
  

  

Feature Extraction of Hyperspectral Images Based on Subspace Band Selection and 

Transform-Domain Recursive Filtering 

 

 

Zhi Cui1*, Zhenhua Cai2 

 

 

1 College of Information and Electronic Engineering, Hunan City University, Yiyang 413000, China  
2 College of Mechanical and Electrical Engineering, Hunan City University, Yiyang 413000, China 

 

Corresponding Author Email: zhicui@hnu.edu.cn 

 

https://doi.org/10.18280/ts.390309 

  

ABSTRACT 

   

Received: 5 January 2022 

Accepted: 28 April 2022 

 During the feature extraction of hyperspectral images, a single filter cannot acquire complete 

information. To solve the problem, this paper proposes a feature extraction method based 

on subspace band selection and transform-domain recursive filtering. The proposed method 

contains three steps: Firstly, the target hyperspectral image is divided into multiple subsets 

of adjacent bands. Secondly, the Lasso-based band selection approach is adopted to compute 

the sparsity coefficient of each band. The bands in each subset are then ranked by the 

coefficient. Based on the ranking, the band with the highest coefficient is extracted from 

each subset, and used to reconstruct the hyperspectral data. Finally, the reconstructed 

hyperspectral image is processed through transform-domain recursive filtering, producing 

the features to be classified. Taking the support vector machine (SVM) as the classifier, our 

method was tested on several real hyperspectral image datasets. The results show that our 

method has a better classification accuracy than the other band selection methods. 
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1. INTRODUCTION 

 

Hyperspectral remoting sensing can provide researchers 

with hyperspectral images, and uniquely differentiate between 

different land covers by fine spectral features. Thanks to this 

huge advantage, hyperspectral remoting sensing has been 

extensively applied to target detection, urban planning, 

modern agriculture, and environmental monitoring [1]. 

In a hyperspectral image, each pixel corresponds to a 

spectral curve that reflects the inherent physical, chemical, and 

optical properties of the ground material. Different kinds of 

images can be obtained by labeling the pixels of different 

ground materials based on the unique features of each pixel. 

This strategy is called hyperspectral image classification. 

General image classification methods aim to identify the 

primary and secondary contents in the scene. By contrast, 

hyperspectral image classification intends to assign a unique 

class label to each pixel in the hyperspectral image. Many 

effective methods have been developed to realize this goal, 

such as Bayesian estimation [2], support vector machine 

(SVM) [3], and sparse representation [4]. When only a few 

samples are labeled, however, most of these classifiers cannot 

achieve satisfactory classification performance, owing to the 

curse of dimensionality. In addition, the adjacent noiseless 

hyperspectral bands are usually closely correlated with each 

other. The high spectral dimensions mean a rise in the 

computing load of the classification process. 

Dimension reduction can effectively reduce the number of 

bands. The traditional approach of dimension reduction loads 

all samples and all bands to the memory, which is not suitable 

for handling the massive data in the big data environment. 

Facing such a complex scene, it is challenging to remove 

redundant and unrelated information in a reasonable time. 

Feature extraction and feature selection are two common 

spectral dimension reduction methods in hyperspectral image 

processing. The general step of feature extraction is to map the 

hyperspectral image to another feature space through linear 

transformation, and retain the important components of the 

image according to the transformed coefficient size, laying the 

basis for image classification. The mainstream feature 

extraction methods include principal component analysis 

(PCA) [5], independent component analysis (ICA) [6], and 

linear discriminant analysis (LDA) [7]. The PCA preserves 

most information of the hyperspectral image in a few 

significant principal components, but the few preserved 

components are spectral features that interest people. The ICA 

calculates highly independent transformation components. Yet 

this strategy is so complex as to bring a heavy computing load. 

Moreover, the above feature extraction methods only use the 

spectral information of hyperspectral images, failing to 

consider the spatial continuity of hyperspectral images. This 

clearly affects the calculation effect. 

Feature selection aims to find the most representative data 

subset in the hyperspectral image, and use the selected subset 

to complete the final task of image classification. Well-known 

feature selection methods are distance-based method [8], 

information-based method [9], and band selection method [10]. 

To simultaneously utilize the spectral and space information 

in the hyperspectral image, researchers have recently 

presented the hyperspectral image classification method based 

on the combination between spectral and spatial features, 

namely, the watershed method [11], minimum spanning tree 

[12], hierarchical segmentation [13], and partition clustering 

[14]. These methods fully consider the spatially continuous 

information in the hyperspectral image, i.e., the strong 

correlation between adjacent pixels, and introduce the spatial 

correlation to image classification, thereby achieving a high 
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classification accuracy. However, they depend largely on the 

automatic segmentation or prior optimization of the 

hyperspectral image, and consume much time. 

In recent years, edge-preserving filters become a hot topic 

in hyperspectral image processing, owing to their superiority 

in keeping image edge features. These filters have been widely 

adopted for highly dynamic imaging, three-dimensional (3D) 

matching, and image fusion [15]. This paper introduces the 

transform-domain recursive filter, an edge-preserving filter, to 

hyperspectral image classification, and proposes a 

classification method based on subspace band selection and 

transform-domain recursive filtering (BSTDRF). Firstly, the 

original hyperspectral image was divided into multiple subsets 

of adjacent bands. Next, the Lasso-based band selection 

approach was adopted to extract the bands with the largest 

sparsity coefficient and the highest representativeness, which 

were used to reconstruct the new hyperspectral image data. 

Thirdly, the reconstructed hyperspectral image was processed 

through transform-domain recursive filtering, producing 

suitable features. Finally, the image classification was 

completed, with SVM as the classifier. 

Our method is based on two hypotheses: Firstly, the 

adjacent bands in the hyperspectral image data contain 

redundant information. Secondly, there is a strong correlation 

between adjacent pixels in the hyperspectral image. For the 

first hypothesis, the band selection was completed by choosing 

several most suitable bands from the set of all bands in the 

hyperspectral image data, and using them to construct the new 

hyperspectral image data. The physical meaning of the spectral 

bands can be preserved well, and the redundant information 

can be largely removed, because new features do not need to 

be obtained through linear or nonlinear transform. For the 

second hypothesis, the transform-domain recursive filtering 

can ensure that the adjacent pixels, whose edges belong to the 

same side of the image, have similar eigenvalues. Then, the 

spatial information of the hyperspectral image can be fully 

utilized for feature extraction. Experimental results show that 

our BSTDRF method improves the classification accuracy of 

hyperspectral images. 

The remainder of this paper is organized as follows: Section 

2 introduces the basic theories; Section 3 describes the 

proposed BSTDRF method; Section 4 presents the 

experimental results; Section 5 puts forward the research 

conclusions. 

 

 

2. BACKGROUND 

 

2.1 Lasso-based band selection 

 

For hyperspectral image data, there is a closer correlation 

between adjacent bands than non-adjacent bands. Thus, it is 

entirely feasible to sort the bands of a hyperspectral image 

using the Lasso algorithm. The steps of the algorithm are as 

follows: 

For a hyperspectral image containing l types of land covers 

and N spectral bands, M training samples are given. Each 

sample has a known spectral type and sample label. Then, each 

pair of samples can be expressed as (xi, yi), where 𝑖 ∈
[1,2,⋯ ,𝑁]. Sample xi is an M-dimensional column vector of 

the spectral response of the i-th sample. Obviously, the j-th 

element of xi is the spectral response of the j-th band of the 

hyperspectral image; yi is an l-dimensional column vector, 

representing the class labels of all i samples. 

The Lasso algorithm introduces the l1 norm as a penalty 

term to the ordinary least squares (OLS) estimation, and 

ensures the sparsity of the solution of the linear regression 

problem. Then, the sparsity coefficient of each band can be 

obtained by:  
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where, yi is the class label of a sample; coefficient α is an N+1-

dimensional column vector; N is the dimensions of the original 

hyperspectral image (i.e., the number of bands). 

Since the norm is singular on the vertex of each orthonormal 

basis, the coefficient α calculated by formula (1) is sparse. λ is 

the regularization parameter used to adjust the sparsity of the 

solution. 

 

2.2 Transform-domain recursive filtering 

 

Transform-domain recursive filtering is an edge-preserving 

filter. It is capable of preserving the edges, lines and other 

details of the image, while smoothing the texture and noise in 

the image. Thanks to this advantage, the transform-domain 

filter and other edge-preserving filters have piqued much 

interest among researchers in the field of image processing. 

For example, Wang et al. [16] used edge-preserving filters to 

extract features from hyperspectral images, and fully utilized 

the spectral information and spatial information of the image 

in the post-processing of pixel-based classification results. 

Luo et al. [17] proposed a spectral-spatial feature extraction 

method based on edge-preserving filtering. The method 

removes unimportant parts of hyperspectral images, and 

further improves the interpretability of hyperspectral image 

classification results. Zhu et al. [18] decomposes the 

hyperspectral image through independent component analysis 

(ICA), and performs edge-preserving filtering on image edges, 

in order to extract the features for image classification. 

This section only briefly describes the transform-domain 

recursive filter. The complete description is available in 

Gastal’s work [19]. 

Suppose there is a one-dimensional (1D) input signal I. 

Following the approximate distance-preserving 

transformation method, the input signal can be transformed to 

the transform domain Φ: 
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where, Vi, originally a function of distance calculation, is the 

transform domain signal; σs is the standard deviation of the 

spatial domain, responsible for adjusting the window size of 

the filter; σr is the standard deviation of the value domain, 

responsible for adjusting the fuzziness of the filter. Then, the 

input signal I is subject to recursive filtering: 

 

1(1 )i i i

   −= − +W I W   (3) 

 

where, Wi is the filter output for the i-th pixel in the input 

signal I; 𝜌 = 𝑒𝑥𝑝( −
√2

𝜎𝑠
), 𝜌 ∈ [0,1] is a feedback signal; ω is 

a distance coefficient representing the distance between two 

adjacent pixels Wi and Wi-1 in the transform domain. Obviously, 

as the feedback signal increases, ωρ will gradually decrease 
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until reaching zero. Then, the propagation chain will be 

stopped, and the edges of the signal will be preserved. 

For two-dimensional (2D) images, transform-domain 

recursive filter processes the image by performing 1D 

operations along each dimension of the image. Sun and Du [20] 

demonstrated that the iterative execution of three 1D filtering 

operations can obtain filtered images without artifacts. 

 

 

3. METHODOLOGY 

 

As shown in Figure 1, the proposed hyperspectral image 

feature extraction method, which is based on subspace band 

selection and transform-domain recursive filtering, includes 

the following five steps: 

(1) Divide the hyperspectral image into multiple subsets of 

adjacent bands.  

(2) For the adjacent bands in each subset, use the Lasso-

based band selection method to calculate their coefficients, 

and sort the coefficients. 

(3) According to the sorting results, select the bands with 

large coefficients in each subset to form a new hyperspectral 

image. 

(4) Perform a transform-domain recursive filtering on the 

reconstructed new hyperspectral image to obtain the features 

to be classified. 

(5) Input the features obtained in the previous step into the 

SVM classifier to obtain the final classification result. 

(1) Band partition 

In this step, the hyperspectral image is partitioned into 

several equal-sized subsets by the simple bisection method. 

Specifically, the given N-dimensional hyperspectral data P is 

decomposed into K equal-sized subsets of hyperspectral bands, 

N/K, 𝑃 = 𝑃1, 𝑃2, ⋯𝑃𝐾 . Note that, if N/K is not divisible, the k-

th subset (𝑘 = 1,2,3,⋯ , 𝐾) can be represented by: 

 

( )k N K K N K N K= + −      P   (4) 

 

where, ⌊𝑁/𝐾⌋is the largest integer less than or equal to N/K; K 

is the number of subsets of hyperspectral bands. 

(2) Feature selection 

After dividing the hyperspectral band subsets, the Lasso-

based band selection is performed on each subset. The 

coefficient of each band is solved by formula (1) and sorted in 

descending order. 

(3) Hyperspectral data reconstruction 

To reconstruct the hyperspectral data, according to the 

sorting results in Step (2), the band with the highest coefficient 

and ranking is chosen from each subset of hyperspectral bands 

by: 
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where, 𝑃𝑟𝑒𝑐  is the reconstructed hyperspectral data; K is the 

number of subsets of hyperspectral bands, where the k-th 

subset is denoted by 𝑘 ∈ (1, 𝐾); 𝑃𝑛
𝑖  is the i-th ranking band in 

the n-th subset of hyperspectral bands.  

Only the top-ranking band (the one with the highest 

coefficient) is selected from each subset. On this basis, a 

hyperspectral data containing K bands can be reconstructed by 

formula (5). Note that the maximum ranking must be smaller 

than or equal to K. If the top-k bands are selected from each 

subset, the reconstructed hyperspectral data would contain k•K 

bands. 

(4) Transform-domain recursive filtering 

After reconstructing the hyperspectral image, the 

reconstructed data is subjected to transform-domain recursive 

filtering to obtain the features F to be classified:  

 

( , , )s r= TDRF  F I   (6) 

 

where, I is the reconstructed data of the hyperspectral image; 

σs and σr are parameters adjusting the filter smoothness. 

(5) Classification 

The proposed BSTDRF method extracts features from the 

hyperspectral image data. Subsequently, the data classification 

is performed by other professional classifiers. The SVM is a 

popular pixel classifier with superior performance in 

classification accuracy. Besides, the classifier is not sensitive 

to the dimensionality of hyperspectral data. Given these 

advantages, this paper takes the SVM to classify the 

reconstructed hyperspectral data. 

 

 
 

Figure 1. Schematic of the proposed BSTDRF classification 

method 
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4. EXPERIMENTS 

 

4.1 Experimental setup 

 

(1) Datasets 

To verify the classification performance of BSTDRF on 

hyperspectral images, two real hyperspectral datasets were 

adopted for experiments: the Indian Pines dataset (Figure 2) 

and the University of Pavia dataset (Figure 3). 

 

 
 

Figure 2. Indian Pine dataset (a) Pseudo-color image of the 

Indian Pines image, (b) Reference data, (c) Class names 

 

 
 

Figure 3. University of Pavia dataset (a) Pseudo-color image 

of the University of Pavia image, (b) Reference data, (c) 

Class names 

 

In 1992, the Indian Pines image was taken by an airborne 

visible infra-red imaging spectrometer (AVIRIS) in the Indian 

Pines lab base in northwestern Indiana, United States. This 

remote sensing image (size: 145 × 145 × 22) has a spatial 

resolution of 20m, and a wavelength range of 0.4-2.5μm. 

Before the hyperspectral image classification experiment, the 

spectral bands covering water absorbing areas must be 

removed from the original hyperspectral data: [104-108], 

[150-163], and 220. The removal reduced the number of 

spectral bands from 220 to 200.  

The Indian Pines image contains multiple native vegetation, 

including farmland, forest, and others. According to the 

current exploration, the scene can be divided into 16 different 

targets: Class 1 represents Alfalfa, Class 2 represents Corn-no 

till, Class 3 represents Corn-min till, Class 4 represents Corn, 

Class 5 represents Grass/pasture, Class 6 represents 

Grass/trees, Class 7 represents Grass/pasture-moved, Class 8 

represents Hay-windrowed, Class 9 represents Oats, Class 10 

represents Soybeans-no till, Class 11 represents Soybeans-min 

till, Class 12 represents Soybeans-clean till, Class 13 

represents Wheat, Class 14 represents Woods, Class 14 

represents Buildings, and Class 16 represents Stone-steel 

towers. 

The University of Pavia image was collected by a German 

reflective optics system imaging spectrometer from a city near 

the University of Pavia, Italy. This airborne image has a spatial 

resolution of 1.3m, and a wavelength range of 0.43-0.86μm. 

The 610 × 340 sized image contains 115 bands. Before the 

experiment, the 12 most noisy bands were removed. 

There are nine different ground covers in the scene of 

University of Pavia: Asphalt (Class 1), Meadows (Class 2), 

Gravel (Class 3), Trees (Class 4), Metal sheets (Class 5), Soil 

(Class 6), Bitumen (Class 7), Bricks (Class 8), and Shadows 

(Class 9). 

(2) Quality metrics 

After classifying each hyperspectral image, it is necessary 

to evaluate the classification effect. The classification 

accuracy should be assessed against ground reference data. 

This paper adopts three common metrics of the classification 

accuracy of hyperspectral images, namely, overall accuracy 

(OA), average accuracy (AA), and Kappa coefficient. Among 

them, OA measures the percentage of pixels being classified 

correctly; AA refers to the mean percentage of correctly 

classified pixels in each class; Kappa coefficient excels in 

estimating the recognition accuracy, in the light of the impact 

of uncertainties on the classification results.  

 

4.2 Classification results 

 

(1) Parameter analysis 

 

 
(a) Influence of σs 

 
(b) Influence of σr 

 

Figure 4. Analysis of the parameters σr and σs on Indian 

Pines data set. 

 

The proposed BSTDRF adopts the transform-domain 

recursive filtering technique. It is necessary to understand the 

roles of filter parameters σs and σr in classification, and 

determine their optimal values. That is why the Indian Pines 

image was selected for experiment. 

During the experiment, 10% of samples from the Indian 

Pines dataset were chosen randomly as the training set, and the 
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remaining 90% as the test set. Through cross validation, an 

empirical value was configured for σr. Different σs values were 

selected until the output was nearly optimal. Then, the σs value 

at the moment was recorded, and taken as the optimal filter 

parameter of BSTDRF. Next, the σs was fixed at the optimal 

value obtained in the first step, and different σr were selected 

until the output was nearly optimal. In this way, the two 

parameters of the transform-domain recursive filter were 

determined. The specific process is as follows: 

Firstly, σr was fixed at 0.4, while σs was gradually increased 

from 10 to 100. The classification results are displayed in 

Figure 4(a). It can be learned that OA and AA reached the 

optimal level, when σs=70. After σs surpassed 70, OA, AA and 

Kappa coefficient all started to decline. This means an 

excessively large window of the filter will cause the loss of 

details. The spatial coefficient should be controlled within the 

effective range. 

Secondly, σs was fixed at 70, while σr was gradually 

increased from 0.1 to 1.0. The classification results are 

displayed in Figure 4(b). It can be observed that all three 

indices fell on a low level, when σr was small. The undesired 

classification effect is attributable to the fact that a small filter 

parameter can only extract a limited number of features from 

a small neighborhood. When σr was large, all three metrics 

started to decrease. Thus, when the value domain parameter is 

large, the transform-domain recursive filter is approximately 

equivalent to a Gaussian filter, which makes the image fuzzy. 

When σr=0.4, the overall performance of the three parameters 

was the best. Overall, this paper sets σs as 70, and σr as 0.4. 

(2) Comparison of different classification methods 

Our BSTDRF was compared with seven widely used 

classifiers of hyperspectral images, namely, SVM, PCA-based 

SVM, ICA-based SVM, multidimensional scaling (MDS)-

based SVM [21], extended morphological profiles (EMP) [22], 

linear regression for machine learning (LRML) [23], and DTB 

[24].  

The SVM methods were realized using the LIBSVM library 

and the radial basis function (RBF) kernel. The parameters of 

each SVM classifier were determined through five-fold cross-

validation. All experiments were conducted using MATLAB 

2019 on a computer with Intel Core i7-8700 CPU and 16 GB 

RAM. To ensure the objectivity of the evaluation, each 

experiment was repeated 10 times with random training 

samples. For PCA and ICA, the top-20 principal or 

independent components were imported to the filter, and the 

default parameter setting was adopted for the remaining 

methods. 

The first experiment was carried out on the Indian Pines 

dataset. 10% of the samples were randomly selected as 

training samples, and the remaining 90% were used as test 

samples. Figure 5 shows the classification results and OAs of 

different algorithms. It can be observed that the EMP achieved 

better classification accuracy (OA=89.1%) than pixel-level 

feature extraction algorithms, by utilizing the spatial structure 

information in the image. However, some noises remained in 

the classification results of EMP. LRML, DTB and BSTDRF 

all effectively removed the incorrect classification, which 

looks like noises, and achieved better recognition accuracy. 

Our BSTDRF achieved the best OA, which is 20.2% higher 

than that of SVM, 5.1% higher than that of LRML, and 0.4% 

higher than that of DTB. Hence, reconstructing the 

hyperspectral image with important bands can reduce the 

spectral dimensionality of the hyperspectral image, eliminate 

noisy bands, and retrain the useful information in the images.  

  
(a) 0A=79.2% (b) 0A=77.4% 

  
(c) 0A=75.7% (d) 0A=79.3% 

  
(e) 0A=89.1% (f) 0A=90.6% 

  
(g) 0A=94.8% (h) 0A=95.2% 

 

Figure 5. Classification results obtained by different methods 

on Indian Pines dataset (a) SVM, (b) PCA-SVM, (c) ICA-

SVM, (d) MDS-SVM, (e) EMP, (f) LRML, (g) DTB, (h) 

Proposed BSTDRF 

 

Table 1 displays the OA, AA and Kappa coefficient of each 

method on each class in the scene. It can be seen that, when 

the training sample took up 10% of ground reference data, the 

SVM could effectively differentiate between ground targets 

with very different spectrums, such as Grass_M, Grass_T, 

Grass_P, Hay_W, Wheat, Woods, and Stone. However, this 

pixelwise classifier failed to recognize ground targets with 

similar spectrums, due to the neglection of the spatial 

information of the hyperspectral image. For instance, the 

classification accuracy on Corn was merely 43.7%, and that on 

Buildings was only 53.9%. 

Compared with the classification directly on the original 

data of the hyperspectral image, PCA and ICA could 

effectively reduce the dimensionality of the data, but their OA 

declined by 2.3% - 4.6%. 

EMP relies on the multiscale morphological operator to 

extract the spatial features from the hyperspectral image for 

classification. LRML introduces multilayer regression into the 

spatial information of the image, and optimizes the spectral 

classification result of logistics regression classifier. DTB 
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introduces the spatial information of the image via multi-filter 

fusion, and thus optimizes the space of the spectral 

classification results. As shown in Table 1, these three spatial-

spectral feature extractors outperformed the pixelwise 

classifier.  

The proposed BSTDRF realized the highest OA, AA and 

Kappa coefficient. Compared with the original SVM, our 

approach improved the OA from 79.2% to 95.2%, the AA 

from 78.3% to 94.6%, and the Kappa coefficient from 76.9% 

to 95.4%. Some ground targets, namely, Buildings and Alfalfa, 

cannot be identified correctly by some pixelwise classifiers. 

Our approach can improve their classification accuracy to 

91.5% and 81.3%, respectively. 

The experiment on the Indian Pines scene suggests that our 

BSTDRF has better classification performance than other 

classification methods. 

 

Table 1. Classification accuracies of different methods on the Indian Pines scene (10% for training set) 

 

Class Train Test 
Different Classification Methods 

SVM PCA-SVM ICA-SVM MDS-SVM EMP LRML DTB BSTDRF 

1 23 23 65.4 62.8 61.9 64.6 87.2 89.3 94.5 94.7 

2 79 1349 75.3 71.6 70.8 76.5 85.4 95.9 93.4 95.3 

3 81 749 70.8 67.4 68.6 69.9 81.1 82.6 92.7 91.8 

4 66 171 43.7 48.1 44.5 42.3 81.9 83.4 84.1 87.8 

5 71 412 82.0 85.6 84.4 90.5 91.7 87.4 92.9 93.6 

6 78 652 91.7 93.8 94.2 95.5 95.7 98.7 98.6 99.1 

7 15 13 83.9 73.5 79.4 73.9 80.5 85.7 96.1 95.9 

8 72 406 96.4 96.5 95.2 97.6 95.3 99.0 99.6 99.7 

9 10 10 51.4 50.5 56.2 61.5 65.5 50.4 79.8 81.3 

10 79 893 76.6 76.3 70.8 72.6 79.3 70.6 88.9 93.8 

11 111 2344 85.1 84.4 83.5 83.7 91.4 92.3 97.6 98.7 

12 74 519 79.0 74.2 77.4 73.9 81.9 89.1 93.2 95.1 

13 64 141 91.9 93.6 91.7 97.0 97.6 99.9 89.3 90.9 

14 84 1181 95.6 93.7 94.4 97.6 98.3 98.1 98.9 99.4 

15 70 316 53.9 53.6 54.3 53.1 54.9 62.7 91.3 91.5 

16 47 46 96.9 89.4 87.4 88.6 84.2 87.1 93.7 93.9 

OA 79.2 77.4 75.7 79.3 89.1 90.6 94.8 95.2 

AA 78.3 79.5 78.9 80.1 82.8 91.2 93.7 94.6 

Kappa 76.9 75.2 76.3 82.5 83.1 86.8 94.9 95.4 

 

    
(a) OA= 91.2% (b) OA=88.7% (c) OA=89.6% (d) OA=90.4% 

    
(e) OA= 94.5% (f) OA=94.8% (g) OA=95.1% (h) OA=96.2% 

 

Figure 6. Classification results obtained by different methods on University of Pavia data set (a) SVM, (b) PCA-SVM, (c) ICA-

SVM, (d) MDS-SVM, (e) EMP, (f) LRML, (g) DTB, (h) Proposed BSTDRF 
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Table 2. Classification accuracies of different methods on the University of Pavia scene (4% for training set) 

 

Class Train Test 
Different Classification Methods 

SVM PCA-SVM ICA-SVM MDS-SVM EMP LRML DTB BSTDRF 

1 190 6641 94.1 92.5 91.1 90.8 93.7 96.5 97.3 97.7 

2 191 18458 96.4 95.8 96.8 96.6 98.0 99.9 99.9 99.4 

3 190 1909 69.3 67.9 65.8 68.3 69.5 70.1 75.4 78.1 

4 190 2874 83.9 81.7 80.7 85.6 91.8 92.2 90.1 93.0 

5 190 1155 97.2 97.6 97.3 98.8 99.3 99.2 99.8 99.9 

6 190 4839 62.0 63.7 66.9 69.8 91.4 93.1 95.7 95.9 

7 190 1140 72.3 74.1 79.2 80.4 92.7 93.8 93.5 94.3 

8 190 3492 84.1 83.6 82.8 83.9 96.3 96.7 97.2 97.5 

9 190 757 99.9 99.9 99.7 99.9 99.9 99.8 99.7 99.9 

OA 91.2 88.7 89.6 90.4 94.5 94.8 95.1 96.2 

AA 89.1 84.3 84.8 87.4 92.3 93.7 93.9 95.5 

Kappa 88.5 83.6 84.4 87.1 91.3 93.2 93.3 94.9 

 

The second experiment was carried out on the University of 

Pavia dataset, which has many more ground references than 

Indian Pines dataset. Hence, 4% of samples were selected 

randomly for the training set, and the rest 96% for the test set. 

Figure 6 shows the classification results and OAs of different 

algorithms. 

It can be seen that the four spatial-spectral classifiers, 

including EMP, LRML, DTB, and our approach, achieved 

better classification accuracy than the pixel-wise classification 

methods. In addition, the OA (96.2%) of our approach was 

better than that of the other three spatial-spectral classifiers. 

The advantage was 1.8% over EMP, 1.5% over LRML, and 

1.2% over DTB. This is because our approach adopts the 

Lasso-based band selection strategy, which reduces the 

dimensionality of data, while preserving the physical meaning 

of the data. 

Table 2 displays the OA, AA and Kappa coefficient of each 

method on each class in the University of Pavia scene. It can 

be seen that, among the four pixel-wise classifiers, the 

approach that directly imports the original data of 

hyperspectral images to the SVM, boasted the best effect. The 

other three pixel-wise methods, namely, PCA, ICA, and MDS, 

lost some useful information during dimensionality reduction, 

which affects the classification accuracy, although the 

dimensionality reduction improves calculation efficiency.  

Taking the Gravel ground targets for example, the OA 

obtained after the dimensionality reduction by PCA, ICA, and 

MDS was 2.1%, 5.3%, and 1.5% lower than the OA achieved 

using the original data directly, respectively. 

In addition, the pixel-wise classifiers fail to consider the 

spatial information of images, and thus performed poorly in 

recognizing some ground targets. For example, the highest OA 

of the pixel-wise classifiers was 69.8% (MDS), while the OA 

of our approach was 37.4% higher (95.9%). 

The second experiment shows that our approach removes 

the noisy bands from the hyperspectral image through band 

selection, and retains the contours and edges of the image via 

transform-domain recursive filtering. Thus, our approach is 

suitable for precision agriculture, as well as urban planning. 

 

  

5. CONCLUSIONS 

 

This paper proposes a novel approach called BSTDRF for 

hyperspectral image classification. The proposed approach 

consists of two phases: data dimensionality reduction based on 

subspace band selection, and feature extraction based on 

transform-domain recursive filtering. Two experiments were 

carried out on real hyperspectral image datasets, namely, the 

agricultural scene of Indian Pines and the urban scene of 

University of Pavia. The results show that our approach 

achieved the best classification effect among all methods. 

Compared with the 7 contrastive methods, our BSTDRF has 

the following merits: Firstly, our approach can reduce the 

dimensionality of hyperspectral image data to the maximum 

possible degree, and remove the noisy bands as much as 

possible. Secondly, our approach can preserve the contours 

and edges of the original image, which contain the richest 

information in the image. However, our approach requires 

manual adjustment during the subspace segmentation of 

hyperspectral image data, and we only studied one edge-

preserving filter: transform-domain recursive filtering. In 

future, we will further explore adaptive image segmentation 

techniques, and disclose the influence of different local filters 

on image segmentation accuracy. 

 

 

ACKNOWLEDGEMENTS 

 

This work is supported by the Scientific Research Fund of 

Hunan Provincial Education Department (Grant No.: 19B105).  

 

 

REFERENCES 

 

[1] Liu, Y., Gao, G., Gu, Y. (2017). Tensor matched 

subspace detector for hyperspectral target detection. 

IEEE Transactions on Geoscience and Remote Sensing, 

55(4): 1967-1974. 

https://doi.org/10.1109/tgrs.2016.2632863 

[2] Bioucas-Dias, J., Plaza, A., Camps-Valls, G., Scheunders, 

P., Nasrabadi, N., Chanussot, J. (2013). Hyperspectral 

remote sensing data analysis and future challenges. IEEE 

Geoscience and Remote Sensing Magzine, 1(2): 6-36. 

https://doi.org/10.1109/mgrs.2013.2244672 

[3] Wagle, S.A., R, H. (2021). Comparison of plant leaf 

classification using modified AlexNet and support vector 

machine. Traitement du Signal, 38(1): 79-87. 

https://doi.org/10.18280/ts.380108 

[4] Dong, Y., Du, B., Zhang, L., Zhang, L. (2017). 

Dimensionality reduction and classification of 

hyperspectral images using ensemble discriminative 

local metric learning. IEEE Transactions on Geoscience 

and Remote Sensing, 55(5): 2509-2524. 

https://doi.org/10.1109/tgrs.2016.2645703 

[5] Lu, T., Li, S., Fang, L., Bruzzone, L., Benediktsson, J. 

851



(2016). Set-to-set distance-based spectral-spatial 

classification of hyperspectral images. IEEE 

Transactions on Geoscience and Remote Sensing, 54(12): 

7122-7134. https://doi.org/10.1109/tgrs.2016.2596260 

[6] Kang, X., Li, S., Fang, L., Li, M., Benediktsson, J. (2015).

Extended random walker-based classification of

hyperspectral images. IEEE Transactions on Geoscience

and Remote Sensing, 53(1): 144-153.

https://doi.org/10.1109/tgrs.2014.2319373

[7] Li, J., Dpido, I., Gamba, P., Plaza, A. (2015).

Complementarity of discriminative classifiers and

spectral unmixing techniques for the interpretation of

hyperspectral images. IEEE Transactions on Geoscience

and Remote Sensing, 53(5): 2899-2912.

https://doi.org/10.1109/tgrs.2014.2366513

[8] Yu, H., Gao, L., Li, W., Du, Q., Zhang, B. (2017).

Locality sensitive discriminant analysis for group sparse

representation-based hyperspectral imagery

classification. IEEE Geoscience and Remote Sensing

Letters, 14(8): 1358-1362.

https://doi.org/10.1109/lgrs.2017.2712200

[9] Yuan, Y., Zheng, X., Lu, X. (2017). Discovering diverse

subset for unsupervised hyperspectral band selection.

IEEE Transactions on Image Processing, 26(1): 51-64.

https://doi.org/10.1109/tip.2016.2617462

[10] Sun, B., Kang, X., Li, S., Benediktsson, J. (2017).

Random-walker-based collaborative learning for

hyperspectral image classification. IEEE Transactions on

Geoscience and Remote Sensing, 55(1): 212-222.

https://doi.org/10.1109/tgrs.2016.2604290

[11] Ghamisi, P., Souza, R., Benediktsson, J., Rittner, L.,

Lotufo, R., Zhu, X. (2016). Hyperspectral data

classification using extended extinction profiles. IEEE

Geoscience and Remote Sensing Letters, 13(11): 1641-

1645. https://doi.org/10.1109/lgrs.2016.2600244

[12] Jin, X., Gu, Y. (2017). Superpixel-based intrinsic image

decomposition of hyperspectral images. IEEE

Transactions on Geoscience and Remote Sensing, 55(8):

4285-4295. https://doi.org/10.1109/tgrs.2017.2690445

[13] Pan, B., Shi, Z., Xu, X. (2017). Hierarchical guidance

filtering-based ensemble classification for hyperspectral

images. IEEE Transactions on Geoscience and Remote

Sensing, 55(7): 4177-4189.

https://doi.org/10.1109/tgrs.2017.2689805

[14] Damodaran, B., Courty, N., Lefèvre, S. (2017). Sparse

Hilbert Schmidt independence criterion and surrogate-

kernel-based feature selection for hyperspectral image

classification. IEEE Transactions on Geoscience and

Remote Sensing, 55(4): 2385-2398. 

https://doi.org/10.1109/tgrs.2016.2642479 

[15] Yang, C., Tan, Y., Bruzzone, L., Lu, L., Guan, R. (2017).

Discriminative feature metric learning in the affinity

propagation model for band selection in hyperspectral

images. Remote Sensing, 9(8): 782.

https://doi.org/10.3390/rs9080782

[16] Wang, L., Chang, C., Lee, L., Wang, Y., Xue, B., Song,

M., Yu, C., Li, S. (2017). Band subset selection for

anomaly detection in hyperspectral imagery. IEEE

Transactions on Geoscience and Remote Sensing, 55(9):

4887-4898. https://doi.org/10.1109/tgrs.2017.2681278

[17] Luo, X., Xue, R., Yin, J. (2017). Information-assisted

density peak index for hyperspectral band selection.

IEEE Geoscience and Remote Sensing Letters, 14(10):

1870-1874. https://doi.org/10.1109/lgrs.2017.2741494

[18] Zhu, G., Huang, Y., Li, S., Tang, J., Liang, D. (2017).

Hyperspectral band selection via rank minimization.

IEEE Geoscience and Remote Sensing Letters, 14(12):

2320-2324. https://doi.org/10.1109/lgrs.2017.2763183

[19] Gastal, E., Oliveira, M. (2011). Domain transform for

edge-aware image and video processing. ACM

Transactions on Graphics, 30(4): 69.

https://doi.org/10.1145/1964921.1964964

[20] Sun, W., Du, Q. (2018). Graph-regularized fast and

robust principal component analysis for hyperspectral

band selection. IEEE Transactions on Geoscience and

Remote Sensing, 56(6): 3185-3195.

https://doi.org/10.1109/tgrs.2018.2794443

[21] Bazi, Y., Melgani, F. (2010). Gaussian process approach

to remote sensing image classification. IEEE

Transactions on Geoscience and Remote Sensing, 48(1):

186-197. https://doi.org/10.1109/tgrs.2009.2023983

[22] Melgani, F., Bruzzone, L. (2004). Classification of

hyperspectral remote sensing images with support vector

machines. IEEE Transactions and Geoscience Remote

Sensing, 42(8): 1778-1790.

https://doi.org/10.1109/tgrs.2004.831865

[23] Mojaradi, B., Abrishami-Moghaddam, H., Zoej, M.,

Duin, R. (2009). Dimensionality reduction of

hyperspectral data via spectral feature extraction. IEEE

Transactions on Geoscience and Remote Sensing, 47(7):

2091-2105. https://doi.org/10.1109/tgrs.2008.2010346

[24] Demir, B., Ertürk, S. (2010). Empirical mode

decomposition of hyperspectral images for support

vector machine classification. IEEE Transactions on

Geoscience and Remote Sensing, 48(11): 4071-4084.

https://doi.org/10.1109/tgrs.2010.2070510

852




