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Internet of Things have been one of the most active research topics in recent years due to 

their wide range of applications. However, the objects or sensors have a very small and then 

very limited memory and low power computing resources and batteries. These 

characteristics specify IoT as a unique type of networks, moreover the data collected by the 

sensors are often affected by errors and outliers that are collected by the sensor nodes. These 

errors or outliers can be the result of an actual event or a sensor fault. This paper proposes 

a contextual outlier detection protocol specially designed for IoT networks named Outliers 

Detection based Multipath Routing protocol for Internet of Things (ODMR-IoT). The 

proposed ODMR-IoT protocol is designed around the concept of fog computing to 

minimize communication, energy consumption and computational complexities.  
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1. INTRODUCTION

Since their inception, IoTs have enjoyed enormous success 

due to their many advantages for the Internet network. This 

technology has become a key element of current network 

architectures. During its evolution, the wireless paradigm has 

seen the emergence of several architectures such as: WSN 

wireless sensor networks, cellular networks, wireless LANs, 

AD-Hoc networks. In recent years, a new architecture has 

appeared: IoT. This network is a core technology building 

block for the Internet of Things (IoT). 

However, due to their small size, sensors and objects are 

extremely constrained in terms of data processing, storage 

capacity and communication. In addition, the data captured by 

the sensors can be collected in error, this error being caused by 

a sensor fault or an event. The objective of this article is to 

study and propose distributed outlier detection algorithms to 

provide a solution to problems related to energy conservation 

for IoT. 

When studying the outlier detection problem, there are a lot 

of constraints that need to be taken into account. If the number 

of nodes increases, the problem of outlier’s detection becomes 

more complex. Outliers’ detection protocols) work well when 

the network does not include a large number of nodes but when 

the network becomes larger, these protocols no longer provide 

a proper functioning of the network.  

In order to increase the scalability of the network, 

hierarchical topologies have been introduced. These are based 

on the partitioning of the network into sub-assemblies, thus 

facilitating network management and ensuring better 

management of energy resources. So flat detection protocols 

do not support scaling so the solution is hierarchical routing 

and clustering. Hierarchical topologies were introduced by 

distributing nodes over several levels of responsibility and the 

task of routing is entrusted to certain nodes called Cluster 

Head (CH). In this article, we are interested in detection 

protocols based on clustering in the best consumption of 

energy. 

However, IoT outliers are usually attributed to the presence 

of the problem there. For example, in a WSN, if the data values 

deviate significantly from the normal pattern, this is inferred 

as the occurrence of the event in the monitored area. Another 

cause of outliers such as sensor faults that can also give 

outliers in the data detected [1]. In our work, we put both of 

these causes into the category of erroneous data. However, 

these outliers can because by faulty sensor. Thus, 

understanding of outlier and what context or the actual cause 

(event or faulty sensor) do the outlier data represent will help 

in taking the appropriate actions about the monitored area. 

In this article, we propose a new framework for the 

detection of outliers for IoT based on the rational use of energy, 

this framework for the detection and context identification of 

these outliers based on the analysis of the detected data. These 

characteristics are i) the detection of outliers and faults by 

analyzing the data acquired by the sensors and, ii) the 

identification of the context of the occurrence of outliers or 

faults while minimizing energy consumption.  

The key idea is to build clusters by analyzing the degree of 

Chauvochism by analyzing the spatial correlation of sensors 

between these data and to use this information to highlight 

possible system anomalies. This makes it possible to quickly 

identify the context of the outlier occurrence. This framework 

ensures the longest possible longevity of a network. This 

framework follows the "Time-Driven" model and uses 

distributed clustering (the formation of clusters and the 

election of cluster-heads are done at the node level). 

The remainder of this article is organized as follows: The 

next section reviews work related to identifying sensor data 

outliers in a WSN and IoT. Our framework is presented in 

section 3 and is experimentally evaluated in section 4. We 

conclude this article in section 5. 
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2. RELATED WORK 

 

Outliers identification for IoT context become a very 

important area started in the research community. The fault 

and outlier detection approaches are compared in Table 1. 

 

 

Table 1. The fault and outlier detection approaches comparison 

 

Works  Classification  
Context 

identification 

Outlearns 

degree 

Communication 

complexity 
Precision Computational cost  

[2] 
Statiscal 

techniques  
No  No  

No message 

exchange 
Pros: We can efficiently the 

identification of fault is efficient 

but we must create the model of 

probability distribution• 

Cons: this is not beneficial 

because often there is not 

previous sensor data distribution 

Cons: since there is a 

managing multivariate 

data produced there is 

sometimes a high level 

of computational cost.  

[3] 
Statiscal 

techniques  
No No 

No message 

exchange 

[4] 
Statiscal 

techniques  
No No 

No message 

exchange 

[5] 
Statiscal 

techniques  
No No 

No message 

exchange 

[6] 
Clustering 

based  
No No    

In the case of massive 

or large data, the 

complexity of the 

processing operations 

is great. 

[7] 
Clustering 

based  
No No  

High 

communication 

complexity 

In term of efficiency performs 

more excellently or effectively 

than the centralized or distributed 

approaches. 

A computational cost 

better than centralized 

or distributed 

approaches. 

[8] 
Clustering 

based  
No  No  

Reduces 

communication 

cost. 

 
Low computational 

complexity 

[9] 
Clustering 

based  
No No  

Reduces 

communication 

cost. 

  

[10] 
Clustering 

based  
No  No  

not considered in 

these approaches 

Compared to other approaches a 

low detection accuracy of 81% 

computational 

complexity is not 

considered in these 

approaches 

[11] 
Clustering 

based  
Yes  Yes  

Average 

communication 

complexity 

Ensuring nearly 100% accuracy High complexity 

[2] 
Clustering 

based  
No No 

High 

communication 

complexity 

High precision  

 
 

[12] 
Clustering 

based  
No No 

Excessive 

communication 

 

  

[13] 
Clustering 

based  
No No 

High  

communication 

complexity  

  

[14] 
Clustering 

based  
Yes  No 

High 

communication 

complexity  

  

[15] 
Clustering 

based  
Yes  No  

High 

communication 

complexity  

  

[16] 
Clustering 

based  
Yes  No  

High 

communication 

complexity  

  

[17] 
Clustering 

based  
Yes No 

High 

communication 

complexity  

  

[18] 
Classification 

based  
No  No   

These approaches are based on a 

vector representation. However, 

for data high dimensional, these 

methods which are vector based 

may detect the original structural 

information and the correlation 

relationship within them, next an 

erroneous detection of a few 

outliers and faults. 

 

[19] 
Classification 

based  
No  No    Low precision   
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[20] 
Classification 

based  
No  No   

Low computational 

complexity 

[21] 
Classification 

based  
No  No   

Amelioration in precision  

High computational 

complexity 

[22] 
Classification 

based  
No  No   

High computational 

complexity 

[23] 
Classification 

based  
No  No  

Excessive 

communication 

Using the k-nearest neighbor 

only for detecting outliers is 

sometime give high false 

negative measurement of 

detection. 

High computational 

complexity 

[24]    
Excessive 

communication 

Amelioration in of true positive 

rate and false positive rate. 

 Medium 

computational 

complexity 

 

 

3. PROPOSED OUTLIERS’ DETECTION BASED 

MULTIPATH ROUTING PROTOCOL FOR 

INTERNET OF THINGS (ODMR-IOT) 

 

Many outlier detection frameworks have been proposed 

specifically for IoT. By analyzing the advantages and 

disadvantages of different protocols, we have proposed an 

ODMR-IoT: Outliers Detection based Multipath Routing 

protocol for Internet Of Things (IoT) with the following 

objectives: reduction of the overall energy consumption of the 

network, balancing of energy between sensor nodes, decreased 

latency and improved reliability of outlier detection and the 

ability to detect outliers by analyzing data streams acquired by 

devices and identifying the context of the occurrence of the 

outlier(s). 

 

3.1 ODMR-IoT phases  

 

This section discusses the proposed ODMR-IoT and its 

modules in detail. The ODMR-IoT framework algorithm runs 

in "rounds" which represent pre-determined time intervals 

where each round consists of five phases these phases are: the 

neighbor discovery phase, the CHs (Cluster-Head) election 

phase, the cluster formation phase, the scheduling phase and 

the transmission phase (inter-cluster and intra-cluster).  

For the neighbor discovery phase, each node at the end of 

this phase knows its neighbors. The clustering phase begins 

with the selection of cluster heads and the formation of clusters. 

During this phase, each node either elects itself a cluster-head 

or joins a cluster. Nodes with high value (Wch) can act as CH. 

The selection of CH is offered based on many factors. At the 

level of the ODMR-IoT, Figure 1. 

The following factors are considered: the sum of the degrees 

of chauvochism with all these neighbors of a node, the residual 

energy, condition of distance from the fog, the weights of the 

factors such as the sum of the degrees of chauvochism, the 

residual energy, condition of distance from the forage 

determined in Eq. (2). To reduce collisions, each cluster-head 

generates a TDMA schedule. During the transmission phase, 

the data collected by the members of a cluster is sent to the 

neighbors to detect the context of outliers according to the 

TDMA schedule with multi-hop communication. The 

proposed mechanism is based on an initial set of data 

representing the first samples S to be detected by all the 

sensors (for example temperature or humidity). 

A node's predecessor merges the data and sends it to using 

a multi-hop architecture as well. The proposed phases of 

ODMR-IoT are follow:  

 
 

Figure 1. The proposed phases of ODMR-IoT 

 

3.1.1 Discovery of neighbors phase 

The neighbors discovery process is performed by a "Msg-

Neighbors" message. The latter makes it possible to build 

neighbors tables thanks to a periodic exchange of messages 

necessarily containing the identifier of the sending node and 

its position. Any node j having received this message 

calculates the degree of chauvochism with this node based on 

the intersection between the two radiuses of the two sensors 

using the following formula Eq. (1). 

 

lentille = 2 R2 arrccos (
h

R
) −  2 ∗ h √R2 − h2  (1) 

 

where: 

h is the distance between the two nodes divided by two. 

R is the range of sensing of nodes. 

If lentille is greater than zero, then node i is close to node 

j.so at the end each node saves the identifier and the 

coordinates of each of its neighbors and a lentille_sum which 

is the sum of the lentilles of all the Chauvochist neighbors with 

this node (Algorithm1). 

 
Algorithm 1: Discovery of neighbor’s phase 

Input Msg-Neighbors; 

Output Degi, lentille_sum, Tneigh 

For i=1 to N do 

Broadcast of a message to nodes in its range;  

Decrease energy; 

For j=1 to N do 

If ( j receive the message ) then 

Decrease energy; 

Calculate lentille; 

If (lentille> 0 )then 

Calculate lentille; 

Add i to TNeigh; 

Lentille_sum←Lentille_sum+lentille; 

End 
 

End 
 

End 
 

End 

End 
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3.1.2 Cluster-Head election phase 

We have proposed the equation to choose the CH Eq. (2):  

 

Wchi = α ∗Ei + β ∗(1/D) + δ ∗sum_lentille (2) 

 

where, Ei is the residual energy, D is the distance to the fog 

node, sum_lentille: the sum of the degrees of chauvochism 

between the node and its neighbors and α, β, δ: are positive 

values. 

To choose the CH each node i of the network uses Eq. (1) 

proposed to calculate the coefficient Wchi on which the 

election of the CH is based. A message is broadcast to these 

neighbors, this message includes its identifier and this 

coefficient. The receiving node compares its Wch value with 

all the neighboring nodes so it is self-elected as CH. 

The election of the CH consists in each node i of the weight 

of each node. Then he broadcasts a message to these neighbors, 

this message includes its identifier and its Wch value. In this 

case each node can determine the node having the highest 

value of Wch. It compares its value of Wch with that of 

neighboring nodes. If node i has found its value from Ech 

greater than the value of all neighboring nodes, it is self-

elected as a CH. Details are in Algorithm 2: CHs election. 

The main objective of our protocol is to minimize the 

energy consumption, and to improve the detection accuracy 

for this reason our approach is based on the residual energy 

distance between the node and the fog for the selection of CHs. 

And to increase the efficiency of the detection, another 

parameter is considered: the degree of chauvochism of the 

node which represents the nodes which are in spatial 

correlation with this node can then generate values almost 

equal to that generated by this node. Below is the associated 

pseudo-algorithm algorithm 2: 

 
Algorithm 2: CHs election 

Input Choice-CH, Ei, lentille_sum, Di,fog;  

Output Wi, Election of CH.  

Begin  

For i=1 to N do 

Caculate Wchi;  

Broadcast of a message to choice CH to each 

Neighbor;  

Decrease energy; 

If (Wchi>Wchj) 

then 

i←CH;  

Else  

j←CH;  

End If 
 

End For 

End 

 

3.1.3 Clusters formation phase  

Each CH broadcasts a message with its non-CH neighbors 

containing its energy and its degree of chovochism. Each non-

CH calculates a JC coefficient taking into consideration the 

energy of the CH and the sum of degree of shock "sum_lens" 

of CH, then it informs the CH of its decision. In the event of 

several membership proposals, this node must then determine 

which cluster it wants to belong to., it chooses the cluster-head 

with a maximum "JC" value. 

 

JCch = Wch/Di,fog (3) 
 

We have taken into consideration in this Eq. (3) the distance 

from the fog and the residual energy of this CH. 

This equation allows the node to choose the CH which has 

a higher residual energy and which is the least distant from the 

fog. 

 
Algorithm3: Clusters formation 

Input Ei lentille_sum, Di,fog, ; 

Output JChi, clusters formation.  

Begin  

For i=1 to N do 

If (i is a CH) then 

Broadcast of a message for cluster formation;  

Else  

i receive the message;  

add CH to the list of ch;  

calculate JC;  
sending Acceptation to CH having the maximal JC 

End If 
 

End For 

End 

 

3.1.4 Scheduling phase 

(1) Intra-cluster scheduling  

In this phase, each CH creates the TDMA table to allocate 

each member node a time slot for it to transmit its data. This 

schedule allows non-cluster leader nodes to go into sleep mode 

when they are not transmitting data to the cluster leader. 

Moreover, the use of TDMA approach in intra-cluster 

communications ensures that there are no data collisions in the 

cluster. 

In our proposal we used a multi-hop routing between the 

CH and its members. Since the use of a single hop 

communication decreases the energy of the nodes. Where the 

nodes furthest from the CH die faster compared to the nodes 

closest. To improve and regulate the energy dissipation of 

distant nodes, it is proposed that the nodes communicate with 

their neighbors and not directly with the CH. 

Before the creation of the TDMA table by the cluster-heads, 

each member node must determine its level in its cluster. 

Assigning a tier to each sensor node is done as follows: the CH 

has level 0 and the nodes having a collision with the CH are of 

level 1. Only the nodes which chauvinize with the CH can have 

this level. Then the nodes which have a clash with the level 1 

nodes are level 2 nodes. The process continues for each cluster 

until the last level. If a node receives multiple messages it 

selects the message with the lowest level. At the end of this 

step each node can know its level and its predecessor and its 

successor Figure 2.  

 

 
 

Figure 2. Intra-cluster scheduling 

 

(2) Inter-cluster scheduling  

To perform multi-hop routing between the CHs, it is 
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necessary to ensure that each CH has their level relative to the 

other CHs. a message transmitted with a distance equal to 7m. 

the CH which has a distance less than 7m from the fog has 

level 1, After having determined the level 1 the neighboring 

CH (which have a distance < 7m), each CH determines its 

level which is level 2. The process is continuing until the last 

CH of the zone. For data transmission between the CHs, each 

CH chooses the nearest neighbor CH among its upper-level 

neighbor CHs. 

 

3.1.5 Detection phase  

The idea of outlier detection mechanisms proposed to 

analyze over time the detect data, for the detection of 

unexpected behaviors of a sensor node. The proposed 

mechanism is based on an initial set of data representing the 

first samples S to be detected by all the sensors (for example 

temperature or humidity) these data represent an initial 

situation without fault. The set of data is partitioned into two 

subsets, the first set D contains the data acquired by the sensors 

assuming that there is no fault situation and the second R stores 

the remaining samples. The first set S is used for the initial 

state estimation mechanism and the second set D is used for 

the detection phase. After the formation of the clusters, each 

member of the cluster self-estimates its status information in 

its slot. Status information is used for the detection of outliers 

 

(1) State information estimation  

Each sensor node self-estimates for a time slot duration ẟt 

its state (the min and max values) as indicated in the algorithm. 

If Xi represents a data vector detected by a sensor node i at 

time ẟt. The state information (min and max values) of i is 

calculated using the boxplot (the mustache method) method 

Eq. (4) and Eq. (5): 

 

Min =Q1- 1.5*EIQ (4) 

 

Max = Q3+ 1.5*EIQ (5) 

 

where: 

Q1: First quartile (Q1 or 25th percentile): also known as 

the lower quartile qn(0.25), is the median of the lower half of 

the Xi. 

Q3: Third quartile (Q3 or 75th percentile): also known as 

the upper quartile qn(0.75), is the median of the upper half of 

the Xi.  

EIQ: Interquartile range (IQR): is the distance between 

the upper and lower quartiles  Eq. (6):  

 

EIQ = Q3 - Q1 (6) 

 

(2) Outliers detection and context identification  

These states information is stored in current memory of the 

node (Min, Max). All times a new state information (NewMin, 

NewMax) of sensor node i is estimated and compared with the 

initial state information estimation (Min, Max), A n Alarm-

Packet is sended to the predecessor node of sensornode i only 

if:  

| Min − NewMin| >= threshod  

or | Max − NewMax| >= threshod.  

Each node i performs the sent of a message " Alarm-Packet 

(IDi, (NewMin, NewMax))" containing its identifier and the 

new state estimation. Any node j having received the message 

“Alarm-Packet”, calculates its new state estimation. If there is 

the same deviation in the state estimation it decides that the 

outlier is caused by a vent event else it decided that the sensed 

data is erroneous. 

In the receiving of AlarmPacket: Algorithm 4 

 

Algorithm 4: AlarmPacket reception 

Input AlarmPacket, sensed data, Min, Max, NewMin, 

NewMax; 

Output outlier a context identification.  

Begin  

Fori=1 to N do 

If (i receive AlarmPacket) then 

Eres (j) ←Eres(j) -ERx;  

If (|Min − NewMin| >= threshod or | Max − NewMax| >= threshod) then 

Sensed data is erroneous 

End 
 

End 
 

End For 

End 

 

 

4. PERFORMANCE EVALUATION 

 

To prove the performance of our proposed approach for IoT 

networks we went through a very important phase: the 

simulation phase. We present in this a simulation of an IoT 

network under NS3, to assess the performance of the ODMR-

IoT protocol. This by comparing the results of our ODMR-IoT 

proposal with the two OPTICS protocols of [10, 25, 26], 

consists in transmitting all the detected data to the cluster 

leader for the identification of the aberrant context, and the 

UNICODE protocol of Bharti et al. [27] which consists in 

sharing the detected data between neighboring nodes for the 

identification of the aberrant context. 

 

4.1 Evaluation metrics 
 

The comparison of ODMR-IoT with UNICODE and 

OPTICS is made in terms of the following metrics:  

 

4.1.1 Energy consumption 

Calculate the energy consumed during the operation of the 

network to validate the adequacy of the ODMR-IoT. Energy 

consumption is calculated using the model proposed by Choi 

and Lee [28]. We have used the following equations to 

calculate the communication energy dissipations (Table 2): 

 

Table 2. The model used to calculate the energy consumption 
 

Communication Equation 

The energy consumed for the transmission of k-bits packets over the distance d ETx(K, d) = KEelc + KEampd (7) 

Energy expended to receive a packet of k-bits ERx(K) = KEelc (8) 

The residual energy of a node Ni, after transmission of a packet of k bits over distance d Eri= Einitial− (ETX(k, d) + ERX(K)) (9)  

The total initial energy of the network Etotal= NEinitial (10) 

The average energy of all live sensor nodes Eaverage = 
∑ 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑙𝑙𝑒 (𝑖) 𝑁

𝑛=1

𝑁
 (11) 
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4.1.2 Average latency 

The average latency is defined as the number of slots, the 

latency includes the time between the transmission by the 

source and the last reception of the broadcast message. So the 

average latency is the average of the communication latencies 

of each node with its CH. If a packet sent from node i to its 

CH x via the following path: 

 

i → n1 → n2 →... → nk → CHx 

 
ODMR-IoT INCODE OPTICTS 

dti = slot (n1) + Tp dti = slot (nk) + Tp dti = slot (nk) + Tp 

 

Note that if a node i does not send data it has no latency 

therefore dti equal to 0 slots. Therefore the average 

communication latency in a cluster of size m is given as 

follows: 

 

dt cluster =
∑ dtii∈ cluster 

(m − 1)
 (12) 

 

Or: 

i: represents the identifiers of the nodes. 

m: represents the size of the cluster. 

And the average latency per cluster in a hierarchical 

network is given in the formula: 

 

dt =
∑ dtiN

i=1

N
 (13) 

 

i: represents the identifiers of the nodes. 

N: represents the number of clusters in the network. 

 

4.2 Network deployment 

 

The simulation makes it possible to test, while minimizing 

the cost, the protocols proposed and to prevent the problems 

which could arise in the future to implement the technology 

that best meets the needs. to simulate our protocol we used the 

most widespread simulator in the field of networks which is 

NS3 (Network Simulator Version 3). 

To test our protocol, we simulated a network of 53 nodes 

deployed in the Intel Bar kley laboratory. The sensor nodes are 

in a 2D space the coordinates (x, y) are given. It is assumed 

that our network topology will be divided into seven clusters 

(1 to 7) using algorithm1. After the execution of the cluster 

formation mechanism the resulting clusters are represented as 

follows (Table 3): 

 

Table 3. Network deployment 
 

cluster node Predecessor Level 

cluster3 

15 16 3 

14 18 2 

16 17 2 

22 21 2 

17 19 1 

18 19 1 

20 19 1 

21 19 1 

19 0 0 

 

cluster node Predecessor Level 

cluster4 
24 25 4 

23 27 4 

25 26 3 

26 28 2 

27 28 2 

28 31 1 

29 31 1 

30 31 1 

32 31 1 

31 0 0 

 

cluster node Predecessor Level 

cluster5 

1 5 2 

33 4 1 

34 4 1 

35 4 1 

36 4 1 

39 0 0 

37 11 2 

 

cluster node Predecessor Level 

cluster6 

42 39 2 

39 40 1 

41 40 1 

43 40 1 

40 0 0 

 

cluster node Predecessor Level 

Cluster7 

50 49 4 

49 48 3 

51 48 3 

48 47 2 

44 45 1 

46 45 1 

47 45 1 

45 0 0 

 

4.3 Dataset description and outlier(s) injection 

 

An actual dataset from Intel [29] is used for our assessment. 

And to simplify, the experiments are based on temperature and 

leight values and we have not tested the other values. To model 

the scenario, the data set is modified by injecting outliers based 

on the scenario of Ref. [30].  

 

4.4 Parameters set up 

 

To evaluate the performance of our framework, we 

implemented the UNICODE framework and the OPTICS 

framework, under NS3. A comparison between the simulation 

results of the UNICODE, OPTICS and ODMR-IoT algorithms 

is performed. The UNICODE, OPTICS and ODMR-IoT 

algorithms is carried out. The simulation parameters are 

summarized in Table 4.  

 

Table 4. Parameters set up 

 
Fog emplacement (15,25) 

Number of nodes 54 

Network size 40.5 X 40.5 

Data packet size 2000 Bytes 

Control packet 

size 
512 Bytes 

Initial energy 4 Joules 

Ray of nodes 3.5 mètres 

Threshold ℰ 
can be set as per the application 

requirement. 

ẟt 13 minutes 

Simulation time 500 Seconds 
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4.4.1 The optimal values of α, β, δ 

To choose optimal values of α, β, δ for the CH election we 

have run several experiments with different values of α, β, δ 

the election equation will become as follows (Table 5):  

 

Table 5. The optimal values of α, β, δ 

 
3 11,9105 3,97027 1,11803 0.3 0.2 0.5 7,32521708 

4 15,7501 3,9539 5,59017 0.3 0.2 0.5 9,09699709 

5 10,6758 3,97028 9,17878 0.3 0.2 0.5 6,55077339 

6 13,9494 3,97028 8,01561 0.3 0.2 0.5 8,19073531 

22 4,25078 3,96974 18,7417 0.3 0.2 0.5 3,32698339 

2 4,85044 3,97027 4,5 0.3 0.2 0.5 3,66074544 

 

4.5 Evaluation metrics 

 

We used the quantitative F1 measurements to assess the 

detection accuracy of our protocol. The F1 score is given as 

follows: 

 

𝐹1 = 2 × 
recall × precision

precision + recall
 (14) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

TP

TP + FP
 (15) 

 

• TP for event detection accuracy outlier(s) event and 

also classified as an event. 

• FP for event detection accuracy outlier(s) erroneous 

data classified as an event. 

• FN for event detection accuracy outlier(s) event but 

classified as erroneous data; 

• TP for data detection accuracy the outlier(s) 

erroneous data and also classified as erroneous data. 

• FP for data detection accuracy outlier(s) event but 

classified as erroneous data. 

• FN for data detection accuracy outlier(s) erroneous 

data but classified as event. 

 

4.6 Accuracy evaluation 

 

4.6.1 Event detection accuracy 

Figure 3 shows the event detection accuracy performance of 

the ODMR-IoT for various window sizes (tw). As the tw 

increases, the value of precision decreases because the large 

value of recall because the greater number of FPs and large tw 

size decreases the number of FNs. 

 

 
 

Figure 3. Event detection accuracy 

 

4.6.2 Erroneous data detection accuracy 

Figure 4 shows the erroneous data detection accuracy. 

Similar to event detection accuracy, erroneous data detection 

accuracy also improves with the tw.  

The OPTICS protocol the nodes shares the sensed data with 

these neighboring nodes, it shares each data point with the 

others, it requires the sharing of each detected data with the 

other nodes, the INCODE protocol the nodes shares the sensed 

data with these neighboring nodes, it does not share each data 

point with the others, it requires the sharing of each detected 

data with these neighboring nodes. However, ODMR-IoT les 

noueds does not share every sensed data with these neighbors, 

it shares except in case of outlier detection. We therefore take 

into account several metrics to evaluate the performance of our 

contribution [31]. 

 

 
 

Figure 4. Erroneous data detection accuracy 

 

4.7 Effect on network parameters 

 

4.7.1 Energy consumption 

 

 
 

Figure 5. Energy consumption comparison 

 

Considering the energy limitations of the sensors, it is 

essential to reduce the energy consumed at all levels in order 

to allow a longer lifetime of the network. It can be seen in the 

figures that the average residual energy of the three studied 

protocols decreases with the increase in the simulation time. 

This is due to the number of messages passing through the 

network. The simulations carried out show that the average 

residual energy at the level of the ODMR-IoT protocol is 

greater than the average residual energy at the level of 

INCODE and OPTIC. This is due in particular to the 

difference in the operating mode of the three protocols and the 

number of messages transmitted in the temp. This proves the 

contribution of the technique adopted for the formation of the 

clusters used. So the ODMR-IoT protocol balances the energy 

load thanks to the good distribution of the cluster-heads and 

the load balancing between the clusters, which ensures the 

improvement of the amount of the residual energy and 

consequently a longevity of the network. And the second cause, 

unlike INCODE and ODMR-IoT the nodes do not share every 
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data point detected with neighboring nodes. However, 

ODMR-IoT does not require sharing the state estimate up to 

the cluster head, but it does require sharing it with its 

predecessor at the next level unlike INCODE where the nodes 

share the state estimate up to the cluster head. at the head of 

the cluster. (Figure 5). 

 

Average latency 

Figure 6 illustrates the packet latency over the number of 

nodes. Latency is the time between sending by the source and 

the last reception of the broadcast message. The simulation 

results show that the ODMR-IoT protocol offers better results 

in terms of latency reduction unlike the INCODE and OPTICS 

protocol. Indeed, OPTICAL involves the transmission of 

detected data to the cluster head. In OPTICS each sensor node 

shares each sensed data with its neighboring nodes. Then the 

number of messages exchanged and the network traffic in the 

network increase that results packet collision, then end-to-end 

delay increased. (Figure 7). 

 

 
 

Figure 6. Average latency by cluster 

 

 
 

Figure 7. Average latency in the network 

 

 

5. CONCLUSION 

 

This article has discussed the outlier detection problem and 

its context for WSNs. We have proposed a new detection 

protocol based on the real-time analysis of the data collected 

by the sensor nodes. The model includes an algorithm for 

forming clusters and an algorithm for identifying outliers and 

the context of these outliers. In future work, we will improve 

our protocol to better address the problem of data privacy by 

using fog computing devices. Manage the mobility of the base 

station. Manage the mobility of nodes in the area. Consider the 

case of several base stations. Extending our protocol to a 

homogeneous environment. Using a combination of other 

metrics for CH election. Manage member node failure by 

introducing a mechanism allowing member failure detection 

by their cluster-head. 
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