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Aiming at the problem that the accuracy of community detection is unstable and the labels 

appear vibration in the traditional overlapping community detection methods based on label 

propagation, this paper proposed OLPC (An Overlapping Community Detection Algorithm 

with Label Propagation Control for Complex Networks). The algorithm firstly initializes the 

labels and corresponding storage space for every node in networks. Then setting the number 

of reserved labels in the label storage space of nodes. And analyzing whether the node needs 

to continue the update operation in the way of judging whether the reserved labels in the 

storage space are same. Afterwards, every node receives the most appropriate community label 

by analyzing the neighbor nodes’ conditions. Finally, if the newest community labels received 

by all nodes are consistent with all nodes’ community labels received by previous generation’s 

label propagation, the algorithm stops. Through the testing in benchmark networks, real-world 

networks and the analysis after comparing the algorithm with some typical algorithms, the 

experimental results verified the feasibility and validity of the algorithm proposed in this paper. 
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1. INTRODUCTION

Many complicated systems in real world can be expressed 

as complex networks, such as interpersonal relations and the 

cooperation between scientists. These complex networks have 

common statistical properties like the small-world effect [1], 

"power laws" in the link distribution [2] and community 

structure [3], etc. Among them, the community structure 

reflects an important feature of complex networks: the inner 

edges of a community are linked tightly but the communities 

are linked loosely with each other. The process of disclosing 

the community structure in complex networks is known as 

community detection. Once detected, the community structure 

helps to analyze the topology, examine the functions and 

predict the behavior of complex networks [3]. As a result, 

community detection has been extensively studied and widely 

applied in protein function prediction [4, 5], public opinion 

analysis and control [6] and design of search engine [7], and 

many other areas. It has become a hot issue in current research. 

Recent years have witnessed the emergence of various 

community detection algorithms, namely, Girvan–Newman 

(GN) algorithm [8], Fast Newman (FN) algorithm [9], 

Blondel-Guillaume-Lambiotte-Lefebvre’s (BGLL) algorithm 

[10], and label propagation algorithm (LPA) [11]. The GN is 

based on splitting, when the FN and BGLL are on modularity 

optimization, the LPA is on label propagation. Despite their 

excellent performance, these algorithms can only divide the 

complex networks into several disconnected communities, 

that is, each node only belongs to one community. In real-

world complex networks, however, communities may overlap 

with each other, instead of being completely independent. In 

other words, some nodes in actual networks may belong to 

several communities (e.g. family, friends, occupation and 

hobbies) at the same time. This calls for the detection of the 

overlapping communities in complex networks. 

To date, many algorithms have been developed to detect 

overlapping communities. For example, the clique percolation 

method (CPM) [12] suggests that only the edges inside a 

community can be connected to a large complete subgraph. 

References [13] and [14] propose several community structure 

detection algorithms similar to the CPM. The link clustering 

(LC) algorithm [15] assumes that an edge has only one role 

and belongs to only one community. In other words, the 

overlapping nodes after confirming the community of each 

edge must belong to multiple communities. References [16] 

and [17] provides algorithms similar to the LC. The LFM 

algorithm [18] determine the structure of all communities 

through local optimization: initializing several source nodes, 

optimizing the fitness function, expanding the local 

communities of each source node. Reference [19] contains 

several algorithms similar to the LFM. Cao [20] relied on 

nonnegative matrices to complete community detection. 

Specifically, the target network was decomposed by the 

normalized symmetric nonnegative matrix when the number 

of communities was known, and by Bayesian symmetric 

nonnegative matrix when the number was unknown. Similar 

algorithms were presented in References [21, 22]. In addition, 

the LPA-based algorithms have also been applied to 

overlapping community detection, thanks to their simplicity 

and efficiency. Typical examples include the community 

overlap propagation algorithm (COPRA) and speaker-listener 

label propagation algorithm (SLPA) [23, 24]. However, the 

LPA-based algorithms face instable detection accuracy in 

overlapping community detection, and their efficiency is 

dampened by the repeated updates of community labels. 

To solve the defects of the existing LPAs, this paper puts 

forward an overlapping community detection algorithm with 

label propagation control for complex networks (OLPC). The 
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algorithm firstly initializes the labels and their storage space 

in each network node; Then, the number of labels reserved in 

the storage space of each node was set up, followed by judging 

if the reserved labels are the same; if yes, the labels of the node 

will not be updated; otherwise, the labels will be further 

updated; next, each node will receive the most suitable label 

by analyzing the adjacent nodes; finally, the iteration will be 

terminated if the latest labels of all nodes are consistent with 

those in the previous generation. 

 

 

2. ALGORITHM ANALYSIS 

 

2.1 Problem overview 

 

As mentioned before, the traditional LPAs face the problem 

of instable detection accuracy and their efficiency is dampened 

because the label of a node can be affected easily by the labels 

of its adjacent nodes. Taking the SLPA for example, the labels 

and their storage space are initialized in each network node; in 

the iterative process, each node sends a label to its adjacent 

nodes, then receives a label from each adjacent node, and 

saves the received label randomly in its label storage space; if 

the labels take up more than r percent of the storage space, the 

labels will be preserved; then, the node will be identified as an 

overlapping node, if it contains more than one label in its label 

storage space. Figure 1 shows the possible scenarios of the 

SLPA in the label propagation. It can be seen that the labels in 

the storage spaces of nodes b, c, e and f remain unchanged in 

the last three iterations, and the nodes need to continue to 

update the labels in the next iteration. Thus, the algorithm 

becomes less efficient. Meanwhile, the algorithm stability is 

affected as the storage spaces are updated irregularly for the 

randomly received labels. 
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Figure 1. The sketch map of SLPA community detection 

algorithm 

 

2.2 OLPC algorithm 

 

Considering the defects of the traditional LPAs, this paper 

sets the control mark of label propagation as a basis that stop 

updating the node labels which have not changed after 

multiple iterations, thus enhancing the iteration efficiency. 

Compared with most LPA-based algorithms of overlapping 

community detection, the OLPC selects the most suitable label 

and adds it into each node’s storage space by analyzing all 

labels received from the adjacent nodes rather than received 

labels randomly. The elimination of randomness makes the 

operation stable. The detailed steps of the OLPC are as follows: 

Step 1: Initialize the label storage space 𝑆𝑣 of each node v 

in the network as 𝑆𝑣 = {(𝑙0), 𝑐𝑙}, where 𝑙0 is the initial label of 

node v; cl is the control mark of label propagation, i.e. the 

judgment of the necessity for further label update. 

Step 2: Let r be the number of labels reserved in each 

storage space, which only saves the labels received in the latest 

r iterations. 

Step 3: If there are r identical labels in the storage space Sv 

of node v, terminate the label propagation; otherwise, go to 

Step 4. 

Step 4: In the t-th iteration, each node v receives the labels 

from all adjacent nodes, and stores the label lt with the largest 

value by formula (1) into the storage space Sv, producing 𝑆𝑣 =
{(𝑙0, 𝑙1, . . . , 𝑙𝑡), 𝑐𝑙}. 
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where Lt is the set of repetitive elements received in the t-th 

iteration; xt is the non-repetitive elements in Lt; t=1, 2,…, N, 

with N being the number of different values of elements; 

count(xt) is the number of elements xt in Lt. 

Step 5: Perform Steps 3 and 4 repeatedly. If the latest label 

generated from the storage space Sv of any node v is consistent 

with that in the previous generation, terminate the label 

propagation. 

Step 6: Allocate the nodes with the same label into the same 

community. If the storage space contains multiple labels, then 

the node must be an overlapping node.  

The above description shows that the OLPC mainly 

introduces a control mark cl to label propagation, and uses it 

to judge the label variation after multiple iterations. If the label 

of a node does not change after multiple iterations, the label is 

very unlikely to change in the subsequent iterations. Thus, if 

the cl indicates no need to go on with the update, the label will 

not be updated in the subsequent iterations, thus eliminating 

the label variation in traditional LPAs and improving the 

propagation efficiency. Moreover, the OLPC ensures that all 

nodes receive the most suitable nodes, which greatly 

suppresses the randomness. 

 

2.3 Time complexity analysis 

 

Let G be a network of n nodes with the mean node degree 

of k, t be the number of iterations of OLPC’s label update, and 

O(n) be the time complexity of the OLPC’s initialization of the 

label of each node. During the label update, the time 

complexity of label propagation will not exceed O(tkn), 

because each node needs to receive the labels of its adjacent 

nodes through the t iterations. Finally, the OLPC’s time 

complexity can be expressed as O(n+tkn). Since k is far 

smaller than n which is the number of network nodes, the time 

complexity of our algorithm can also be expressed as O(jn), 

with j being a constant. 

 

 

3. EXPERIMENTAL ANALYSIS 

 

To verify its performance, the OLPC was tested with the 

datasets of benchmark networks and real-world networks, and 

compared with traditional algorithms like CFinder [12], LFM, 

COPRA and SLPA. The number of labels r reserved in the 

storage space of the OLPC was set to 4. 
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3.1 Evaluation indices 

 

The performance of each algorithm was evaluated against 

by two classical indices: the community detection accuracy 

and community closeness. 

The community detection accuracy is denoted as 

normalized mutual information (NMI) [18]. The NMI ranges 

from 0 to 1. If NMI=1, the detected community structure is 

exactly the same with the actual structure; If NMI=0, the 

detected community structure is completely different from the 

actual structure. The NMI value is positively correlated with 

an algorithm’s accuracy in detecting overlapping communities. 

The community compactness is evaluated by the extend Q 

(EQ) [13]. The value of EQ is positively correlated with the 

closeness between intra-community nodes. 

 

3.2 The datasets of benchmark networks 

 

In the LFR benchmark network [25], the node degree and 

community size obeys power rate distribution, which is similar 

to the distribution in real complex networks. Thus, this dataset 

was adopted for our testing and comparison. 

The LFR benchmark network contains the following 

parameters: the total number of network nodes N, the mean 

node degree k, the maximum node degree kmax, the number of 

nodes in the largest community Cmax, the number of nodes in 

the smallest community Cmin, the mixture proportion μ (the 

value of μ is positively correlated with the clarity of the 

community structure), the number of overlapping nodes On, 

and the greatest number of communities than an overlapping 

node can belong to Om. Here, the parameters are initialized as: 

N=200, k=10, kmax=30, Cmin=20 and Cmax=50. The setting of 

other parameters is listed in Table 1 below. 

 

Table 1. Parameter setting in LFR benchmark network 

 
Network On Om μ 

R1 20 2 0.1~0.4 

R2 100 2 0.1~0.4 

R3 20 2~6 0.1 

R4 20 2~6 0.3 

 

3.3 Comparison of detection accuracy 

 

 
(a)R1                                        (b)R2 

 

Figure 2. Comparison of detection accuracy at μ=01~0.4 

 

The contrastive algorithms were compared in terms of 

detection accuracy based on their NMIs in a network with low 

overlap degree (R1) and in a network with a high overlap 

degree (R2). As shown in Figure 2, the detection accuracies of 

CFinder and LFM were not greatly affected by the gradually 

increasing μ, but were lower than the detection accuracy of the 

OLPC. Despite their relatively high detection accuracies at the 

beginning, SLPA and COPRA witnessed a rapid decline in 

detection accuracy, as the community structure became 

blurrier, indicating that the two algorithms are not stable. As 

for the OLPC, its detection accuracy was slightly affected by 

the increase of μ, but decreased slower than that of SLPA and 

COPRA. Hence, the OLPC outperformed the other algorithms 

in detection accuracy. 

Next, the detection accuracies of the contrastive algorithms 

were compared based on their NMIs in a network with clear 

community structure (R3) and in a network with blurry 

community structure (R4). As shown in Figure 3, the detection 

accuracies of CFinder, LFM, COPRA and SLPA all decreased 

faster than the detection accuracy of the OLPC, with the 

growing number of communities 𝑂𝑚  which the overlapping 

nodes belong to, although these algorithms had a high 

detection accuracy at the beginning. The detection accuracy of 

the OLPC was not greatly affected by the increase of 𝑂𝑚. 

 

 
(a)R3                                        (b)R4 

 

Figure 3. Comparison of detection accuracy at 𝑂𝑚=2~6 

 

Overall, the testing on benchmark network datasets shows 

that the OLPC’s detection accuracy was not greatly affected 

by the increase of 𝑂𝑚 , but significantly influenced by the 

growth of μ. This is because the LPAs update the label of each 

node based on the labels of the adjacent nodes. In terms of 

detection accuracy, the LPA are sensitive to the closeness 

between intra-community nodes. As a result, the SLPA, 

COPRA and OLPC are greatly affected by the increase of μ, 

i.e. the fuzzification of community structure. Of course, the 

comparison also reveals that the OLPC had better detection 

stability than traditional algorithms like SLPA and COPRA. 

Despite the vibration of detection accuracy, the OLPC 

outperformed the other algorithms in detection accuracy with 

the increase of μ. 

 

3.4 The datasets of real-world networks 

 

Considering the topological difference of real-world 

networks from benchmark networks, the performance of 

OLPC was further verified with the datasets of real-world 

networks. Table 2 shows the datasets of six real-world 

networks used for the verification, including small networks 

with dozens of nodes and large network with 10,000 nodes. 

The community detection quality of each contrastive 

algorithm was evaluated by the index EQ. The comparison 

results are recorded in Table 3, where “\” means the algorithm 

failed to detect communities or the EQ is lower than 0.001. 

It can be seen from Table 3 that the OLPC acquired the 

largest EQ in four networks (Karate, Dolphins, Polbooks and 

PGP), the second largest EQ in Email network (only behind 

COPRA), the third largest EQ in Lesmis network (only after 

LFM and COPRA algorithms). In general, the OLPC have 

better community detection ability than the other algorithms in 

107



 

real-world networks, which promises a great application 

potential. 

 

Table 2. The datasets of real-world networks 

 

Network Nodes Edges 
Average 

degree 
Description 

Karate 34 78 4.59 
Karate club network 

[26] 

Dolphins 62 159 5.13 
Dolphin social 

network [27] 

Lesmis 77 254 6.6 

The tragic world 

relations network 

[28] 

Polbooks 105 441 8.4 
American political 

book network [29] 

Email 1 133 5 451 9.62 

Email 

communication 

network [30] 

PGP 
10 

680 

24 

316 
4.55 Trust network [31] 

 

Table 3. The comparison results of each algorithm’s value of 

EQ 

 
EQ OLPC CFinder LFM COPRA SLPA 

Karate 0.3543 0.1072 0.2146 0.3239 0.3472 

Dolphins 0.5041 0.2885 0.2374 0.4206 0.3879 

Lesmis 0.4215 0.1855 0.4812 0.4779 0.3209 

Polbooks 0. 4642 0.4304 0.3476 0.4586 0.4568 

Email 0.3055 0.2641 0.1822 0.3523 0.1837 

PGP 0.6959 \ \ 0.4335 0.6928 

 

 

4. CONCLUSION 

 

Aiming at the problem that the results of detection are 

unstable and labels appear the phenomenon of vibration in the 

overlapping community detection methods based on 

traditional label propagation, this paper proposed the OLPC 

algorithm. This method sets the control mark of label 

propagation in the process of label propagation. When the 

number of reserved labels in the label storage space is r and 

these labels are same, meaning that the labels don't need to 

change in past r times iterations. So sets the control mark of 

label propagation as the mark which forbids updating. In the 

process of the later updates of labels, this node label will not 

change, which raising the operating efficiency. Meanwhile, 

choosing the most appropriate label from the received labels 

and storing it into the label storage space, which replaces the 

method of traditional algorithms that randomly choosing the 

label. Through the testing in benchmark networks and real-

world networks, and the analysis after comparing OLPC with 

multiple comparison algorithms, it can be seen that the OLPC 

algorithm is viable and efficient. 
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