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 Exchanging data between devices is getting easier and faster just by using a network. 

Nevertheless, many factors threaten this process and the network itself. Implementing an 

Intrusion Detection System (IDS) may minimize the risk since it can identify and prevent 

attacks on the network. There are many methods to design an IDS to work optimally only 

by reducing data dimensions, one of which is by using the Autoencoder. However, its data 

dimensions may not have been optimal, which affects the IDS performance. In this study, 

we work on this problem. This study shows that one of the dimensional reduction methods 

can get optimal results. It indicates that it is implementable to secure the network. 
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1. INTRODUCTION 

 

Currently, most information is obtained from network 

technology, from which we can easily access various 

information and exchange data. Despite its advantages, a 

network is vulnerable to an attack, where illegal parties may 

compromise and destroy the data and other resources. 

Therefore, systems preventing a network from attacks are 

introduced, one of which is an Intrusion Detection System 

(IDS) [1, 2] that can identify attack attempts by examining 

activities in a network or system.  

In general, IDS can be divided into host-based and network-

based IDS, known as HIDS and NIDS, respectively. HIDS 

monitors activities where it has been installed. This analysis 

includes file integrity and finding malicious activities in log 

files. Slightly different, NIDS focuses on evaluating 

infrastructure. Analyzing network packets, including headers 

and contents, makes it feasible to recognize flows for 

identifying an attack in the network [1].  

Furthermore, both IDS types evaluate incoming packets 

considering either signature-based or anomaly-based 

mechanisms. In the first approach, detection is done according 

to existing attacks' defined signatures or rules. The system 

detects current attacks by comparing their activities with 

stored signatures without identifying new attack types. The 

second approach searches for deviation from normal behaviors 

using machine learning to detect activities [1]. 

Current IDS is developed using machine learning 

algorithms focusing on either feature extraction or type 

classification. For example, Megantara and Ahmad [2] employ 

feature importance and RFE to extract features, Ahmad and 

Aziz [3] implement CFS-PSO feature selection, and Muttaqien 

and Ahmad [4] reduce dimension. In this study, we take 

Autoencoder to compress data, inspired by Farahnakian and 

Heikkonen [5], which implement Autoencoder and the 

Softmax classifier to the KDDCup99 dataset. Autoencoder is 

a well-known scheme to use in this field [5]. Different from [5] 

that implements the system in only one dataset, we evaluate 

the method in four datasets. This has made it easier to analyze 

the characteristics and environment where the system is more 

appropriate to implement. Furthermore, we also evaluate 

several compression sizes to improve the performance further. 

The remainder of this paper is organized as follows. Section 

2 reviews literature relating to Autoencoder-based feature 

extraction in IDS. Section 3 explains the method, while 

Section 4 analyses and compares the experimental results with 

other methods. Finally, we conclude them in Section 5. 

 

 

2. PREVIOUS WORKS 

 

Autoencoder-based feature extraction in IDS has been 

introduced, such as that proposed by Farahnakian and 

Heikkonen [5], and Potluri and Diedrich [6]. These two 

methods [5, 6] compress data using an encoder and then return 

it using a decoder. The encoder produces data with fewer 

features than the original one, called code, and the output of 

the decoder is made as close as possible to its original. 

Autoencoder has three parts, encoder, decoder, and code. The 

encoder compresses the input to lower-dimensional output 

(code), and the decoder generates input from the lower 

dimensional output produced by the encoder [5]. Overall, the 

Autoencoder output is not the same as the input because it only 

translates data. Therefore, a minimal loss is made. 

By implementing their method in the KDDCup99 dataset, 

Farahnakian and Heikkonen [5] transform categorical data 

using One-Hot Encoding, so the number of features has 

become more than the original. One-Hot Encoding is a type of 

mapping converting categorical features into numerical 

features with binary coding. For example, TCP, UDP, and 

ICMP are mapped to (1,0,0), (0,1,0), and (0,0,1) [5]. They 

consider four layers of Autoencoder architecture for feature 

extraction with (32, 32, 32, 32). They take Softmax by 

calculating the multiclass and binary classification. Potluri and 

Diedrich [6] transform categorical data using label encoding 

in the NSL dataset, where the number of features is the same 

as the original. Label encoding converting categorical to 

numerical values. For example, TCP, UDP, and ICMP are 

converted to 1, 2, and 3, respectively. They also use two layers 

Autoencoder architecture for feature extraction with (20, 10). 
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Furthermore, Softmax is also implemented by calculating four 

types of classification. The first is binary classification; the 

second has three classes with one normal, a type of attacks (i.e., 

DoS), and one remaining total attack type; the third has three 

classes with one normal, two types of attacks (i.e., DoS, Probe), 

and one remaining total attack types; the last comprises one 

normal and four types of attacks. 

By taking the NSL-KDD dataset, Al-Qatf et al. [7] 

transform categorical data using One-Hot Encoding. They also 

implement Autoencoder architecture as feature extraction with 

only one layer. The SVM classifier is implemented by 

calculating the binary and multiclass classification. The model 

is evaluated based on training and testing data, and various 

compression amounts from 10 to 120 are considered. Several 

Autoencoder-based methods for feature extraction are also 

proposed, such as [8] using Autoencoder as data compression 

in the NSL-KDD dataset; [9] using Autoencoder as feature 

extraction in CICIDS 2017 dataset; and [10] using CNN and 

LSTM as layer autoencoder for feature extraction. In general, 

the best architecture is Autoencoder using architecture 

Stacked-CNN-LSTM-SAE-NN. 

Based on those previous studies, it is found that there are 

many variants of the Autoencoder implementation based on 

the number of layers, the type of classification, and the used 

dataset. However, previous research still needs to be evaluated 

using different parameters to improve its performance. 

Furthermore, some metrics should also be implemented to 

measure that performance further. 

 

 

3. METHODS 

 

 
 

Figure 1. Stages of the proposed method 

 

In this research, the Autoencoder reduces the number of 

features by 75%, 50%, and 25%. Those percentages are chosen 

because these values represent various data sizes with 

reasonable differences. The main process flow is described as 

follows: 

(1) Pre-processing: We use One-Hot-Encoder to convert 

categorical data into numerical data for preprocessing. 

Then, data are normalized using MinMaxScaler. 

(2) Autoencoder Process: The Autoencoder model is trained 

to produce this model. The next is to compress data 

training and testing with that Autoencoder. 

(3) Evaluation Process: The data evaluation uses Softmax, k-

NN, and Naïve Bayes classification.  

Each stage of this scheme is illustrated in Figure 1. The 

focus of this experiment is the Autoencoder process, where we 

compress the data in different amounts, namely 25%, 50%, 

and 75% for each dataset, whose process is described as 

follows. 

 

3.1 Preprocessing 

 

In this stage, first, we convert categorical data using One-

Hot-Encoder, a method to transform categorical data to 

numerical with binary coding. It results in 0 or 1, representing 

"not in this category" and "in a category", respectively. After 

converting to numerical features, all datasets have more 

features. The NSL-KDD dataset is from 41 to 122, UNSW-

NB15 is from 42 to 196, KDDCup99 is from 41 to 119, and 

Kyoto is from 23 to 46. Next, all datasets are normalized with 

MinMaxScaler to make 0 to 1. 

 

3.2 Autoencoder process 

 

After preprocessing data, we create an Autoencoder model 

by compressing all features to 75%, 50%, and 25%. Each 

compressed ratio creates a different layer, so we have nine 

models consisting of 75% one-layer, two-layer, three-layer; 

50% one-layer, two-layer, three-layer; 25% one-layer, two-

layer, three-layer 

The process starts by training the first Autoencoder with 

training data and compressing. Then, training the second 

Autoencoder with compressed data in the first Autoencoder 

creates the compression. Last, train the third Autoencoder with 

compressed data in the second Autoencoder. 

 

 
 

Figure 2. Autoencoder model 

 

After Autoencoder was trained, we have 3 Autoencoders: 

the first Autoencoder is one layer, the first to second 

Autoencoder is a two-layer, and the first to third Autoencoder 

is a three-layer. Those are trained again with different 

compressed ratios. Compressing data training and testing with 

trained Autoencoder, which is used for classification, produces 

fewer features than the original. Figure 2 shows an 

autoencoder model consisting of 3 layers, each of which is 

trained with a different autoencoder. 
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3.3 Evaluation process 

 

The compressed data are evaluated using Softmax, k-NN, 

and Naïve Bayes Classification. Softmax classifier expands 

the Logistic Regression (LR) method that LR only categories 

two labels. On the other hand, Softmax extends it into multi-

category labels; this characteristic is more appropriate to 

implement for multiclass environments. Furthermore, 

Softmax can be applied to map N-dimensional vectors into 

categories [11]. For Softmax classification, we use 100 

batches for training with Binary Crossentropy loss and Adam 

Optimizer, whose architecture contains two layers. In the first 

layer, the number of neurons is the same as the number of 

compressed features, and in the output layer, the number of 

neurons is the same as the number of classifications. After the 

first layer, we perform the dropout layer for combat overfitting. 

The classification architecture is shown in Figure 3.  

 

 
 

Figure 3. Softmax classification model 

 

The k-NN algorithm is a supervised learning method by 

storing previous data and classifying incoming data according 

to its distance to those previous ones, and the close 

neighborhood of 𝑘 is checked. The incoming data are included 

in their closest class by measuring the Euclidean, Minkowski, 

or Manhattan to find the distance [12]. On the other hand, 

Naïve Bayes classifies data according to the probabilistic 

values in the Bayes theorem and the naïve independence 

assumptions. The algorithm consolidates the existence of a 

specific feature that is irrelevant to the current environment. 

As a supervised learning method, it is trained for small data 

sets to detect many attributes later [13]. This environment has 

been considered based on the previous supervised and 

unsupervised learning comparison [14]. 

 

 

4. EXPERIMENTAL RESULTS  

 

In the experiment, we used four datasets, namely NSL-KDD, 

UNSW-NB15, Kyoto, and KDDCup99, to get diverse 

comparisons. Furthermore, multiclass and binary 

classifications are performed whenever the dataset supports it 

(e.g., the Kyoto dataset is binary only). Like other research, we 

generate a confusion matrix containing True Positive (TP), 

True Negative (TN), False Positive (FP), and False Negative 

(FN) to find the True Positive Rate (TPR) and the False 

Negative Rate (FPN) of the experimental results. TP is the 

number of correctly detected attacks, TN is the number of 

correctly detected normal, FP is the number of normal detected 

as an attack, and FN is attack detected as normal.  

For the NSL-KDD dataset, we use KDDTrain+.txt as 

training and KDDTest+.txt as testing with 125973 and 22544 

data, respectively. NSL-KDD has 23 classes and is reduced to 

5 classes with one normal and four attacks (Denial of Service 

(DoS), Use to Root (U2R), Remote to Local (R2L), and Probe. 

As for the Kyoto dataset, we use 20151231.txt as the dataset 

with a total data size of 309068 data. It has two classes with a 

value of 1 as normal and a -1 as an attack. For the UNSW-

NB15 dataset, we use UNSW_NB15_training-set.csv for 

training, and UNSW_NB15_testing-set.csv for testing with a 

total of 82332 and 175341 data, respectively. The UNSW-

NB15 dataset has ten classes with one normal and nine attacks 

(Analysis, Backdoor, DoS, Exploits, Fuzzers, Generic, 

Reconnaissance, Shellcode, and Worms). In the KDDCup99 

Dataset, kddcup.data_10_percent_corrected is taken for 

training and corrected for data testing containing 494021 and 

311029 for data training and testing, respectively. This dataset 

has redundant data; we reduced it to 145586 and 77291 data. 

 

4.1 Difference number of hidden layers and hidden units 

 

We use an Autoencoder with three amounts of compression, 

namely 25%, 50%, and 75%. Furthermore, we also implement 

several layers, from one to three, as described in the following 

scenarios. 

 

4.1.1 Scenario 1 

We compress data using Autoencoder to 25% for each 

dataset. In the NSL-KDD, the number of features reduces from 

122 to 30; in the UNSW-NB15, it is from 196 to 49; the Kyoto 

dataset is from 46 to 11; lastly, for KDDCup99, the number 

goes down from 119 to 30. In this scenario, the highest 

accuracy on multiclass classification is 93.40% in 3 layers 

with Softmax and KDDCup99 datasets, while that in binary is 

98.79% in 3 layers with k-NN and Kyoto datasets. The results 

are provided in Table 1, where B, M, and k are the binary 

classification, multiclass classification, and the number of 

nearest neighbors in k-NN, respectively. The sensitivity (SE) 

and specificity (SP) in binary and multiclass classification are 

shown in Table 2 and Table 3, respectively. It is shown that, 

overall, in terms of SE, Softmax and Naive Bayes are more 

appropriate to the multiclass environment. However, their SP 

values are comparable, depending on the dataset. In the binary 

classification, k-NN applied to the Kyoto and KDDCup99 

dataset has the highest SE and SP values, respectively. For the 

multiclass, Softmax applied to UNSW-NB15 and k-NN with 

KDDCup99 datasets have the best SE and SP values, 

respectively. 

 

4.1.2 Scenario 2 

Unlike scenario 1, in scenario 2, we make the Autoencoder 

compression of 50% for each dataset. Here, the highest 

accuracy on multiclass is 93.16% in 3 layers with Softmax and 

KDDCup99 datasets, and that of binary is 99.00% in 1 layer 

with Softmax and Kyoto datasets. In this scenario, the 

experimental results are provided in Tables 4, 5, and 6. In 

general, this scenario produces similar patterns to the previous 

scenario 1. 

 

4.1.3 Scenario 3 

In the last scenario, we make the Autoencoder compression 

amount of 75% for each dataset. In scenario 3, the highest 

accuracy on multiclass classification is obtained using one 

layer with Softmax and KDDCup99 datasets, 93.55%; and that 

of binary is in 1 layer with Softmax and Kyoto datasets, which 

is 99.42%. Tables 7, 8, and 9 show the detail of the results. 

Same as scenario 2, this experiment shows similar patterns to 

scenario 1. 
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Table 1. The accuracy using 25% compression (B=binary, M=multiclass, k=nearest neighbors) 

 

Layer 
Softmax Layer (%) k-NN Classification (%) for specified k Naïve Bayes Classification (%) 

B M k B k M B M 

NSL-KDD Dataset 

1 75.16 78.15 37 79.78 37 78.19 75.12 62.49 

2 79.36 82.78 29 80.05 29 78.60 75.20 61.40 

3 75.23 80.69 23 80.12 29 78.50 76.50 63.52 

UNSW-NB15 Dataset 

1 85.99 67.21 3 88.31 5 72.02 73.81 58.75 

2 90.20 67.35 3 88.17 7 71.93 73.92 55.26 

3 86.05 66.89 3 88.06 13 71.31 74.07 58.47 

Kyoto Dataset 

1 98.53 - 5 98.60 - - 85.06 - 

2 97.14 - 5 98.66 - - 92.35 - 

3 97.52 - 5 98.79 - - 96.09 - 

KDDCup99 Dataset 

1 94.27 92.37 41 94.38 3 9265.00 91.03 87.35 

2 94.31 92.50 41 94.57 3 92.95 90.68 86.53 

3 94.25 93.40 41 94.61 3 92.86 90.36 77.82 

 

Table 2. Sensitivity (SE) and specificity (SP) of binary 

classification using 25% compression 

 

Layer 

Softmax 

Layer 

k-NN 

Classification 

Naïve Bayes 

Classification 

SE 

(%) 

SP 

(%) 

SE 

(%) 

SP 

(%) 

SE 

(%) 
SP (%) 

NSL-KDD Dataset 

1 62.06  92.48  70.34  92.25  63.04  91,09. 

2 67.26  95.36  70.78  92.30  62.97  91.36  

3 61.90  92.84  70.86  92.36  65.38  91.20  

UNSW-NB15 Dataset 

1 80.62 97.43 85.02 95.31 63.99 94.72 

2 88.6 93.60 84.94 95.06 64.16 94.71 

3 80.67 97.51 84.83 94.94 64.45 94.58 

Kyoto Dataset 

1 99.88 74.41 99.43 80.77 85.27 80.50 

2 97.89 81.09 99.40 82.62 92.93 79.64 

3 98.34 79.77 99.52 82.94 96.9 78.6 

KDDCup99 Dataset 

1 87.84 98.20 86.55 99.18 79.37 98.17 

2 88.58 97.83 87.02 99.20 78.12 98.38 

3 88.01 98.07 87.10 99.22 75.79 99.29 

Table 3. Sensitivity (SE) and specificity (SP) of multiclass 

classification using 25% compression 

 

Layer 

Softmax 

Layer 

k-NN 

Classification 

Naïve Bayes 

Classification 

SE 

(%) 

SP 

(%) 

SE 

(%) 

SP 

(%) 

SE 

(%) 

SP 

(%) 

NSL-KDD Dataset 

1 77.32  91.16  70.18  92.26  67.79  87.92  

2 80.02  94.77  70.67  92.33  69.54  90.64  

3 77.13  95.43  70.57  92.37  70.86  86.86  

UNSW-NB15 Dataset 

1 98.95  80.23  83.96  96.15  96.73  77.03  

2 99.16  80.36  82.67  96.61  97.55  78.92  

3 99.01  80.25  80.46  97.47  96.33  78.68  

KDDCup99 Dataset 

1 91.40  97.33  85.92  98.36  86.04  95.16  

2 91.85  96.99  85.73  99.13  87.98  93.86  

3 92.82  97.31  86.11  99.11  86.33  96.17  

 

 

 

 

Table 4. The accuracy using 50% compression (B=binary, M=multiclass, k=nearest neighbors) 

 

Layer 
Softmax Layer (%) k-NN Classification (%)for specified k Naïve Bayes Classification (%) 

B M k B k M B M 

NSL-KDD Dataset 

1 76.58 78.19 21 77.47 37 75.98 77.76 66.57 

2 78.03 79.05 21 77.45 21 76.11 78.72 62.81 

3 77.10 80.86 23 78.93 23 77.63 76.61 76.40 

UNSW-NB15 Dataset 

1 89.42 68.40 3 88.46 5 72.44 74.36 55.09 

2 89.26 68.18 3 88.27 7 72.20 73.89 55.38 

3 89.11 67.99 3 88.22 13 72.14 74.00 54.25 

Kyoto Dataset 

1 99.00 - 3 98.47 - - 84.27 - 

2 98.84 - 3 98.25 - - 84.79 - 

3 98.29 - 3 98.08 - - 86.06 - 

KDDCup99 Dataset 

1 93.76 92.21 41 93.95 3 93.11 90.78 87.10 

2 92.41 92.69 41 93.56 3 93.13 90.75 86.29 

3 92.78 93.16 41 93.81 3 93.39 90.42 86.71 
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Table 5. Sensitivity (SE) and specificity (SP) of binary classification using 50% compression 

 

Layer 
Softmax Layer k-NN Classification Naïve Bayes Classification 

SE (%) SP (%) SE (%) SP (%) SE (%) SP (%) 

NSL-KDD Dataset 

1 64.88 92.05 66.00 92.63 67.89 90.80 

2 63.67 97.01 65.92 92.68 69.47 90.95 

3 64.02 94.39 65.85 96.23 65.36 91.48 

UNSW-NB15 Dataset 

1 85.97 96.77 85.24 95.31 64.81 94.71 

2 85.79 96.64 85.11 94.99 64.10 94.72 

3 85.64 96.50 85.05 94.96 64.28 94.70 

Kyoto Dataset 

1 99.49 88.50 99.12 84.25 84.30 83.57 

2 99.27 89.59 98.89 84.48 84.76 85.43 

3 98.76 88.10 98.69 84.93 86.16 83.71 

KDDCup99 Dataset 

1 84.90 99.20 85.28 99.26 77.78 98.76 

2 82.71 98.36 85.01 98.80 77.80 98.69 

3 84.32 97.96 85.49 98.90 77.14 98.56 

 
Table 6. Sensitivity (SE) and specificity (SP) of multiclass classification using 50% compression 

 

Layer 
Softmax Layer k-NN Classification Naïve Bayes Classification 

SE (%) SE (%) SE (%) 

NSL-KDD Dataset 

1 77.05 90.99 65.92 92.66 74.92 90.51 

2 74.41 95.37 65.87 92.68 71.85 88.52 

3 76.22 95.59 65.82 96.24 72.94 93.37 

UNSW-NB15 Dataset 

1 99.24 80.22 84.32 96.03 96.34 72.13 

2 99.02 80.46 83.10 96.52 97.79 76.00 

3 98.95 80.47 81.20 97.33 94.95 75.31 

KDDCup99 Dataset 

1 88.58 97.17 85.37 99.16 87.73 95.01 

2 89.82 97.22 84.91 99.15 87.57 93.87 

3 91.49 97.24 85.80 99.16 86.72 95.09 

 
Table 7. The accuracy using 75% compression (B=binary, M=multiclass, k=nearest neighbors) 

 

Layer 
Softmax Layer (%) k-NN Classification (%)for specified k Naïve Bayes Classification (%) 

B M k B k M B M 

NSL-KDD Dataset 

1 78.24 79.80 9 76.93 9 75.70 80.20 66.19 

2 79.32 78.72 37 78.11 37 76.73 79.64 70.48 

3 77.67 79.46 39 78.18 37 76.82 80.64 72.46 

UNSW-NB15 Dataset 

1 87.97 67.52 3 88.64 5 72.60 73.93 55.13 

2 89.19 68.19 3 88.48 7 72.60 73.78 56.01 

3 88.41 69.24 3 88.38 13 72.22 73.66 56.75 

Kyoto Dataset 

1 99.42 - 3 98.69 - - 84.24 - 

2 99.12 - 3 98.60 - - 83.55 - 

3 98.78 - 3 97.87 - - 84.96 - 

KDDCup99 Dataset 

1 92.81 93.55 41 93.95 3 92.76 91.37 87.13 

2 93.05 93.13 41 93.99 3 93.05 91.68 86.54 

3 92.65 92.97 41 93.87 3 93.39 90.26 87.66 

 
Table 8. Sensitivity (SE) and specificity (SP) of binary classification using 75% compression 

 

Layer 
Softmax Layer k-NN Classification Naïve Bayes Classification 

SE (%) SP (%) SE (%) SP (%) SE (%) SP (%) 

NSL-KDD Dataset 

1 65.84 94.63 64.94 92.78 69.04 94.94 

2 66.14 96.74 67.07 92.69 71.34 90.62 

3 66.35 92.63 67.28 92.60 73.75 89.74 
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UNSW-NB15 Dataset 

1 83.55 97.40 85.47 95.40 64.37 94.29 

2 85.63 96.78 85.43 94.99 63.94 94.74 

3 84.23 97.30 85.30 94.94 63.77 94.73 

Kyoto Dataset 

1 99.95 89.86 99.36 84.30 84.27 83.66 

2 99.61 88.50 99.28 83.85 83.54 83.66 

3 99.27 88.10 98.54 83.35 85.01 83.94 

KDDCup99 Dataset 

1 83.86 98.30 85.26 99.28 77.94 99.60 

2 84.41 98.35 85.38 99.27 80.87 98.31 

3 83.39 98.32 85.28 99.40 74.95 99.64 

 

Table 9. Sensitivity (SE) and specificity (SP) of multiclass classification using 75% compression 

 

Layer 
Softmax Layer k-NN Classification Naïve Bayes Classification 

SE (%) SE (%) SE (%) 

NSL-KDD Dataset 

1 76.08 95.03 64.81 92.79 74.02 90.81 

2 78.63 95.37 67.05 92.69 75.90 88.78 

3 77.03 95.51 67.26 92.63 75.33 87.32 

UNSW-NB15 Dataset 

1 98.95 80.40 84.54 96.06 97.13 70.10 

2 99.04 80.57 83.58 96.47 96.64 79.13 

3 99.14 80.50 81.80 97.37 97.31 76.13 

KDDCup99 Dataset 

1 90.60 97.82 85.28 98.41 87.56 95.12 

2 90.99 97.60 85.60 98.59 89.19 93.62 

3 87.26 98.28 85.80 99.22 86.72 95.09 

 

4.2 Analysis of 3 scenarios 

 

Generally, the increasing the compression proportionally 

increases the performance. This specifically works on the 

accuracy of using Softmax and Naïve Bayes classifiers, for 

both binary and multiclass classification in NSL-KDD dataset. 

Using k-NN in the same dataset causes the accuracy reduces 

gradually. Softmax and k-NN can be used for both binary and 

multiclass with accuracy around 80% at maximum. On the 

contrary, Naïve Bayes has about 14% difference of accuracy 

generated by binary and multiclass. So, it may not be 

applicable for mutliclass classification at any layer. In this 

NSL-KDD dataset, the best accuracy in binary classification is 

scenario 3 with three layers, using Naive Bayes reaching 

80.64%. In multiclass classification, scenario 1 with two layers 

using the Softmax classifier obtains 82.78%. Next, in the 

UNSW-NB15 dataset, the best accuracy in binary 

classification is scenario 1 with two layers and using Softmax 

classification, 90.20%. In comparison, that in multiclass 

classification is scenario 3 with 1 and 2 layers, using k-NN 

classification, which is 90.20%. 

In the UNSW-NB15 dataset, a relatively large difference 

between binary and multiclass occurs in all classifiers, where 

Naïve Bayes still has the highest difference. Here, multiclass 

classification results are lower than that in NSL-KDD. 

However, the binary classification results for Softmax and k-

NN go up significantly. 

As for the Kyoto dataset, there is only binary data, therefore 

multiclass cannot be evaluated. The experimental results show 

that the accuracy is higher than that of other datasets. 

Moreover, the 75% compression can reach 99.42% of 

accuracy in 1 layer of Softmax. The accuracy in KDDCup99 

is lower than that of Kyoto but still higher than others. The 

change of layer numbers and compression may not much 

affect the results. The best binary classification in this Kyoto 

dataset is scenario 3 with one layer, using the Softmax 

classifier, 99.42%. Lastly, in the KDDCup99 dataset using 

binary classification, scenario 1 with three layers with k-NN, 

94.61%, while in multi-classification is scenario 3 with one 

layer implementing Softmax, 93.55%.  

From those three scenarios, the best result in multiclass is 

the one layer-Autoencoder on the KDDCup99 dataset, 

reducing the features to 75%. In binary class, the best result is 

generated by 1 layer-Autoencoder on the Kyoto dataset, 

decreasing the features to 75%.  

 

4.3 Comparison with other evaluations 

 

Table 10. Multiclass classification results 

 

Methods Dataset 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

DAE-IDS [5] KDDCup99 94.71  94.42  - 

DNN-IDS [6] NSL-KDD - 97.50  95.00  

SAE-SVM [7] NSL-KDD 80.48  68.29  - 

Proposed 

method 
KDDCup99 93.55  90.63  97.82  

 

Table 11. Binary classification results 

 

Methods Dataset 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

DAE-IDS [5] KDDCup99 96.53  95.65  - 

DNN-IDS [6] NSL-KDD - 97.50  96.50  

SAE-SVM [7] NSL-KDD 84,.6 76.57  - 

Proposed 

method 
Kyoto 99.42  99.95  89.86  

 

We compare the proposed method [5-7], as shown in Tables 

10 and 11 for multiclass and binary classification, respectively. 

From those tables, we find that binary classification is the best 

among other methods, with an accuracy of 99.42%, sensitivity 

of 99.95%, and specificity of 89.86%. However, its specificity 

400



is less than that of the study [6]. Imbalanced data likely cause 

in the Kyoto dataset that the number of attacks is more than 

the normal. In multiclass classification, the study [5] is the best 

with accuracy and sensitivity of 94.71% and 94.42% in the 

KDDCup99 dataset, where the proposed method has 93.55% 

and 90.63%, respectively. It is possible because the normal is 

more than the attacks, and the framework neural network is 

different from the other research. 

5. CONCLUSION

It is found that the proposed method can produce better 

results in the Kyoto dataset for binary classification. 

Meanwhile, the multiclass classification in KDDCup99 is 

considerable, less than that in the study [5]. This research also 

shows that the Naive Bayes is less suitable for multiclass 

classification than k-NN and Softmax. Adding layers to the 

Autoencoder does not significantly improve performance, as 

shown by their accuracy. Furthermore, using Autoencoder can 

reduce computation because the number of features decreases. 

Nevertheless, this study has not been implemented to specific 

datasets, which may have different characteristics. 

In future research, the performance may be improved by 

implementing other classifiers. Moreover, some feature 

selection algorithms can be combined to obtain the best 

features. To improve the analysis results, differences between 

compression sizes should be reduced, for example to 5%, so 

more detailed data can be obtained. Nevertheless, this 

reduction causes longer time because more data must be 

processed. More datasets should be taken to evaluate the 

methods, so that the analysis can be done deeper. 
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