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Large-scale multi-label image classification requires determining the presence or absence of 

a target object in a large number of sample images. For highly specialized and complex 

multi-label image sets, it is especially important to ensure the accuracy of image 

classification. Traditional deep learning models usually don’t take into account image-label 

correlation constraints when classifying multi-label images, and the strategy of classifying 

images based only on their own features greatly limits the model performance. In this 

context, this paper focuses a deep learning-based cluster analysis method for large-scale 

multi-label images. We constructed a model for large-scale multi-label image category 

recognition, which consists of a global image feature extraction module, a feature activation 

vector generation module and an image category inter-label connection module. Using a 

graph convolutional network (GCN), we aggregated the information of image category label 

nodes in the constructed multi-label graph structure, while exploring the correlation between 

image category labels. A detailed description is presented on how to introduce the attention 

mechanism into the constructed model mentioned above for image category recognition. 

Experimental results have validated the effectiveness of the constructed model. 
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1. INTRODUCTION

As an important branch in the field of computer vision, 

image classification has been widely used in target recognition, 

defect detection and other application scenarios [1-8]. By the 

number of tags in the image, there are two types of image 

classification: single-label image classification and multi-label 

image classification. With the development and promotion of 

deep learning technology, the performance of single-label 

image classification methods is already superior enough. 

Compared to single-label image classification, multi-label 

image classification responds to a more common demand. Its 

implementation and realization are more difficult and complex, 

hence more challenging in image processing tasks [9-15]. 

Large-scale multi-label image classification requires the 

determination of the presence or absence of a target object in 

a large number of sample images [16-24]. Due to the huge 

quantity of samples and the varying awareness levels of 

personnel, this could lead to very low efficiency in multi-label 

image classification, especially for highly specialised and 

complex multi-label image sets. Therefore, it is particularly 

important to ensure the accuracy of image classification. 

Existing multi-label image classification methods focus on 

the accuracy of label prediction and ignore the structural 

information embedded in the hierarchical label space. To 

address these issues, Wang et al. [25] proposed a hierarchical 

framework based on the feature and label structural 

information named Hierarchical GAN-Tree and Bi-

Directional Capsules (HGT&BC), which generates 

hierarchical feature space using the unsupervised divisive 

clustering pattern, alleviating the mode-collapse of generators 

and the overfitting manifestation of conventional GANs. 

Traditional approaches use attention mechanisms or prior 

knowledge but lack deep semantic associations, resulting in 

degraded detection performance. Yao et al. [26] proposed a 

brain-inspired memory graph convolutional network (M-

GCN). M-GCN presents crucial short-term and long-term 

memory modules to interact attention and prior knowledge, 

learning complex semantic enhancement, and suppression. 

Extensive experiments demonstrate that M-GCN outperforms 

general state-of-the-art methods and shows the advantages in 

semantic correlation and complexity comparing with 

traditional memory models. In multi-label image retrieval, 

existing deep hashing simply indicates whether two images are 

similar by constructing a similarity matrix. To fulfil this gap, 

Shen et al. [27] proposed Deep Co-Image-Label Hashing 

(DCILH) to discover label dependency. Specifically, DCILH 

regards image and label as two views, and maps the two views 

into a common deep Hamming space. To exploit label 

dependency, DCILH further employs the label-correlation 

aware loss on the predicted labels, such that predicted output 

on positive label is enforced to be larger than that on negative 

label. Wang et al. [28] developed Cross-modal Fusion for 

Multi-label Image Classification with attention mechanism 

(termed as CFMIC), which combines attention mechanism and 

GCN to capture the local and global label dependencies 

simultaneously in an end-to-end manner. Extensive 

experiments on MS-COCO and VOC2007 verified CFMIC 

greatly promotes the convergence efficiency and produces 

better classification results than the state-of-the-art approaches. 

Wang et al. [29] proposed a multi-attention fusion network 

with dilated convolution and label smoothing for content-

based remote sensing image retrieval (CBRSIR). First, a 

dilated convolutional layer was used to replace the fifth 

convolutional layer in the network to obtain a large receptive 

field. Besides, in order to enhance the differences between the 
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discriminative features of those correct and incorrect classes, 

label smoothing was used to replace the cross-entropy loss 

function. Experimental results illustrated that such network 

can be effectively migrated to other similar convolutional 

neural network (CNN) models and can achieve state-of-the-art 

or competitive results. 

Traditional deep learning models usually don’t take into 

account image-label correlation constraints when classifying 

multi-label images, and the strategy of classifying images 

based only on their own features greatly limits the model 

performance. How to fully exploit the label co-occurrence in 

sample images and ensure that the model’s classification 

performance is sufficiently satisfactory remains a research 

topic of much scholarly attention currently. In this context, this 

paper focuses a deep learning-based cluster analysis method 

for large-scale multi-label images. The paper unfolds the 

following major aspects: (1) We constructed a model for large-

scale multi-label image category recognition, which consists 

of a global image feature extraction module, a feature 

activation vector generation module and an image category 

inter-label connection module. (2) Using a graph 

convolutional network (GCN), we aggregated the information 

of image category label nodes in the constructed multi-label 

graph structure, while exploring the correlation between image 

category labels. (3) A detailed description is presented on how 

to introduce the attention mechanism into the constructed 

model mentioned above for image category recognition. 

Experimental results have validated the effectiveness of the 

constructed model. 

2. CONSTRUCTION OF A MODEL FOR LARGE-

SCALE MULTI-LABEL IMAGE CATEGORY

RECOGNITION

In this paper, we construct a model for large-scale multi-

label image category recognition, which consists of a global 

image feature extraction module, a feature activation vector 

generation module and an image category inter-label 

connection module. In the global image feature extraction 

module, the image features are extracted by ResNet-101 CNN. 

Assume that the input image definition is represented by RT, 

the parameters that can be learned by the global image feature 

extraction module are represented by ωdmm, the global average 

pooling (GAP) operation is represented by gpool (.), and the 

dimensionality of the global image features is denoted by E. 

Then the global image feature a after processing by the global 

image feature extraction module and the GAP operation can 

be expressed as: 

( )( ); E

pool dmm dmma g g RT S=  (1) 

Assume that the parameters of the fully connected layer are 

denoted by ωgd ∈  RD×D and the number of sample image 

categories is denoted by D. Inputting the global feature a into 

the fully connected layer of the module yields an initial multi-

label image category recognition result bcls: 

( );cls gd gdb g a = (2) 

To construct category label relationships between images, 

the feature activation vector generation module decouples the 

global features extracted by the global image feature 

extraction module to generate the feature activation vectors 

corresponding to different image categories. Assume that the 

feature activation vectors corresponding to different image 

categories are represented by C. The process of copying a∈
RE D times to obtain [a,...,a]T∈SD×E" is denoted by gcopy(a). 

The Hadamard product is denoted by ⊕. The following can be 

obtained by filtering the obtained global feature a based on ωgd: 

( ) D D

copy gdC g a S =   (3) 

After obtaining the feature activation vectors corresponding 

to different image categories, this paper constructs the 

adjacency matrix between image category labels based on 

GCN, so as to extract graph structure information from multi-

label image sample sets. 

Figure 1. Schematic diagram of the probability of a category 

label condition 

Defining the relationship between image category labels as 

a conditional probability, we kept statistics on the number of 

simultaneous occurrences of two image category labels in the 

image sample set, and constructed a frequency matrix using 

the statistics as elements, which is denoted by N∈SD×F. Figure 

1 gives a schematic diagram of the conditional probabilities of 

category labels. Suppose Nij denotes the number of 

simultaneous occurrences of image category labels i and j, Mi 

denotes the number of occurrences of category label i in the 

image sample set, and TGij=TG(Kj |Ki) denotes the conditional 

probability of category label j occurring when category label i 

occurs. Then the conditional probability matrix characterizing 

the relationship between image category labels can be 

obtained based on N as follows: 

/i i iTG N M= (4) 

Using the conditional probability matrix shown in equation 

4 directly as an adjacency matrix between image category 

labels can result in a large amount of noise in the co-

occurrence patterns between labels or in matrix overfitting. 

The solution is to binarise equation 4. Assuming that the mean 

of the probability matrix TG is represented by AV(TG) and the 

standard deviation is represented by SD(TG), the binarisation 

process is as follows: 

( ) ( )

( ) ( )

0,   

1,   

ij

ij

ij

if TG AV TG SD TG
X

if TG AV TG SD TG

 −
= 

 −
(5) 

In order to construct relationships between image category 

labels, further multi-label graph structures can be generated 

based on the initial multi-label image category recognition 

results. After feeding C and TG into the GCN, we obtained the 

output auxiliary multi-label image category recognition result, 

which is denoted by bgcn. Assuming the GCN parameters are 

denoted by ωgcn, we had 
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( ), ;gcn GCN gcnb g C X = (6) 

The final multi-label image category recognition result, 

represented by b*, is obtained by overlaying bcls with bgcn 

cls gcnb b b = + (7) 

If the result satisfies b∈SD, it is assumed that whether 

category label i appears in the image is characterized by bi with 

values 0, 1. Assuming that the sigmoid function is represented 

by ε(·), the loss function of the constructed model for large-

scale multi-label image category recognition can be 

represented by the following equation: 

( )( ) ( ) ( )( )
1

1 1 1
D

d d d d

d

K d b log b b log b  

=

= − = + − − (8) 

3. INTRODUCTION OF INFORMATION FUSION

MODULE

Figure 2. Information fusion process of image category label 

nodes 

In order to explore the correlation between image category 

labels, information aggregation of image category label nodes 

is required using a GCN in the constructed multi-label graph 

structure. Figure 2 presents the information fusion process of 

the image category label nodes. The process of information 

aggregation is expressed through Eq. (9) as: 

( )1 'k k kP X P Q+ = (9) 

It is assumed that X' denotes the adjacency matrix after 

normalization, Pk∈SM×Dk denotes the feature matrix of the 

GCN at the k-th layer containing information on all image 

category label nodes, and Qk∈SDk×Dk+1 denotes the parameter 

matrix of the completed training network. 

For traditional multi-label image recognition methods, 

association rule mining of image categories is usually 

achieved through classifiers, while global image features are 

extracted through neural networks. There is minimal 

correlation between the two behaviours. To solve this problem, 

this paper introduces the idea of knowledge fusion into the 

constructed model for large-scale multi-label image category 

recognition, i.e., the association between global image features 

is completed during the image feature extraction stage. 

Figure 3. Image category label feature information extraction 

module 

Assume that A∈SD×F×Q denotes the global image features 

extracted by the convolution operation shown in Figure 3, D 

denotes the number of channels of the global image features, 

while F and Q denote the length and width of the image feature 

map respectively, P∈SM×D denotes the GCN output feature 

information, M denotes the total number of category labels, 

and g(T) denotes the convolution operation to achieve fusion 

of the category label relationship information into the global 

image features. We can accomplish the dimension 

transformation of the category label relationship feature from 

A∈SM×F×Q to SD×F×Q. If the Tanh activation function is denoted 

by ε(.), and the operations on the array shape transformations 

are denoted by O(M×F×Q) (.) and O(FQ×D), then the introduced 

knowledge fusion module expression is given by the following 

equation: 

( ) ( ) ( ) ( )( )( )O

M F Q FQ D
B g O O A P A

  
= + (10)

Applying Q^∈ SD×E to the i-th global image feature ai∈SE, 

the multi-label image category recognition result is obtained 

as: 

ˆ ˆ
ib Qa= (11) 

The corresponding loss function of the model can be 

expressed by the following equation: 

( )( ) ( ) ( )( )
1

1 ˆ ˆ1 1
D

j j j j

cls i i i i

j

K b log b b log b
D

 
=

= − + − − (12) 
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4. INTRODUCTION OF ATTENTION MECHANISM

Figure 4. Schematic diagram of attention processes 

When exposed to an image, the brain’s signal processing 

mechanism, which is unique to human vision, will suppress 

some useless information and devote more attention to 

important targets only. In this paper, the attention mechanism 

is introduced into the constructed model for large-scale multi-

label image category recognition to obtain better results in 

image category recognition. The attention process is illustrated 

in Figure 4. The introduced attention mechanism process is 

divided into three main steps: 

First, we used a function to calculate the correlation 

between "query (Q)" and each "keyword (K)", which can be 

obtained by vector dot product or by vector similarity. The 

result is expressed by Ωi. 

Next, Ωi is normalized based on the softmax function, while 

the weight xi corresponding to the significant element IEi is 

emphasized. 

( )
1

i

a j
i i K

j

p
x Softmax

p





=

=  =


(13) 

Compute the weighted sum of the weighted values 

calculated in equation 13 to obtain the desired attention value: 

( )
1

,
aK

i ij
ATT Q S x IE

=
  = • (14) 

Below is a detailed description of how the attention 

mechanism is introduced into the constructed model for large-

scale multi-label image category recognition to carry out 

image category recognition tasks. Figure 5 presents the 

construction process of label relationship. 

Assuming that M denotes the number of targets, i.e., labels, 

contained the input image, gX denotes the extracted local 

image features, and gH denotes the image label location 

features, the input image can then be represented as {(gm
X, 

gm
H)}M

m=1. Suppose that gn
X represents the local image features 

of the n-th target, Qu represents the convolution operation with 

a 1×1 convolution kernel, and qnm represents the relationship 

weights between different image labels. Equation 15 gives the 

expression for the relational features between the m-th image 

label and the other labels: 

( ) ( )nm n

S U X

n

g m q Q g= • • (15) 

The core of the execution of attention mechanism is the 

fusion of the gS (m) calculated in the above equation with the 

gX as input to the lower-level network for further information 

transfer. The relational weights qnm between the labels are 

generated based on the softmax function. Assuming that Qnm
X 

is the feature weight of an image label and Qnm
H the position 

weight, we have 

( )
( )

nm nm

H Xnm

lm lm

H Xl

Q exp Q
q

Q exp Q


=


(16) 

Qnm
X and Qnm

H can be calculated by Eqns. (17) and (18), 

where Qnm
X is implemented based on the fully connected layer 

of the network. It is assumed that the parameters of the fully 

connected layer are represented by QL and QW respectively, 

and the dot product operation is represented by Ψ(.). 

Figure 5. Label relationship construction process 
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( ),n m

L X W Xnm

X

l

Q g Q g
q

e


=   (17) 

 

( ) 0, ,nm n m

H H H H Hq max Q g g=    (18) 

 

The σH function in the above equation consists of cosine and 

sine functions, which functions to achieve a high-dimensional 

transformation of the position coordinate information of image 

labels. The max function used to constrain the position weights 

can be equated by the ReLU activation function. For the 

network training scattering problem, it requires the coordinate 

transformation processing of images, i.e., finishing the scale 

normalisation and data logarithm processing of images to 

increase their scale invariance. Suppose the coordinate 

transformation process is represented by gH, which can be 

expressed as: 

 

, , ,

T

n m n m m m

n n n n

a a b b q f
log log log log

q f q f

  −   −     
         

       
  (19) 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

 
(1) 

 
(2) 

 

Figure 6. Comparison of metric performance of images in 

different categories with different number of replications 

 

 
(1) 

 
(2) 

 

Figure 7. Experimental results of the information fusion 

module for different data sets 

 

The number of feature replications is a parameter that needs 

to be set during the generation of the feature activation vectors 

corresponding to different image classes. Figure 6 gives a 

performance comparison of the metrics for different categories 

of images with different number of replications. The 

performance of the model for different categories of images 

with different number of replications is evaluated in terms of 

loss value and average recognition accuracy. The number of 

replications is increased from 20 to 100 in intervals of 20. As 

can be seen from the figure, the performance of the model 

improves significantly as the number of feature replications 

increases, regardless of image category, until the number of 

feature replications exceeds 70. Then the performance of the 

model slowly decreases. Therefore, in this paper, the number 

of feature replications is set to 70. 

When the number of GCN layers is increasing, there are 

differences in image recognition results. Figure 7 shows the 

experimental results of the information fusion module for 

different data sets. It can be seen that when the number of 

layers is 1 or 2, the network is unable to fully mine and learn 

the information contained in image labelling relationships. 

When the number of network layers reaches 5 or more, the 

information contained in image labelling relationships will be 

in a state of excessive circulation, along with a significant 

reduction of information differentiation. The best result is 

achieved when the number of network layers is 4. 
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Table 1. Comparison of experimental results of different image category recognition models 

Model number 1 2 3 4 5 

Data 06+14 06+14 06+14 06+14 06+14 

Basic Network VGG-15 DS/64-192-48-1 ResNet-101 ResNet-101 ResNet-101 

Sample size 256 x 256 256 x 256 512 x 512 512 x 512 512 x 512 

mAP 72.8 70.1 77.5 81.8 87.2 

In this paper, we optimise some existing multi-label image 

category recognition models, elaborate on optimisation ideas, 

and verify their effectiveness with reference to experimental 

results. The model constructed in this paper was trained in the 

same experimental environment as traditional models. The 

five models involved in the experiments are Fast-CNN, DHC, 

ResNet-10, the model before the introduction of the 

information fusion module, and the model constructed in this 

paper. Table 1 compares the experimental results of different 

models. As can be seen from the table, the model constructed 

in this paper, which integrates the advantages of knowledge 

fusion and attention mechanisms, outperforms all the other 

models in terms of accuracy in recognising multi-label image 

categories. This is due to the fact that the model constructed in 

this paper completes the association between global image 

features at the image feature extraction stage and performs 

coordinate transformation on an image, making full use of the 

features at each image scale to increase the scale invariance. 

This model introduces an attention mechanism, which 

emphasises the more attention-grabbing targets in an image 

based on image label similarity, ensuring more desirable 

accuracy in image category recognition. 

Next, the experimental results of this model were compared 

with other classifiers, and the results are shown in Table 2. The 

three classifiers involved in the experiment are the logistic 

regression model, the stochastic forest model and the model 

constructed in this paper. As can be seen from the figure, the 

accuracy of the model constructed in this paper is higher than 

that of the other two models, by 5.85% and 10.27% 

respectively. This demonstrates the effectiveness of this model 

in identifying and classifying multi-label image categories. 

Table 2. Comparison of experimental results of different 

classifiers 

Model number 1 2 3 

Data 06+14 06+14 06+14 

Basic Network VGG-15 VGG-15 ResNet-101 

mAP 75.1 78.8 83.7 

6. CONCLUSION

This paper focuses a deep learning-based cluster analysis 

method for large-scale multi-label images. We constructed a 

model for large-scale multi-label image category recognition, 

which consists of a global image feature extraction module, a 

feature activation vector generation module and an image 

category inter-label connection module. Using a graph 

convolutional network (GCN), we aggregated the information 

of image category label nodes in the constructed multi-label 

graph structure, while exploring the correlation between image 

category labels. A detailed description is presented on how to 

introduce the attention mechanism into the constructed model 

mentioned above for image category recognition. We 

compared the performance metrics for different image 

categories with different number of replications to determine 

the number of feature replications. We gave experimental 

results of the information fusion module for different datasets, 

and determined the number of GCN layers. The constructed 

model was trained with conventional models in the same 

experimental environment. After that, we compared the 

experimental results of different models to verify the 

effectiveness of the model in this paper for the recognition and 

classification of multi-label image categories. 
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