 𝜏Ω)) 

(8) 

 

From Eq. (4), we have maxj∈Ω Rλ
j ≈ 1. Substitute into the 

above equation. We have the proposed maximum reflectance 

prior 
 

𝜌𝑚𝑎𝑥
𝜆 =  𝐿Ω

𝜆 𝜂Ω
𝜆  𝑡Ω + 𝐿Ω

𝜆 𝜂Ω
𝜆 (1 − 𝜏Ω))  =  𝐿Ω

𝜆 𝜂Ω
𝜆  (9) 

 

Thus, the reflectance of the night- time image is the function 

of ambient light intensity and color. So it is different from the 

day image. During the night, the Aλ is multi-colored and 

varying. So, for hazy night image patches, the maximum 

intensities at each colour channel will have maximum 

reflectance due to the light sources. By using this proposed 

prior, our method reduces artifacts. We generalized this idea 

and proposed a novel prior to performing day and night-time 

image dehazing and low light enhancement. We first use non-

local retinex to compute the reflectance prior, enabling us to 

estimate ambient illumination’s color map. Then, computing 

the transmission estimate and the guided filter determines its 

refined version. Finally, a haze-free image with good contrast 

is obtained. The following section estimates the proposed 

reflectance prior to using the non-local retinex method. 
 

3.2 Dark channel prior estimation 
 

From Eq. (1), it is understood that to restore the image 

without haze, it is essential to acquire the τ(x) and the A. To 

evaluate the τ(x), He [2] proposed an optimum method based 

on the dark channel prior. It is mentioned that in haze-free non-

sky outdoor images, among any red-green-blue color channels, 

at least there is one channel that might have the lowest 

intensity at some pixels. i.e., 
 

𝐽𝑑𝑎𝑟𝑘(𝑥) = min
𝑐 𝜖[𝑟,𝑔,𝑏]

( min
𝑦𝜖Ω(𝑥)

(𝐽𝐶(𝑦))) ≈ 0 (10) 

 

where, Jdark specifies the dark channel of J(x), JC is the colour 

channel of J(x), and Ω(x) is a petite tiny portion that is 

surrounding the pixel x. Ultimately we intend to enhance the 

low- intensity hazy image I and generate a visibly good and 

improved radiance J. 

 

     

     
a b c d e 

 

Figure 3. Dark channel prior if Hazy day input images a) Hill tree b) Building c) Retinex d) Swan d) Stadium and e) Bench 

882



 

     

     
a b c d e 

 

Figure 4. Dark channel prior if Hazy night input images a) Bus b) Tower c) Van d) Scooter and e) Park booth 

 

The experimental results of dark channel for different input 

hazy images are shown in Figure 3 and Figure 4 for day images 

and night images, respectively. The existence of high levels of 

shadow, colorful objects, and dark objects in the hazy image 

causes variation of dark channel values. 

 

3.3 Non-local retinex 

 

Atmospheric light is not uniform and constant for hazy 

night images, as night scenes often contain multiple light 

sources. Often lit and non-illuminated regions have different 

color characteristics and cause total variation color distortion 

and halo artifacts. We propose a non-local retinal model based 

on the L2 norm to overcome this problem. 

 

3.3.1 Non-local mean filtering 

This section estimates the retinex-based reflectance prior to 

using a unified method that combines non-local means with 

TV regularization technique. To smooth an image, normally, 

local mean filters consider the average value of a number of 

pixels around target pixel. But non-local mean (NLM) filters 

compute the mean value of the target pixel considering all the 

weighted pixels in the whole image. The weight is computed 

by how much color similarity exists between these pixels and 

the target pixel. This leads to high clarity and less loss of 

information. Also, the most similar pixels for the target pixel 

need not to be located closer. Hence, it is important to scan a 

vast image area for those pixels that resembles the target pixel. 

The self-similarity is measured by equating an entire patch 

surrounding each pixel. The NLM filtering performs a non-

local comparison of image patches that inspects image self 

similarities for removing noise. Hence, for a given noisy image 

I, the restored intensity u of the pixel at (x, y) is presented as  

 

𝑢(𝑥, 𝑦) = 𝐼𝑁𝐿(𝑥, 𝑦) =
∑ 𝐼(𝑚, 𝑛). 𝑤(𝑥, 𝑦, 𝑚, 𝑛)(𝑚,𝑛)∈Ω

∑ 𝑤(𝑥, 𝑦, 𝑚, 𝑛)(𝑚,𝑛)∈Ω
 (11) 

 

where, NL denotes the nonlocal means, and Ω-is a search 

window. The weight w(x, y, m, n) specifies the similarity 

between two pixels at (x, y) and (m, n) is evaluated by 

 

𝑤(𝑥, 𝑦, 𝑚, 𝑛) = 𝑒𝑥𝑝 (−
∥ 𝐼(𝑃(𝑥, 𝑦)) − 𝐼(𝑄(𝑚, 𝑛)) ∥2,𝑎

2

ℎ2
) (12) 

 

where, h represents a filter order parameter, P(x, y) and Q(m, 

n) are the two image patches centered at (x, y) and (m, n) 

respectively; ||I (P(x; y)) - I (Q(m, n))||22 means the weighted 

Euclidean distance between two image patches P(x, y) and 

Q(m, n )of the input image I(x,y). 

 

3.3.2 Variational retinex 

Kimmel et al. [46] present a variational retinex formulation 

as u = r + i where i = log(I), r = log(R), and u = log(u) using 

the same assumption in PDE formulations. The retinex is  

 

( )
22 2

Ω

arg min
u

r u u i u i =  + − +  −  (13) 

 

But the above conventional regularizer is not an efficient 

method for image restoration problems. 

Rudin et al. [47] introduced the total variation (TV) 

regularizer, which is very effective in recovering edges of 

images. This resembles with the PDE-based algorithms. 

Buades et al. [27] proposed a nonlocal mean method. Then 

Gilboa and Osher [26] introduced the nonlocal TV regularizer, 

the most popular optimization method for processing textured 

images. We can define the nonlocal weight between two pixel 

x and y in different patches with a patch size of Ω for a given 

image u(x), 

 

𝑤ℎ(𝑥, 𝑦) = 𝑒𝑥𝑝 {
−𝐺𝑎 ∗ (𝑢(𝑥) − 𝑢(𝑦))2

2ℎ2
} (14) 

 

where, Ga is the Gaussian kernel. After computing nonlocal 

weights, the nonlocal gradient operator ∇𝑤𝑢(𝑥, 𝑦) is obtained 

as partial difference vector at x  

 

∇𝑤𝑢(𝑥, 𝑦) = 𝑢(𝑦) − 𝑢(𝑥)√𝑤(𝑥, 𝑦) , ∀𝑦 ∈ Ω (15) 

 

and the NLTV regularizer can be defined as 

 

( ) ( )( ) ( )
1

2
2

Ω Ω
( , )

w
u u y u x w x y dy dx = − ∬  (16) 

 

So the NLTV regularized model for retinex is  

 

( )
  2

2

Ω

1
min

2
w

u

r arg t u u i=  +  −
 
 
 
  (17) 

 

The nonlocal gradient operator term is the TV regularizer 

parameter that operates to get the sharp edge information. The 

second term represents the L2 norm gradient value of the 

reflection.  
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3.3.3 L2 gradient fidelity 

Our work implements a non-local retinal model based on 

the L2 norm that simulates the average activity of inhibitory 

and excitatory neuronal populations in the cortex. This 

potential biological feasibility of the L2 standard of our work 

is divided into two parts using a filtered gradient approach, the 

reflection sparse prior and the reflection gradient fidelity prior 

to the observed image gradient. The energy of the L2 gradient-

fidelity non-local Retinex is  

 

𝐽(𝑟) = ‖∇𝑤𝑟 − ∇𝑤,𝑓𝑖‖ +𝛼‖𝑟‖2
2 + 𝛽2

2  ‖𝑟 − 𝑖‖2
2  (18) 

 

The analogous Euler-Lagrange equations are 

 

0 = 2(− ∇𝑤�̂� + ∇𝑤,𝑓𝑖 + 𝛼 �̂� + 𝛽 (�̂� − 𝑖))  (19) 

Finally the reflectance �̂� is estimated as 

 

�̂� = ((α +  𝛽)𝐼 − 𝐿)−1 (𝛽 𝑖 − ∇𝑤,𝑓𝑖))  (20) 

 

where, I represent the identity matrix and L is the Laplacian 

matrix. The parameter α and β are dynamic range compression 

factor that controls the degree of local contrast enhancement. 

This unified framework of NLTV-Retinex and DCP efficiently 

performs low-light enhancement and dehazing of day and 

night images. Figures 5 and 6 show the non-local retinex, 

computed using the reflectance component of given day and 

night images. Since, the illumination component of the image 

changes smoothly, the edges present in the reflectance 

primarily contribute to the spatial derivatives of the observed 

intensity. 

 

     

     
a b c d e 

 

Figure 5. Non local retinex output of hazy day input images a) hill tree b) building c) swan d) stadium and e) bench 

 

     

     
a b c d e 

 

Figure 6. Non local retinex output of hazy night input images a) bus b) tower c) van d) scooter and e) park booth 

 

      

      
a b c d e f 

 

Figure 7. Evaluation of atmospheric light of night images a) hazy input image b) locating ambient light c) conventionally 

measured A d) fused prior (hazy image, DCP and retinex) e) locating proposed ambient light f) estimated new atmospheric light 
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3.4 Proposed estimation of atmospheric light 

 

The scene’s radiance is generally described by the 

atmospheric light (A). Generally, in the various haze removal 

methods on a single image, the atmospheric light A obtained 

is from the severely blurred region. We proposed a modified 

method for air-light estimation. The picture elements with the 

brightest intensity are usually found on white objects that 

appear in the real image, which may be refined for compute 

atmospheric light [16]. The proposed algorithm includes steps 

as follows: 

• First DCP Idark is estimated by initially identifying the 

top 0.1 percentage of the bright candidate pixels on 

brightest channel in opaque part of the image. 

• Compute the non-local retinex prior of the low light 

or hazy image �̂�. 

• Evolve the dark channel-retinex (DCR) prior, 

obtained by fusion of Idark and �̂�. 

• Whole Then combine the input image I with DCR 

prior and generate a new input image I′. 

• Next, compute the atmospheric light Â for I′ the 

modified input image. 

For day images assuming the contribution of atmospheric 

light is uniform in the whole scenario, which the observer 

captures, and it is evident if sunlight is present in the scene. In 

most of the situation, this is not necessary to be true. When fog 

exists, light undergoes scattering during to the night-time due 

to aerosols present. Thus in the foggy night, ambient light A 

does not prevail the same due to various light sources. Hence 

instead of A, we changed to 𝐴𝜆 and from which Â is computed. 

This is achieved by NLTV retinex, which is derived from the 

Laplacian operation on new input image I′. Then in I′, the 

pixels with the mean intensity are selected for Â, to avoid 

overestimation of the atmospheric light. 

The atmospheric light estimation is shown in the above 

Figure 7 for daytime and hazy nighttime images. First, the 

location of atmospheric light is selected and then A estimated 

for the original hazy input image. Then it is compared with the 

new image obtained by fusing DCP and non-local retinex with 

input image. When analyzing the fige.7 for hazy, low light, or 

night time images, in which we find that if there exist brighter 

lights sources. So if we choose the brightest pixel for Â, it may 

lead to noise artifacts. Moreover, the light sources may not 

appear natural, and might be surrounded by halos or artifacts. 

To prevent such problems, we chosen bright channel based on 

the mean intensity estimation. 

 

3.5 Transmission optimization 

 

The improved atmospheric light estimation Â is utilized to 

evaluate the transmission map. While evaluating the estimate 

of the transmission map, transmission is considered persistent 

in the local patch Ω(x). From [2] on manipulating both sides 

of Eq. (1) with transmittance minimum transformation 

function in the RGB channels, we have 

 

min
𝑐 𝜖[𝑟,𝑔,𝑏]

( min
𝑦 𝜖Ω(𝑥)

(𝐼𝐶(𝑦))) 

= 𝜏(𝑥). min
𝑐 𝜖[𝑟,𝑔,𝑏]

( min
𝑦 𝜖Ω(𝑥)

(𝐼′𝐶(𝑥))) + (1 − 𝜏(𝑥))Â𝐶 
(21) 

 

The value of I’C(x) reduces to zero inside the haze-free local 

patch and �̂�𝐶 is invariably positive. The transmittance of sky 

portion or that region with uniform intensity tends to zero. In 

order to handle both sky and other regions in the image a 

constant ω is introduced into equation: 

 

𝜏(𝑥) = 1 − 𝜔. min
𝑐 𝜖[𝑟,𝑔,𝑏]

( min
𝑦 𝜖Ω(𝑥)

(
𝐼′𝐶(𝑦)

Â𝐶
)) (22) 

 

where, 0 ≤ ω ≤ 1. we used the patch size Ω(x) of 15 x15 for 

night images and 30 x 30 for day images. 

The transmission map refinement is an important step in our 

work. The Figure 8 depicts the consolidated output parameters. 

In our proposed method we use fast guided fitter for the 

refinement of the transmission map. The guided filter (GF) is 

an advanced filtering technique which preserves edges and 

execution speed. It is because of its nice visual quality, fast 

speed, and ease of implementation. The definition of general 

linear translation variant filter [39] is shown as  

 

𝑞𝑖  = ∑ 𝑤𝑗(𝑔). 𝐼𝑗
𝑗

 (23) 

      

      

      

      
a b c d e f 

 

Figure 8. Consolidated outputs for both the day and night hazy input images a) Input image b) Dark channel prior c) Retinex d) 

Combined DCP and retinex prior e) Transmission and f) Refined transmission 
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where, I(x, y) is input image, g(x, y) is guide image and output 

image is q(x,y). wij is a filter mask kernel with (i, j) 

representing the index of the pixels. The salient feature of GF 

is that it gives a linear relation between q(x,y) and g(x,y). In 

our work, in order to reduce reconstruction error between I(x,y) 

and g(x,y) fast guided filter is shown as follows [12]: 

𝑞𝑖  = 𝑎𝑘  𝑔𝑖 + 𝑏𝑘 , ∀  𝑖 ∈  𝑤𝑘 (24) 

𝑎𝑘 =  

1
|𝑤|

𝜎𝑘
2 + Є

∑  𝑔𝑖

𝑖∈𝑤𝑘

𝐼𝑖 − 𝜇𝑘 𝐼�̅�
(25) 

𝑏𝑘 = 𝐼�̅� − 𝑎𝑘𝜇𝑘 (26)

where, 𝜇𝑘  and 𝜎𝑘
2  are the mean and variance of g(x,y) in

window 𝑤𝑘. 𝜀 represents regularization parameter and |wk| is

the number pixel in wk 𝐼�̅�  is mean of input image I(x,y) in

window 𝑤𝑘 . The consolidated outputs for both the day and

night hazy input images of various blocks are presented in the 

above Figure 8. The guided filter successfully refines the 

coarse transmission output, smoothens the slope inversion 

artifacts, and creates outwardly satisfying edge profiles. 

3.6 Scene radiance recovery 

We initially select the foremost 0.1 percentage of most 

illuminant pixels in the dark channel and compute the retinex. 

Then by combining both DCP and retinex, we will get the dark 

channel-retinex (DCR) prior and then compute to the 

atmospheric light Â. 

a b c d e f 

Figure 9. Haze free radiance generated by various methods for both day and night hazy input images a) Input image b) He et al. 

c) Li et al. d) Ancuti et al. e) Chen et al. and f) Our result

After evaluating the atmospheric light ( Â)  and final 

transmission τ(x) from I′(x) scene radiance J(x) can be 

recovered. Figure 9 shows the haze free radiance generated by 

various methods for both day and night hazy input images. 

That means from the optical scattering image model of Eq. (1). 

We can recover the J(x) using the τ(x). Since the parameter J(x) 

• τ(x) scene irradiance value is approximately close to zero, for

the ground truth, the τ(x) is restricted to a minimum value of

t0, and is assigned an appropriate value of 0.1. Hence haze-free

output image J(x) is evaluated by

𝐽(𝑥) =
𝐼′(𝑥) − Â

max (τ(x), 𝑡𝑜)
+ Â (27) 

It is observed from the above output images that our 

algorithm using combined DCP and non-local derivative 

retinex results in the effective pixel-wise blending with both 

advantages of DCP and retinex. 

4. RESULT ANALYSIS

4.1 Qualitative analysis - day image 

To evaluate the efficacy, and quality of our proposed 

method, we analogize our approach with some up-to-date 

algorithms in both subjective and objective aspects. Those 

algorithms we select for comparison include He et al. [1], 

Fattal [8], Cai et al. [9], Chen et al. [12], Ancuti et al. [13] and 

Li et al. [15]. Experiments have been performed in Matlab 

R2020b on a personal computer with a 2.60 GHz Intel pentium 

dual-core processor and 4G RAM. 

Figure 10 shows the comparison of our proposed method 

with existing methods. It can be seen that DCP [2] tends to 

over-dehaze the light source regions while under-dehaze the 

dark areas. On the contrary, retinex preserves shapes and edges 

in illuminated area, while the dark areas seem over-enhanced. 

The proposed result obtained by combined DCP and non-local 

retinex give is very effective. We applied our proposed 

technique to many classical standard testing photos in our 

experiments. The robustness of proposed model is 

demonstrated by comparing our results with the existing 

algorithms. 

Our technique is a single image approach. It first generates 

DCP and NLTV retinex and fused together to generate new 

prior using a single image, not multiple images. This newly 

generated prior combined with the input image. We use 

different patch size for day and night images to determine the 

airlight values. Our proposed method improves the overall 

visibility and contrast of the image, thereby transforming the 

image into a more suitable form for human observation and 

computer analysis. 

4.2 Qualitative analysis - night image 

This section compares and discusses our results for 

dehazing nighttime hazy images with existing state-of-the-art 

nighttime methods. Only a few types of research are available 

in the literature. We choose small patch sizes 15 x 15 for night 

image, thereby avoiding computation of the ambient light from 

veil of several light sources. Otherwise, the image obtained 

might result in poor contrast. 
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From the Figure 11, our algorithm performs better than 

other algorithms by better visibility and contrast. On 

comparing with the study [13], our algorithm restores the color 

balance without overwhelming brightness and fewer artifacts. 

Though, the output of the study of Li et al. [15] reduces the 

glow effect and halos contrast is poor than our result. Our 

proposed algorithm have better colour balance and preserve 

colour better than other algorithms [2, 12]. 

 

4.3 Quantitative result analysis -day image 

 

A specific number of hazy daylight images of O-Haze 

dataset are analysed in Figure 12 in terms of PSNR, SSIM, and 

CIEDE2000 [43]. The performance metrics PSNR, SSIM, and 

CIEDE2000, are measured for the low-light image O-Haze 

dataset and are tabulated below. The parameters are measured 

by comparing the output with the ground truth. 

 

      

      

      

      
a b c d e f 

 

Figure 10. Comparison of output results of on analysing hazy day input images. a) Input image b) He et al. [1] c) Li et al. [15] d) 

Ancuti et al. [13] e) Chen et al. [12] and f) Our result 

 

      

      

      

      
a b c d e f 

 

Figure 11. Comparison of output results of on analysing hazy night input images. a) Input image b) He et al. [1] c) Li et al. [15] 

d) Ancuti et al. [13] e) Chen et al. [12] and f) Our result 
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a b c d e f g h 

 

Figure 12. Comparison of results on analyzing the O-Haze dataset images a) Hazy input image b) He et al. [1] c) Cai et al. [9] d) 

Fattal [8] e) Meng et al. [11] f) Ancuti et al. [13] g) our result and h) ground truth 
 

The proposed method is compared with existing algorithms 

and evaluated by analyzing of O-Haze data set images. It 

consists of 45 pairs of hazy images and its ground truth with 

an image of size 800 X 600. The quantitative parameters 

PSNR, SSIM, and CIEDE2000 for daytime Hazy outdoor 

dataset O-HAZE are measured. The results and parameters 

PSNR, SSIM, and CIEDE2000, are compared with the ground 

truth values. From Table 1 of the above analysis, we found that 

the input image_01 PSNR of our algorithm is 23% better than 

Cai et al. [9], 22% better than Fattal [8], and 7% better than He 

et al. [1]. SSIM of our algorithm is 24% better than Cai et al. 

[9], 9% better than Fattal [8], and 7% better than Ancuti et al. 

[13]. Similarly, the CIEDE2000 parameter of our algorithm is 

18% better than He et al. [1], 25% better than Cai et al. [9] and 

Fattal [8], 9% better than Ancuti et al. [13]. On comparing the 

image_19 PSNR of our algorithm is 16% better than He et al. 

[1], 12% better than Cai et al. [9], 29% better than Fattal [8], 

21% better than Ancuti et al. [13]. SSIM of our algorithm is 

9% better than Cai et al. [9], 2% better than Ancuti et al. [13]. 

Similarly, the CIEDE2000 parameter of our algorithm is 27% 

better than Fattal [8], 9% better than Cai et al. [9], and 4% 

better than He et al. [1]. The color difference between the 

output and GT is less when the CIEDE2000 value is less, 

which means the quality of the image is good. Similarly the 

higher the value of the PSNR and SSIM better the quality. The 

average value of the parameters of our results is better than 

others work. So it is obvious that our work outperforms He et 

al. [1], Fattal [8], and Cai et al. [9] algorithm on evaluating the 

D-HAZE dataset. 

 

4.4 Quantitative result analysis –low light/dark image  

 

The LOL dataset is a benchmark designed to enhance 

images captured in dark, poor light environment. The LOL 

dataset consists of 500 low-light and normal-light image pairs. 

The LOL dataset is divided into 485 training pairs and 15 

testing pairs. The images are 400x600 pixels in resolution. We 

intend to exploit the quality of non-local retinex to process low 

light dark image without going for gamma correction and to 

prove the effectiveness of our proposed technique which 
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performs three different tasks vis-a-vis both day/night image 

dehazing and low light enhancement. It is rare to find single 

method to perform three different functions in literature. Our 

proposed method improves the overall visibility and contrast 

of the image. For result analysis, we used the available 

author’s source code. Figure 13 demonstrates the low light 

enhancement techniques of Chen et al. [12], Li et al. [15], He 

et al. [1], and Ancuti et al. [13] and our results compared with 

ground truth of the low light dataset (LOL). 

Figure 13 directly compares our approach with the recent 

specialized techniques of Li et al. [15], Chen et al. [12], and 

Ancuti et al. [13]. Li et al. [15] tends to darken the original 

image and to over-amplify colours in some regions. We used 

inversed version of the original DCP source code of He et al. 

[1], and we got the LoL analysis output with modified code; 

otherwise, it could have been dark output for all most all 

images. So Li et al. [15] and Chen et al. [12] algorithms 

performing good in daytime image enhancement also have 

poor visibility and less image enhancement. In general, 

existing techniques cannot enhance the image’s dark veil and 

are poor in restoration. Only Ancuti et al.’s [13] work and our 

results performed good on LoL image enhancement. The 

results are compared with ground truth pair of dark LoL image. 

From Table 2 of the analysis, we found for the set-35 image, 

PSNR of our algorithm is 32% better than He et al. [1], 64% 

better than Chen et al. [12], and 72% better than Li et al. [15]. 

SSIM of our algorithm is 23% better than He [2], 60% better 

than Chen et al. [12], 80% better than Li et al. [15]. Similarly 

CIEDE2000 parameter of our algorithm is 28% better than He 

[2], 61% better than Chen et al. [12], 66% better than Li et al. 

[15]. So it is obvious that our work outperform the existing 

systems by He et al. [1], Chen et al. [12] and Li et al. [15] 

algorithms using LOL image dataset. On comparing the 

LoL_imageset_258 our work is the PSNR is 15%, SSIM 20% 

and CIEDE2000 14% better than Ancuti t al. [13] algorithm 

and better than Ancuti’s algorithm. The color difference 

between the output and GT is less when the CIEDE2000 value 

is less, which means the quality of the image is good. Similarly 

the higher the value of the PSNR and SSIM better the quality. 

The average value of the parameters of our results is better 

than others work. 

 

       

       

       

       

       

       

       

       

       

       
a b c d e f g 

 

Figure 13. Comparison of results on analyzing the LOL (low light) dataset images a) input image b) He et al. [1] c) Chen et al. 

[12] d) Li [15] e) Ancuti et al. [13] f) our result and g) ground truth 
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Table 1. The quantitative parameters PSNR, SSIM, and CIEDE2000 measurements for day time Hazy low light image dataset 

LOL. Reference parameter courtesy- of Cosmin Ancuti et al. 

 
OHaze 

Dataset 
He et al. [1] result Cai et al. [9] result Fattal [8] result Ancuti et al. [13] result Our result 

Input 

Image 
PSNR SSIM 

CIEDE 

2000 
PSNR SSIM 

CIEDE 

2000 
PSNR SSIM 

CIEDE 

2000 
PSNR SSIM CIEDE 2000 PSNR SSIM 

CIEDE 

2000 

01 15.64 0.82 22.37 13.01 0.58 24.42 13.24 0.73 24.29 17.27 0.75 20.09 16.76 0.82 18.48 

06 16.68 0.74 19.00 15.32 0.59 16.16 15.16 0.73 21.89 15.76 0.68 15.53 17.47 0.67 15.55 

10 16.22 0.78 15.22 15.02 0.71 16.17 16.42 0.75 17.49 14.49 0.73 19.21 16.86 0.80 15.14 

19 15.69 0.81 16.31 16.27 0.72 16.92 13.87 0.79 21.45 14.63 0.78 15.12 18.47 0.81 14.73 

20 16.49 0.61 23.81 13.69 0.50 23.71 15.62 0.62 20.73 18.01 0.78 12.67 16.47 0.66 18.74 

21 16.78 0.69 27.50 16.37 0.71 19.49 16.10 0.63 28.25 19.49 0.78 10.72 18.87 0.75 16.38 

27 13.60 0.61 21.38 15.21 0.64 17.16 14.18 0.67 22.37 19.02 0.77 10.94 17.36 0.76 13.92 

30 15.71 0.75 18.85 18.57 0.77 12.70 14.68 0.72 18.46 21.51 0.83 11.25 20.35 0.82 13.30 

33 18.16 0.76 18.54 17.87 0.81 14.61 17.28 0.76 17.86 12.15 0.61 20.86 18.31 0.85 14.13 

41 15.42 0.77 19.54 20.03 0.84 12.78 12.52 0.66 23.71 18.97 0.84 13.02 21.19 0.84 12.77 

42 15.47 0.79 19.70 16.35 0.58 15.58 17.63 0.73 13.21 14.60 0.74 15.37 17.80 0.82 12.52 

 

Table 2. The quantitative parameters PSNR, SSIM, and CIEDE2000 measurements for day time Hazy low light image dataset 

LOL 

 
LOL Image 

Dataset 
He et al. [1] result Chen et al. [12] result Li et al. [15] result Ancuti et al. [13] result Proposed system 

IP 

Image 
PSNR SSIM 

CIEDE 

2000 
PSNR SSIM 

CIEDE 

2000 
PSNR SSIM 

CIEDE 

2000 
PSNR SSIM 

CIEDE 

2000 
PSNR SSIM 

CIEDE 

2000 

05 10.68 .4719 33.51 11.49 .5587 29.70 08.31 .3231 43.53 19.85 .7501 14.71 19.14 .7457 15.29 

14 16.47 .4926 21.93 07.42 .4411 43.90 05.70 .2212 49.31 15.26 .5236 21.58 18.48 .5368 15.68 

35 15.49 .5479 22.39 08.30 .2823 41.08 06.59 .1417 47.95 22.13 .6917 15.54 21.57 .6837 16.24 

56 15.94 .4312 22.76 07.98 .2778 40.57 06.44 .1129 46.84 22.73 .5890 14.72 21.76 .5784 16.42 

64 15.28 .4934 28.24 07.87 .3469 44.57 06.11 .1421 48.67 19.75 .6032 18.95 20.18 .6241 19.55 

145 09.64 .6904 32.03 13.68 .6509 21.86 08.85 .3418 38.14 16.65 .5241 20.03 16.59 .6423 20.06 

191 17.35 .5472 22.97 09.87 .3849 36.27 07.41 .1987 40.62 19.31 .6349 18.51 20.05 .6662 18.13 

239 12.56 .5346 25.22 13.67 .5972 22.71 09.77 .2750 34.78 15.35 .6266 19.90 19.78 .6568 13.66 

243 08.27 .5430 45.44 21.75 .8035 10.12 12.50 .4927 26.29 13.58 .5549 23.42 18.69 .7668 12.80 

258 12.24 .5024 29.82 12.29 .5378 27.94 09.14 .2777 41.53 17.30 .6346 22.89 20.67 .7811 19.06 

487 12.86 .5026 29.11 07.64 .2172 43.43 06.13 .1725 49.54 20.99 .5582 16.39 20.38 .5427 17.19 

538 13.57 .4059 26.26 07.51 .2526 45.91 06.31 .1388 50.52 21.58 .5864 16.69 21.47 .5792 17.11 

590 08.15 .4918 36.36 12.14 .8038 22.21 10.68 .6258 25.29 14.88 .7875 19.75 14.54 .8147 20.17 

738 11.85 .5088 26.82 14.02 .4464 23.38 11.51 .4012 30.11 15.61 .6141 20.91 19.23 .7017 15.02 

782 12.16 .3965 27.88 11.28 .3492 31.25 09.57 .2682 36.39 15.83 .6674 22.43 16.87 .7245 17.97 

 

 

5. CONCLUSIONS 

 

The method proposed here can dehaze an image 

independent of whether it was captured during the day or 

night. We intend to exploit the quality of non-local retinex to 

process low light dark image without going for gamma 

correction and to prove the effectiveness of our proposed 

technique which performs three different tasks vis-a-vis both 

day/night image dehazing as well as low light enhancement. It 

is rare to find a single method to perform three different tasks 

in literature. We estimated the non-local patches that 

contributed to airlight and performed dehazing. Using the 

same non-local retinex, we remove the effect of airlight to 

obtain enhanced LoL image from the dark LoL input image. 

From the above analysis we found for the image set-35 image, 

PSNR of our algorithm is 32% better than He et al. [1], 64% 

better than Chen et al. [12], and 72% better than Li et al. [15]. 

SSIM of our algorithm is 23% better than He et al. [1], 60% 

better than Chen et al. [12], and 80%better than Li et al. [15]. 

Similarly CIEDE2000 parameter of our algorithm is 28% 

better than He et al. [1], 61% better than Chen et al. [12], 66% 

better than Li et al. [15]. So it is obvious that our work is 

outperforms He et al. [1], Chen et al. [12], and Li et al. [15] 

algorithm in evaluating the LOL image dataset. On comparing 

the images-258, our work shows the PSNR is 15%, SSIM 

20%, and CIEDE2000 14% better than Ancutis et al. [13] 

algorithm. Hence our method performs better than existing 

methods. Generally, when the CIEDE2000 value is less, the 

color difference between the output and GT is less, which 

infers that the quality of the image is good. Similarly, the 

higher the value of the PSNR and SSIM better the quality. The 

average value of the parameters of our results is better than 

others work. In the future, we will be using a convolutional 

neural network to enhance the performance. 
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