

Inference Control in Aggregation Query Processing Based on Supervised Learning Models

Grâce Yénin Edwige Johnson1,2*, Joel Adepo1,3, Beman Hamidja Kamagate1,2, Souleymane Oumtanaga4

1 Laboratoire de Recherche en Informatique et Télécommunication (LARIT), Institut National Polytechnique Félix Houphouët-

Boigny, BP V 79 Abidjan, Côte d’Ivoire
2 Laboratoire des Sciences, des Technologies de l’Information et de la Communication, Ecole Supérieure Africaine des TIC,

LASTIC-ESATIC, Ecole Supérieure Africaine des Technologies de l’Information et de la Télécommunication (ESATIC), 18

BP 1501 Abidjan, Côte d’Ivoire
3 Unité de Recherche et d'Expertise Numérique (UREN), Université Virtuelle de Côte d’Ivoire (UVCI), 28 BP 536 Abidjan,

Côte d’Ivoire
4 Institut National Polytechnique Félix Houphouët-Boigny, BP 1093 Yamoussoukro, Côte d’Ivoire

Corresponding Author Email: grace.johnson@inphb.ci

https://doi.org/10.18280/isi.270301

ABSTRACT

Received: 7 March 2022

Accepted: 19 April 2022

 Data warehouses are environments used for data analysis and efficient decision making

within companies. They are tools that allow the execution of complex and multidimensional

queries. One of the security vulnerabilities that can be used by malicious users is data

inference, which is the deduction of private information by devious means. In the present

work, we tried to show that the existence of functional dependencies in the data can help to

perform an inference attack by using supervised learning algorithms to infer private

information. These algorithms are Support Vector Machine (SVM), Random Forest (RF),

Bayesian Regularized Neural Network (BRNN) and K-Nearest Neighbors (K-NN). The

BRNN provided a better performance in our study. This paper implements an inference

attack using regression learning algorithms, studies different dependency situations in the

data, and uses the combination of COUNT, SUM, AVG and STDEV queries. The use of

several methods in this study allows the prevention of inferences when one of these methods

is used by a malicious user. We managed to achieve this attack by detecting 09.12%

inferences on all methods compared to BRNN whose realized inference rate is 03.94%.

Keywords:

data security, inference control, supervised

learning, aggregation queries, data

warehouses

1. INTRODUCTION

A data warehouse is a non-volatile, subject-oriented

statistical database. The data are historized and do not suffer

from updates [1]. Therefore, it is an environment that allows

large-scale data storage. Data warehouses are at the heart of

many decision-making systems. Given the amount of data

being analyzed, these environments are outsourced to the

cloud to take advantage of the almost unlimited storage space

and computing power to boost the speed of query execution.

These environments are favorable for data analysis and help

companies to manage their business better. They also offer an

environment for the execution of aggregated and

multidimensional queries. Data warehouses require access

control to protect the data from unauthorized access. However,

these access policies are insufficient for ensuring flawless

security. Indeed, the Online Analytical Processing (OLAP)

server does not guarantee data confidentiality in the presence

of data inference channels [2-4] realized by the combination

of queries. Note that data inference is the process of deducing

forbidden information by devious means.

Furthermore, with the evolution and popularization of

automated learning algorithms, which are statistical inference

methods, the primary use of learning algorithms can be

misused to infer sensitive information during an inference

attack [5, 6]. Supervised learning techniques attempt to discern

results and learn by trying to find patterns in a labeled data set.

The predictions made from these learning algorithms can

allow the inference of sensitive information when multiple

aggregative functions are combined. Specifically, how can a

malicious user, infer sensitive data from models such as a

Support Vector Machine (SVM) [7], Random Forest (RF) [8],

Bayesian Regularized Neural Network (BRNN) [9] and K-

Nearest Neighbors (K-NN) [10]? Interest in using these

algorithms lies in their different functioning. SVM is a

generalization of linear classifiers; RF is based on decision

trees; BRNN is an example of a neural network and K-NN is

based on the distance. Our study used algorithms from various

families. These algorithms have been recommended for robust

regressions [11-16].

There may also be dimensions that influence the measure

through statistical [17] or functional dependencies.

Knowledge of these dependencies can guide malicious users

during their attacks. In this study, we evaluated the impact of

dependencies in an inference attack, using a combination of

aggregative functions such as SUM, COUNT, AVG and

STDEV. These functions summarize a set of rows from a

clustering criterion by returning a statistical value. In this

study, we established a logical rule to prevent inference attacks

deployed on a data warehouse analysis server. This rule is

based on a set of learning algorithms, to prevent inference

attacks, when one of the methods is used by a malicious user.

All queries executed by the analysis server were subjected to

control to predict the realization of possible attacks. Thus, in

Ingénierie des Systèmes d’Information
Vol. 27, No. 3, June, 2022, pp. 357-368

Journal homepage: http://iieta.org/journals/isi

357

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270301&domain=pdf

the context of access restriction on queries to be executed in

the warehouse, our study has the following particularities:

(1) Highlighting an inference attack based on statistical

dependencies between public data allows us to deduce

sensitive data.

(2) Using these dependencies in the formulation of queries

composed of aggregative functions such as SUM,

COUNT, AVG, STDEV and a GROUP BY clause.

(3) Algorithms such as SVM, Random Forest, Generalized

Bayesian Neural Network, and k-nearest neighbors are

used to perform our attack.

(4) An inference control rule based on the algorithms is

proposed to control inference if one of these methods is

used.

As the paper goes on, Section 2 presents a review of the

work done in this field of study. Section 3 presents the

inference attack scenario that we studied, and Section 4

presents our new approach. Section 5 implements our

approach using the proposed example, shows the results

obtained and proposes rules for managing detected inferences.

Finally, Section 6 concludes our paper.

2. RELATED WORK

The problem of inference in data has attracted the attention

of several researchers for decades, who have proposed various

solutions to address this problem. Several studies have been

conducted on the detection of inference attack that do not

require automated learning algorithms [4, 17-24]. Each

approach addresses a specific need and concerns different

types of inference attacks. For example, the authors [20]

proposed addressing the problem of inference in a data

integration context. Indeed, dependencies in data lead to

security breaches when they are not integrated into the

specifications of local security policies. This approach consists

of using formal concept analysis by proposing algorithms

based on semantic constraints. Thus, we propose a global

security policy that ensures the security of data during

combinations of several queries which could lead to security

violations. Another example is presented in the reference [4]

which proposes limiting inferences in statistical databases. In

a context in which the user is only allowed to perform queries

on aggregated data, this study implements a solution to prevent

a combination of multiple queries from disclosing the sensitive

information of a single individual. The proposed approach is

based on a frequent pattern mining technique. Following

previous work, we present the state of the art related to the use

of supervised learning models for performing inference attacks.

An example of an inference attack using a deep neural

network was performed on data from a Chinese social network

where the confidential data was the gender of individuals [5].

Owing to the confidentiality of this data, it was masked. In

addition, there was no dependency on data. In this attack, the

goal is to infer the age of the users from their public data. The

neural network performed better than compared to the k

nearest neighbors and the decision tree.

The authors [25] presented an example of an inference

attack on secret cryptographic keys. By exploiting the

vulnerability of Link Signature-Based (LSB) secret key

extraction techniques, this study applies empirical Statistical

Inference Attacks (SIA) to LSB key extraction. In these

inference attacks, an attacker infers the signature of a target

link, and retrieves the secret key extracted from the signature,

by observing the surrounding links. Using several machine

learning algorithms, such as Support Vector Machine,

Artificial Neural Network, Multivariate Linear Regression and

ensemble methods, the attack was successfully performed

showing their effectiveness in finding keys of several orders

of magnitude. This study did not consider the correlations

between the links that may exist. However, the results revealed

some correlations indicating that they can be exploited to

improve certain attacks.

The authors [26] presented an inference attack on sensitive

databases encrypted by the Property-Revealing Encryption

(PRE) method and performed it using a multinomial inference

technique. It takes advantage of the existing correlations

between columns to improve the accuracy of predictions made

by machine learning methods to deduce the columns protected

by encryption. The proposed methodology was successfully

evaluated using the medical data. The results of this study

revealed that strong encryption with PRE is insufficient to

protect data from inference attacks. Moreover, the authors

advocate encrypting columns that can help infer sensitive data.

However, the robustness of some learning algorithms may

succeed in inferring sensitive data in some contexts. The

problem of inference in strongly encrypted databases remains

open.

The authors [27] presented a framework for sharing partial

genomic data (sensitive data) on public platforms. They

showed that the special features of genomic data and

background knowledge that can be obtained from the web, and

family relationships between individuals, can infer the hidden

parts of shared (and unshared) genomes. This work improves

on the existing work by proposing an inference-based attack

on genomic privacy. Based on the complex correlations in the

genome, information about the phenotype of the victims and

the use of an observable Markov model and a recombination

model between haplotypes, the authors propose an inference

algorithm capable of inferring genomic data with greater

efficiency.

The authors [6] presented a general framework called F-

PAD to estimate the risk of the disclosure of private attributes.

Indeed, in a context where users share some information on

social networks to gain benefits (personalized services), F-

PAD uses a set of learning methods (Generalized Bayesian

Model, Logistic Regression, Support Vector Machine, and

Random Forest) to reveal, with a high level, the disclosure risk

in terms of probability, of the attributes "current city",

"gender" and "age". This tool is intended for individual users

of social networks and provides them with countermeasures to

help reduce risk. The F-PAD can also be useful for regulatory

sections of governments and organizations to promulgate

privacy standards for social networks.

Section 2 demonstrates that it is possible to use supervised

learning algorithms to realize inference attacks. Indeed, for

each type of security present in the databases or data

warehouse, an attacker can use a Machine Learning method

depending on the context and the data to be manipulated, while

also considering the robustness of the learning model. The

presented works reveal that the dependencies in the data have

an impact on the realization of an inference attack. To the best

of our knowledge, existing learning-based methods using

dependencies do not consider the combination of aggregative

functions SUM, COUNT, AVG and STDEV in a query

composed of a GROUP BY clause.

The following Section presents an inference attack on

employee salary data considering the particularities mentioned

above.

358

3. INFERENCE ATTACK ON A DATA WAREHOUSE

In this section, we discuss the scenario of an inference attack

using supervised learning algorithms, in the context of

dependency in the data using a combination of several

aggregative functions. We consider the following scenario:

We assume a data warehouse aggregating the 2021 salary

data of employees in Allegheny County

(https://data.wprdc.org/dataset/allegheny-county-employee-salaries)

(employeSalary2021), located in Pennsylvania. Note that an

individual's salary is personal and private information.

Knowledge of salary can incite a malicious person to perform

social engineering which is a psychological fraud in the

context of information security. It consists of using knowledge

about an individual and abusing his trust, ignorance, or

credulity, to obtain a service in a fraudulent way.

3.1 Security constraints

The security constraints associated with accessing and using

the warehouse stipulate that the salary data is confidential, and

the other attributes are public. Moreover, a user can only

perform an aggregation query on the salary data if and only if

the resulting dataset has a cardinality greater than one. This

constraint is relative to the results of queries from a user of the

data warehouse. Indeed, an aggregation query composed of

aggregative functions returns statistics about a set of data or

records resulting from that query. According to the work of

Duncan and MUKHERJEE [28] and Basso et al. [29], the

motivation for inference control through query restriction is

that if a query produces a unique record, then that record can

be identified, and sensitive information can be obtained from

that record. Therefore, this constraint is necessary in this study.

3.2 Realization of the inference attack

A warehouse analyst, a malicious user, with restricted

access as defined in Section 3.1, wants to perform an inference

attack on warehouse data to infer the salaries of individuals for

social engineering purposes. Here, we assume that he has

knowledge of the public attributes of all employees.

Furthermore, is known that some public attributes influence

salaries. In our illustration, these public attributes are

department (employee's department) and jobTitle (the position

held by the employee). From the data warehouse, the

malicious user executes queries of type:

"SELECT SUM(AnnualSalary), COUNT(AnnualSalary),

AVG(AnnualSalary), STDEV(AnnualSalary) FROM

employeeSalary2021 GROUP BY department, jobTitle".

This query returns a matrix composed of the results of each

aggregative function in the column vector. The sum, number,

mean, and standard deviation of each class concerned by the

query are presented in a row vector. The subsets concerned by

these results have cardinalities different from one. From the

defined security constraints, all subsets with cardinalities

equal to 1 are excluded by the analysis server.

From these informations, the malicious user can use one or

more supervised learning algorithms to carry out his attack. To

do so, he needs to train a model based on the salary data. It is

assumed that, through fraudulent means, he obtains an old

human resources file containing the salaries of employees in

the same Allegheny County. In our study we used salary data

from the year 2018 (employeSalary2018)

(https://data.wprdc.org/dataset/allegheny-county-employee-salaries).

this old data, the attacker models a learning matrix consisting

of the following columns: Count, Sum, Avg, Stdev, SalaryMin,

SalaryMax and Salary, which is the column to be predicted.

Here, Count, Sum, Avg, Stdev are obtainedfrom the result of

the query:

"SELECT SUM(AnnualSalary), COUNT(AnnualSalary),

AVG(AnnualSalary), STDEV(AnnualSalary) FROM

employeeSalary2018 GROUP BY department, jobTitle".

SalaryMin is the difference between the mean and the

standard deviation and SalaryMax is the sum of the mean and

the standard deviation. In our example, the user can use

algorithms such as Gaussian Kernel SVM, Random Forest,

Generalized Bayesian Neural Network, and k-nearest

neighbors for their predictions. We use the repeated cross

validation technique for better prediction performance. We

justify this statement in section 5 (in 5.3 Training and testing

phase). Indeed, this method is derived from cross-validation.

It decomposes the data set into k folds so that each fold can be

used in the training and testing phase. The performances of this

method are presented in the work of Güney and Öztoprak [30].

After obtaining each model, an application was made with

employee data for the year 2021. The data used for the

prediction had the same characteristics as those of the trained

2018 data. That is, Count, Sum, Avg, Stdev, SalaryMin and

SalaryMax. Here, the AnnualSalary column is confidential and

unknown, and we wish to predict it. The inference attack was

successfully performed. We present the results in Section 5.

In the following, we present our inference control approach

in such a scenario.

4. PROPOSED APPROACH

This study addresses the problem of inference [24, 31] in

queries when analyzing stored data. More explicitly, we show

that in a scenario as we have described, it is possible to

perform inference by combining the aggregative functions

SUM, COUNT, AVG and STDEV. Next, we show the impact

of statistical dependencies on the realization of inference

attacks. Indeed, studies indicate that we can exploit these

dependencies in queries [17, 32, 33] for better data selection.

Furthermore, we show that a user can perform an inference

attack based on regression learning methods. Therefore, we

propose an inference detection approach based on regression

learning methods and dependencies in the data. Section 5

presents the results and implications of this approach.

4.1 Proposed solution architecture

We assume that the inference attack to be produced

considers some knowledge of the dependencies [17] between

the dimensions (also called attributes or features) of the data

warehouse. This knowledge leads the attacker to compose his

query with a GROUP BY clause grouping the dimensions on

which the measure depends. Each executed query is subjected

to predefined access control constraints. In the traditional

architecture of access control as shown in Figure 1, for an

executed query, the OLAP server checks the query compliance.

If the query is compliant then the result is returned.

After performing our inference attack, we showed that a

compliant query can be used by a malicious user according to

the experiments performed. Therefore, our control system is

located at the server level and intercepts any query result to

validate any query that cannot be used in an inference attack

based on SVM, RF, KNN or BRNN. Figure 2 shows the

architecture of the proposed monitoring system.

359

Figure 1. Traditional access control architecture

Figure 2. Proposed inference control architecture

The goal is to monitor query results and notify when these

methods could infer at least one piece of information

(confidential data) from these results. Our approach is based

on the proposed architecture and allows the prediction of data

inference if the results (yi= (y1,…, ym)) of the queries can be

used by the above methods to infer sensitive information.

4.2 Our inference control system

The inference control module we propose is built around

four main steps:

(1) Determine the dimensions that influence the

measure: To highlight these statistical dependencies,

we analyze the influence of the public dimensions on

the confidential measure, using a linear regression. To

realize this analysis, certain conditions must be

respected such as the independence of the observations

and the existence of a linear relation between the

variable to be explained and the explanatory variables.

Moreover, we must observe a normal conditional

distribution with a constant variance. In this study, we

highlight the probable dependencies that could exist

between the quantitative variable to be explained (the

measure) and the explanatory variables which can be of

qualitative type. With the R language, we have the

function lm which is used to define a regression model,

either simple or multiple. In the case of qualitative

explanatory variables, a transformation of these

variables into dummies is realized to obtain numerical

values and to proceed with the regression. In section 5,

precisely in point 5.2 (see Table 4 and Table 5), we just

present the Rsquared metric which indicates some

Functional
dependencies

Qi= (GB, E, F)

OLAP analysis server

yi= (y1,…, ym)

Return result after checking access control

Result of the query

yi= (y1,…, ym)

Predefined access rules:

1. Let be a user U. Let q be an aggregative query

of U with a GROUP BY on E. The result of this

query must not concern a single tuple of the

warehouse.

2. We admit results concerning data sets whose

cardinalities are different from 1

Qi : th query

GB: set of dimensions specified in the
GROUP BY section of the query

E: data warehouse

F: set of aggregate functions {f1,...,fm} (i.e.
sum, count, min, max)

yi: answer to the query

Inference control

system

Functional

dependencies

Qi= (GB, E, F)

OLAP analysis server

yi= (y1,…, ym)

Return result after

inference management

Result of the query after

checking access control

yi= (y1,…, ym)

Predefined access rules:

1. Let be a user U. Let q be an aggregative query of U with a

GROUP BY on E. The result of this query must not concern

a single tuple of the warehouse.

2. We admit results concerning data sets whose cardinalities

are different from 1

Functional

dependencies

Qi : th query

GB: set of dimensions specified in the GROUP BY

section of the query
E: data warehouse

F: set of aggregate functions {f1,...,fm} (i.e. sum,

count, min, max)

yi: answer to the query

360

dependence with the variable to be explained. In the

following, we designate the set of public dimensions

that influence the measure by GBD. Our approach is

suitable for controlling queries that have a GROUP BY

clause composed of dimensions that influence the

measure (GB). Note that if the dimensions specified by

the user in a query (i.e., GB the set of these dimensions)

all appertain to GBD, then we assume that there is an

inference attempt; then our approach is indicated for

controlling the query. The following steps to be

performed assume that the user-specified dimensions

influence the measurement.

(2) Formalize the following user query Q and run it on

the data warehouse: Select GB, Sum(measure),

Count(measure), Avg(measure), STDEV (measure)

GROUP BY GB; GB represents the set of dimensions

specified in the GROUP BY clause. The measure

represents the confidential numerical data. The result is

presented in the form y = (Sumi, Counti, Avgi, Stdevi),

with i = 1,2..., m. m represents the number of subsets

obtained and Sumi, Counti, Avgi and Stdevi represent

column vectors composed of m elements. We recover

the measure vectors of the subsets Si, Mi = (mi1, mi2, mij);

(3) Search for old salary data on the same employees

and run the query from previous step. Train each

selected learning method on the data. Next, organize

the MOld matrix (presented by Eq. (1)) to be learned

with the following features in column: Sum (y1i), Count

(y2i), Avg (y3i), Stdev (y4i), SalaryMin (Avg-Stdev: y5i),

SalaryMax (Avg+Stdev: y6i) and AnnualSalary (the

column to be predicted: xip). NB: the data that make up

the MOld matrix, are old data (in our study, they are from

2018).

11 21 1 11

11 21 1 1

1 2 1

1 2

=

m

m j

Old

i i mi i

i i mi ip

y y y x

y y y x

M

y y y x

y y y x

 (1)

(4) Represent the MNew matrix from the 2021 current

salaries data warehouse: Use each prediction model

obtained in the previous step on MNew to predict the

current salaries from the warehouse. Next, organize the

MNew matrix to be learned using the following features

in the column: Sum (y1i), Count (y2i), Avg (y3i), Stdev

(y4i), SalaryMin (Avg-Stdev: y5i), SalaryMax

(Avg+Stdev: y6i). This matrix presented by Eq. (2),

does not have an AnnualSalary column because this

data is sensitive and unknown to the attacker. It is this

data that we try to infer. NB: the data that make up the

MNew matrix relate to the real salaries of the secured

warehouse (in our study, they date from 2021).

11 21 1

12 22 2

1 2

...

...

...

...

m

m

New

i i mi

y y y

y y y
M

y y y

 =

 (2)

The goal of our approach is to show that it is possible to

predict certain warehouse measures from a combination of

SUM, COUNT, AVG, and STDEV queries based on the

previously stated assumptions and using a supervised

regression learning method as the inference method. The

measures are predicted by subset.

4.3 Our inference control model

This section presents our inference control model capable

of preventing a user from inferring an AnnualSalary using a

combination of COUNT, SUM, AVG, and STDEV queries

using a supervised learning method such as BRNN, RF, K-NN,

or SVM. Table 1 presents the annotations used in the proposed

approach.

Table 1. Predicted values by inference method

Variables used Expression

Predicted value �̂�𝑚𝑜𝑑 𝑒𝑙 = (�̂�1𝑚𝑜𝑑𝑒𝑙
, �̂�2𝑚𝑜𝑑𝑒𝑙

, ⋯ , �̂�𝑚𝑚𝑜𝑑𝑒𝑙
)

∆ predicted
𝛥𝑖𝑚𝑜𝑑𝑒𝑙

= (𝛥𝑖1𝑚𝑜𝑑𝑒𝑙
, 𝛥𝑖2𝑚𝑜𝑑𝑒𝑙

, ⋯ , 𝛥𝑖𝑛𝑚𝑜𝑑𝑒𝑙
)

Threshold

Predicted

𝑆𝑑𝑚𝑜𝑑 𝑒𝑙

= (𝑆𝑑1𝑚𝑜𝑑𝑒𝑙
, 𝑆𝑑2𝑚𝑜𝑑𝑒𝑙

,⋯ , 𝑆𝑑𝑚𝑚𝑜𝑑𝑒𝑙
)

Models used SVM, RF, BRNN, KNN

With m: the number of subsets; n: the number of elements

per subset and i = 1, 2, ..., m. In [24], the control rule used to

control partial-type inferences are follows:

Rule 1: We assume that we wish to infer the measure from

the arithmetic mean. For a given query, subdividing the data

into n subsets (Si), we compute for each Si (with i ϵ {1,…,m}),

the absolute value of the deviations of its elements from the

mean by Eq. (3):

ij ij ix x X = − (3)

Then, for each 𝑥𝑖𝑗
′ , we determine the contribution to the

mean by Eq. (4):

1
ij

ij ij

i

x
x f

X
 = − (4)

If one of these contributions is lower than a threshold [24],

presented by the Eq. (5):

1 i

i

i i

sd
m X

= (5)

Next, we say that there has been an inference. Based on

previous works, we define a new learning-based inference

control rule against inferences based on SVM, RF, BRNN and

KNN methods.

Rule 2: From rule 1, considering each model, we compute

for each predicted value obtained, the contribution ∆ij by Eq.

(6) and the corresponding threshold Sdi in Eq. (7):

mod

mod

1
ˆel

el

ij

ij ij

i

x
f

y
 = − (6)

361

mod

mod

1

ˆel

el

i

i

i i

Sd
m y

= (7)

Then, considering all the inferences made by the model, and

to propose a control based on all the methods used, we propose

a logical rule presented by the following expression:

=

SVM SVM

RF RF

BRNN BRNN

KNN KNN

ij i

ij i

ij i

ij i

Sd

OR

Sd

OR TRUE

Sd

OR

Sd

 (8)

For a given query, if this predicate is verified then an

inference attack can be performed.

4.4 Proposed algorithms

We describe the functioning of our system with the help of

flowcharts to better understand the different steps described

above. In a native manner, all database management systems

or data warehouses record all the activities of a user in a single

log file. For the sake of organization, although a log file

already exists, we propose recording the history of all queries

that produce inferences in a specific log file that is different

from the basic log file. This has the advantage of facilitating

the exploitation of the history of queries processed by our

system, by reducing the search time in the log file. In addition,

we propose two flowcharts that differ in the level of control

performed. Figure 3 shows the scenario using control based on

rule 2 presented above. If at least one of the above inference

methods is used, then this rule is used. For a given query, all

controls of this rule are checked. Figure 4 presents a scenario

based on the choice of a better control model. This choice aims

to reduce the checking time for a given query, by not checking

all models simultaneously. The results show that this scenario

is not optimal in terms of inference detection. However, it

reduces the computation time.

Note that each step in the different scenarios is a series of

instructions that may contain loops and control structures to

obtain viable computed data without error. For example, the

learning step consists of an iteration imposed by the cross-

validation method. This iteration aims at improving the quality

of the different predictions (see section 5). However, we have

added a control structure after the second step. This check

consists in testing the dependencies of the dimensions coming

from the user's query.

Figure 3. Flowchart of the control system operation considering all models for an optimal result

Begin

Determine the set of dimensions in dependence with the

measure: GBD

Use the previously obtained models in application on

MNew to predict current confidential salaries

 GB ⸦ GBD

YES

formalize the query Q using the GB set according to

the proposed model

Retrieve the results of the query

Learning of the MOld measures by the SVM, RF,

BRNN and KNN models

Formalize the Matrix to learn:

MOld and MNew

NO

End

Compute the contributions and the
threshold for each predicted value:

 et

Return the result

to the user

Manage detected

inferences

Write in the

inference log file

YES

NO

 Rule 2

362

Figure 4. Flowchart of the control system operation by selecting the best model to guarantee a better processing time of the

request

5. EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Data model

The data of this study are the salary data of the years 2018

and 2021 of the employees of the county of Allegheny

(https://data.wprdc.org/dataset/allegheny-county-employee-salaries).

The simulations were performed at the National center of

Computing of Ivory Coast (https://cncci.edu.ci/cncci/). This

choice was made because of the massive amount of data to be

processed and the computing power of this computer. Its

computing power is 322.56 TFlops (322.56 thousand billion

elementary calculations in one second); it has 7200 cores and

300 nodes; with 1.6 Po of data storage. The simulation tool

used was Rstudio. Table 2 shows the data structure of the year

2021. In our study, the confidential data is the gross annual

salary. The PayStatus column contains two values: Active and

Terminated. For our experiments, we consider that employees

are still active in the system. The number of non-active

employees was 457 and the number of active employees was

5453. The initial dataset of salaries for the year 2021 had 5910

observations. After preprocessing the data, the final dataset

consists of 5070 observations.

The second dataset of year 2018 salaries consists of 6073

data. Table 3 shows the data structure of this dataset. This

dataset does not have a Sex column. Therefore, we proceeded

to cross-reference the datasets employeSalary2021 and

employeSalary2018 to assign gender to employees in the

employeSalary2018 dataset. Finally, we obtained the 2018 and

2021 salaries of 2697 employees, which we used to simulate

the inference attack.

Table 2. Structure of 2021 salary data for Allegheny County

employees (employeSalary2021)

Column Type

FirstName text

LastName text

Department text

JobTitle text

ElectedOfficial text

DateStarted timestamp

Sex text

Ethnicity text

OrigStart timestamp

DateTerm timestamp

PayStatus text

AnnualSalary numeric

RegularPay numeric

OvertimePay numeric

BonusPay numeric

The final datasets selected were characterized by the

following nine columns: LastName, FirstName, JobTitle,

Department, DateStarted, Sex, Ethnicity, OrigStart and

AnnualSalary. The remaining columns cannot be used among

the cross-datasets because they characterize the employee at a

given date (either 2021 or 2018).

Begin

Determine the set of dimensions in dependence

with the measure: GB

Use the previously obtained models in application
on MNew to predict current confidential salaries

Formalize the query Q using the set GB

Retrieve the results of the query:

Learning of the MOld measures by the SVM, RF,

XGBT, BRNN and KNN models

Formalize the Matrix to learn:

MOld and MNew

 GB ⸦ GBD

YES

NO

End

Return the result to the

user Write in the inference

log file

Manage detected

inferences

NO

YES

Compute the contributions and the

threshold for each predicted value:

 et

Select the best model:

 et

363

Table 3. Structure of 2018 salary data for Allegheny County

employees (employeSalary2018)

Column Type

LastName text

FirstName text

JobTitle text

Department text

OriginalStartDate timestamp

DateStarted timestamp

DateTerm. text

Status text

AnnualSalary numeric

YTDGrossPaythru text

5.2 Analysis of the dependencies in the data

This section presents how the choice of dimensions in

functional dependencies with AnnualSalary was performed.

We recall that the purpose of this process is to show that such

a choice could favor query results leading to inferences.

Because the dimensions are specified in a GROUP BY clause,

the data are grouped into sets that have the same criteria. This

allows to have homogeneous groupings of salaries. Then,

given the dependencies, the salaries in the same subset are

relatively close. Similarly, a bad choice of dimensions would

present varied subsets of salaries.

Table 4 presents the influence of the variables in the dataset

on the "AnnualSalary" variable. We used the "lm" function of

the R language which is used for regression analysis or

analysis of variance. This analysis uses the Rsquared metric

(Pearson's linear coefficient of determination) to show the

importance of a variable in a regression model. This Table 4

shows the dependencies that exist between the public

dimensions and the measure, when we consider the datasets

employeSalary2018 and employeSalary2021. For each dataset,

we analyze the dependencies in the variables from the

regression models in Table 4 and their corresponding

Rsquared value. A definition of Rsquared is given by

Nagelkerke [34] who expresses it as the proportion of the

variance explained by the regression model thus allowing the

success of the prediction of the dependent variable from the

independent variables. Thus, each value of Rsquared in Table

4 presents the proportion of the variance explained by the

regression model according to the selected data set.

Table 4. Interaction of each variable in the dataset salaries

through regression analysis

Regression model

Multiple

Rsquared

(2018)

Multiple

Rsquared

(2021)

lm(AnnualSalary ~ JobTitle) 0.8599 0.9267

lm(AnnualSalary ~ Department) 0.2232 0.2755

lm(AnnualSalary ~ Sex) 0.008755 0.01074

lm(AnnualSalary ~ DateStart) 0.06486 0.03284

lm(AnnualSalary ~ Ethnicity) 0.01171 0.0113

lm(AnnualSalary ~ OrigineStart) 0.06332 0.03322

First, we analyzed the influence of each variable on

AnnualSalary. These results reveal that the variable JobTitle

has an influence of 85.99% on 2018 salaries and 92.67% on

2021 salaries. Next, the Department variable influences 2018

salaries at 22.32% and 2021 salaries at 27.55%. The other

variables influence the AnnualSalary very weakly.

When we consider the simultaneous interaction of the two

variables on salaries (Table 5), we find that all combinations

containing the JobTitle variable strongly influence

AnnualSalary. This is justified by the strong dependence

between AnnualSalary and JobTitle. In this study we restrict

ourselves to the interaction of two variables on AnnualSalary.

Table 5. Interaction of variables (combination of two) in the

annual salary dataset through regression analysis

Regression model

Multiple

Rsquared

(2018)

Multiple

Rsquared

(2021)

lm(Annualsalary ~ JobTitle +

Department)

0.864 0.9338

lm(Annualsalary ~ JobTitle + Sex) 0.8599 0.9267

lm(Annualsalary ~ JobTitle +

DateStart)

0.8876 0.936

lm(Annualsalary ~ JobTitle +

Ethnicity)

0.86 0.9268

lm(Annualsalary ~ JobTitle +

OrigineStart)

0.8877 0.9361

From this analysis of the dependencies between

AnnualSalary and the other variables, we have shown that

JobTitle strongly influences AnnualSalary compared to the

Department variable. The other variables had almost no

influence on AnnualSalary. To highlight the influence of the

dependencies, in a regression learning context, during an

inference attack, we classify these queries into three groups:

high risk (above 80%), medium risk (above 20% and below

80%) and low risk (below 20%). We justify this division of the

risks into three groups, according to the value of the Rsquared

corresponding to the selected model. The more this estimated

percentage value tends towards 100%, the higher the risk of

having a perfect fit of the regression model. Thus, the risk of

inferring information is high. Based on these hypotheses, we

conducted our experimentations. Consider the following

queries Q1 and Q2 whose respective dependencies are 86.4%

with the 2018 data and 93.38% with the 2021 data.

Q1 = "SELECT SUM(AnnualSalary),

COUNT(AnnualSalary), AVG(AnnualSalary),

STDEV(AnnualSalary) FROM employeeSalary2018 GROUP

BY department, jobTitle".

Q2 = "SELECT SUM(AnnualSalary),

COUNT(AnnualSalary), AVG(AnnualSalary),

STDEV(AnnualSalary) FROM employeSalaire2021 GROUP

BY department, jobTitle".

5.3 Training and testing phase

This section explains the experiments used to train the

different prediction models. All data were used for training

and testing using cross validation.

Cross-validation: Cross-validation is a technique used in

the implementation of learning models to evaluate any

machine learning algorithm. It is used in prediction

frameworks where one wishes to estimate the accuracy of the

performance of a predictive model. The goal of cross-

validation is to significantly reduce the overfitting problems.

It helps to generalize the model to an independent data set.

This technique decomposes the data into k folds: k-1 folds are

used for training and the last fold for testing. This process was

repeated to involve each fold in the training and testing phases.

In our study, we used a variation of this method which is

repeated cross-validation, and which offers better performance

364

[30] compared to cross-validation. It consists of repeating the

cross-validation process several times. The purpose of this

repetition was to optimize the prediction performance. The

authors [35-37] recommended a value of k in the range from 5

to 10. However, other values were used [30, 38]. This leads us,

for our study, to conduct several experiments to choose the

best hyperparameters (number of folds and number of

repetitions). We varied k from 5 to 30, by step of 5. Then for

each number of folds, we proceeded to evaluate several

numbers of repetitions r varying from 5 to 100, by step of 5.

The goal of this approach is to choose the best couple (k,r) of

hyperparameters having the best performance.

The results indicate that as the number of folds increases,

the computation time of each algorithm increases. For example,

Figure 5 shows the evolution of the CPU time required for

prediction using the BRNN. Similarly, increasing the number

of repetitions increases the execution time of the algorithms.

Thus, there is a trade-off between computation time and

accuracy to be achieved.

Figure 5. Impact of increasing the number of folds and the number of repetitions during the training by the " Bayesian

Regularized Neural Network " algorithm for the query Q1

Given this growth in execution time when the number of

folds increases, we opt for a maximum number of 10 folds as

recommended by previous work [35-37] with several

repetitions equal to 10. These results in terms of CPU

computing time, expressed in milliseconds, are obtained

thanks to the computing power made available to us by the

National Computing Center of Côte d'Ivoire.

Performance measure: the performance metric used in this

study was Rsquared. This metric is always positive and allows

us to measure the differences between the predicted and actual

values. Rsquared also known as the coefficient of

determination, is between 0 and 1. The more this coefficient

tends towards 1, the better it fits. This metric was used, when

comparing several prediction models, to choose the best

performing model. Eq. (9) allows to calculate this metric:

where �̂� is the predicted value; 𝑦𝑖 is the actual value; �̅� is the

average of the values to be predicted and n is the number of

observations.

()

()

2

1

2

1

ˆ
1

n

ii

n

ii

y y
Rsquared

y y

=

=

−
= −

−

 (9)

Table 6 presents the results of the cross-validation as

described above. The results for the Rsquared metric present

the best performance, in terms of predicting June 2018 salaries

using the algorithms. Overall, the BRNN predicts June 2018

salaries better than the others models. In addition, the choice

of 10 folds is justified by achieving better performance

compared to several 5 folds.

Table 6. Performance (Rsquared) of each prediction

regarding query Q1, with a repetition number of 10

 SVM RF BRNN KNN

5 folds 73.10 % 72.98 % 76.06 % 69.88 %

10 folds 73.25 % 73.21 % 76.11 % 70.06 %

5.4 Validation of the results

Figure 6. Inferences performed on 2021 salary data,

combining the aggregative functions AVG, SUM, COUNT

and STDEV and using several methods such as SVM, RF,

BRNN, KNN

The prediction models selected in Table 8 were used to

predict the 2021 salaries in the inference attack. We recall that

for our study, we assume that the June 2021 salaries are

365

unknown, and we wish to infer them from the results of the

queries combining the aggregative functions AVG, COUNT,

SUM and STDEV. Figure 6 shows the results of the inferences

made in the inference attack. We detect the inferences using

the different checking rules stated in section 4. This figure

shows that, the number of observations concerned by the

inference attack is 1853. While initially, the number of

observations for the 2021 salaries was 2697. This is explained

by the pre-processing that is performed after the execution of

the queries: it is the exclusion of subsets consisting of a single

element or whose standard deviation is zero. The exclusion of

sets consisting of one element is justified by the access control

constraint specified at the data warehouse level. Similarly, we

exclude sets with zero standard deviations because in these

cases, the mean accurately infers the salaries of these subsets.

Our results show that it is possible to perform an inference

attack on year 2021 salary data, when the AnnualSalary

column is private and not accessible. This attack is performed

in a context where the salary data of the year 2018 is known;

where the attack is performed by combining the aggregative

functions AVG, SUM, COUNT and STDEV, where learning

algorithms are used as inference mechanisms. The results

show that as the prediction model performs better, the number

of inferences performed increases. For example, the BRNN

performed in terms of prediction (76.11%) and allows the most

inferences to be made (3.94%). Then comes the SVM with a

prediction performance of 73.25% and an inference rate of

3.51%. Then, the RF has a prediction performance of 73.21%

and an inference rate of 3.45%. Finally, the KNN which is the

least performing (70.06%) has an inference rate of 3.08%.

The advantage of our study is that it uses a basket of several

methods to ensure better control when one of its methods is

used by an attacker. This control based on our basket of

inference methods, is made possible by proposing a logical

rule considering the inferences made by method. Figure 7

shows the detection capacity based on the logical rule

proposed in our study. Our INF_GLOBAL approach, for the

query Q2, presents a rate of 9.12%. We note that the detection

rate presented by this figure is not defined as the sum of the

inferences of each method.

We note that the detection rate presented by this figure is

not defined as the sum of the inferences of each method.

Indeed, some algorithms may or may not produce the same

inferences. To illustrate our statements, we present the

following Table 7 summarizing all the results obtained in

terms of inferences realized.

Figure 7. Inference check performed by queries, based on

our method basket and the proposed logical rule

Table 7. Analysis of the prediction time (CPU) of each

algorithm

Algorithmes SVM RF BRNN KNN

INF_SVM 23 8 14 5

INF_RF 8 18 13 5

INF_BRNN 14 13 26 1

INF_KNN 5 5 1 36

INF_RF /

INF_BRNN

10 0 0 5

INF_RF / INF_KNN 1 0 5 0

INF_BRNN /

INF_KNN

0 5 0 0

INF_SVM /

INF_KNN

0 1 0 0

INF_BRNN /

INF_SVM

0 10 0 0

INF_SVM / INF_RF 0 0 10 1

ALL 4 4 4 4

REALIZED

INFERENCES Q2 /

2021 Salary (%)

3.51% 3.45% 3.94% 3.08%

This Table 7 presents the inferences made by models,

showing the particularity of each case. The SVM, RF, BRNN

and KNN algorithms have respectively detected 23, 18, 26 and

36 cases of inferences. In other terms, these 23 cases obtained

by the SVM, were not detected by the other models. Similarly,

the 18 inferences made by the RF, were not detected by the

other models. This analysis is the same for the 26 BRNN

inferences and the 36 KNN inferences. Also, this table shows

the inferences that could be performed simultaneously by two,

three or all four models in our study. For example, the BRNN

makes 14 inferences that the SVM also manages to make.

Similarly, the BRNN makes 10 inferences that the SVM and

the RF also manage to make. The colored values represent the

inferences made by combining all the models. They are

without duplicates. The number of these inferences realized (in

color) is 169, representing 9.12% which is the rate of

inferences detected by our INF_GLOBAL approach.

Table 8. Analysis of the prediction time (CPU) of each

algorithm

Algorithms CPU Time (milliseconds)

BRNN 9.63

KNN 11.27

RF 436.69

SVM 45.89

Total CPU time

(INF_GLOBAL)
503.48

Although these results are satisfactory, insofar as the

inferences are targeted according to the inference method used,

there is a limit. Indeed, the computation time may be high

because the proposed control is based on the combination of

the inferences made from each predicted model and for an

executed query. The following Table 8 presents the prediction

time (CPU) of each regression algorithm and of our

INF_GLOBAL approach. We estimate the computation time

of INF_GLOBAL as the sum of the CPU prediction times of

all the algorithms used in our model. For 1853 observations

used in this study, we have the corresponding computation

times recorded in Table 8.

Thus, in a real-world context of cloud data warehouse

operations, where the data is much larger and expressed in

terabytes, the computation times will be much higher than the

366

CPU times observed in this study. Since our approach has the

advantage of ensuring the inference control against several

methods simultaneously, we advise to take advantage of the

computational performances available from physical or cloud

computing centers to overcome this limitation. Another

compromise would be to select from our basket of methods

used for inference attacks, the method with the best

performance in terms of inference realization. Figure 8 shows

the selection of the BRNN method for the Q2 query.

Figure 8. Selection of the method with the best performance

in terms of inference realization

5.5 Management of detected inferences

The main objective of the inference control performed in

this study is to generate alerts for risky queries. To realize an

inference control support tool, we propose the following

additional actions to be implemented by the data warehouse

administrator:

(1) Categorize users by responsibility or by position held.

(2) Create two access permissions (PA):

• PA1: "Can infer". No limitation is made for these users.

This type of request discussed in this study is legitimate

for these cases.

• PA2: "cannot infer". Any query producing inferences

from the approach proposed in this study will be rejected

for these users.

(3) Select the categories of users whose inferences may be

legitimate. Then, give them the ability to execute queries

that can produce inferences by granting them the PA1

permission. For the other users, grant the PA2 permission.

(4) Restrict access to sets with cardinalities greater than one

and with standard deviations of zero, for users with PA2

permission

(5) Analyze user habits from the query history to detect

certain suspicious habits.

These proposed actions make it possible to manage and

delimit legitimate requests from those that are not.

6. CONCLUSION

This work is in the context of inference control in data

warehouses when combining COUNT, SUM, AVG and

STDEV aggregative features. We first presented a study

highlighting an inference attack using supervised learning

models such as Support Vector Machine (SVM), Random

Forest (RF), Regularized Bayesian Neural Network (BRNN)

and k-nearest neighbors (KNN). Then, we proposed a control

rule based on these algorithms. Our study reveals that

confidential information can be inferred from the combination

of COUNT, SUM, AVG, and STDEV aggregate functions

using the supervised regression learning algorithms SVM, RF,

BRNN, and KNN. We note that the dependencies in the data,

guarantee powerful prediction models and allow the

realization of inference attacks. The more powerful the model,

the more data it can infer. The proposed control logic rule

allows to detect inferences when one of its inference methods

is used. This work improves our previous study by exploring

another inference attack scenario and proposing an appropriate

control rule.

REFERENCES

[1] Inmon, W.H. (2005). Building the Data Warehouse. John

Wiley & Sons.

[2] Ma, J., Xing, M., Wang, X., Meng, J., Zhao, H. (2015).

Research on multilevel secure database inference control.

Journal of Applied Science and Engineering Innovation,

2(11): 451-454. Corpus ID: 20345545

[3] Woodruff, D., Staddon, J. (2004). Private inference

control. In Proceedings of the 11th ACM Conference on

Computer and Communications Security, pp. 188-197.

https://doi.org/10.1145/1030083.1030109

[4] Aravind, K.N., Anand, A., Sarath, G. (2017). Inference

detection in statistical database using frequent pattern. In

2017 International Conference on Communication and

Signal Processing (ICCSP), pp. 1953-1956.

https://doi.org/10.1109/ICCSP.2017.8286741

[5] Mei, B., Xiao, Y., Li, H., Cheng, X., Sun, Y. (2017).

Inference attacks based on neural networks in social

networks. In Proceedings of the Fifth ACM/IEEE

Workshop on Hot Topics in Web Systems and

Technologies, 1-6.

https://doi.org/10.1145/3132465.3132469

[6] Han, X., Huang, H., Wang, L. (2019). F-PAD: Private

attribute disclosure risk estimation in online social

networks. IEEE Transactions on Dependable and Secure

Computing, 16(6): 1054-1069.

https://doi.org/10.1109/TDSC.2019.2934096

[7] Samadianfard, S., Jarhan, S., Salwana, E., Mosavi, A.,

Shamshirband, S., Akib, S. (2019). Support vector

regression integrated with fruit fly optimization

algorithm for river flow forecasting in Lake Urmia Basin.

Water, 11(9): 1934. https://doi.org/10.3390/w11091934

[8] Jaiswal, J.K., Samikannu, R. (2017). Application of

random forest algorithm on feature subset selection and

classification and regression. In 2017 World Congress on

Computing and Communication Technologies

(WCCCT), pp. 65-68.

https://doi.org/10.1109/WCCCT.2016.25

[9] Balram, D., Lian, K.Y., Sebastian, N. (2019). Air quality

warning system based on a localized PM2. 5 soft sensor

using a novel approach of Bayesian regularized neural

network via forward feature selection. Ecotoxicology

and Environmental Safety, 182: 109386.

https://doi.org/10.1016/j.ecoenv.2019.109386

[10] Mittal, K., Aggarwal, G., Mahajan, P. (2019).

Performance study of K-nearest neighbor classifier and

K-means clustering for predicting the diagnostic

accuracy. International Journal of Information

Technology, 11(3): 535-540.

https://doi.org/10.1007/s41870-018-0233-x

[11] Pahwa, N., Khalfay, N., Soni, V., Vora, D. (2017). Stock

367

prediction using machine learning a review paper.

International Journal of Computer Applications, 163(5):

36-43. https://doi.org/10.5120/ijca2017913453

[12] Zhang, W., Wu, C., Li, Y., Wang, L., Samui, P. (2021).

Assessment of pile drivability using random forest

regression and multivariate adaptive regression splines.

Georisk: Assessment and Management of Risk for

Engineered Systems and Geohazards, 15(1): 27-40.

https://doi.org/10.1080/17499518.2019.1674340

[13] Peng, Z., Huang, Q., Han, Y. (2019). Model research on

forecast of second-hand house price in Chengdu based on

XGboost algorithm. In 2019 IEEE 11th International

Conference on Advanced Infocomm Technology

(ICAIT), pp.168-172.

https://doi.org/10.1109/ICAIT.2019.8935894

[14] Burden, F., Winkler, D. (2008). Bayesian regularization

of neural networks. Artificial Neural Networks, 23-42.

https://doi.org/10.1007/978-1-60327-101-1_3

[15] Botchkarev, A. (2018). Evaluating hospital case cost

prediction models using Azure Machine Learning Studio.

arXiv preprint arXiv:1804.01825.

https://doi.org/10.48550/arXiv.1804.01825

[16] Botchkarev, A. (2018). Evaluating performance of

regression machine learning models using multiple error

metrics in azure machine learning studio. SSRN.

http://dx.doi.org/10.2139/ssrn.3177507

[17] Guarnieri, M., Marinovic, S., Basin, D. (2017). Securing

databases from probabilistic inference. In 2017 IEEE

30th Computer Security Foundations Symposium (CSF),

pp. 343-359. https://doi.org/10.1109/CSF.2017.30

[18] Triki, S., Ben-Abdallah, H., Feki, J., Harbi, N. (2011).

Sécurisation des entrepôts de données contre les

inférences précises et partielles. Ingénierie des Systèmes

d Inf., 16(6): 117-138.

https://doi.org/10.3166/isi.16.6.117-138

[19] Zhao, H.Y., Meng, J., Zhang, X. (2014). Research on

Multilevel secure database inference channel. In Applied

Mechanics and Materials, 644-650: 3310-3313.

https://doi.org/10.4028/www.scientific.net/AMM.644-

650.3310

[20] Sellami, M., Hacid, M.S., Gammoudi, M.M. (2015).

Inference control in data integration systems. In OTM

Confederated International Conferences, On the Move to

Meaningful Internet Systems, pp. 285-302.

https://doi.org/10.1007/978-3-319-26148-5_17

[21] Kundalwal, M.K., Singh, A., Chatterjee, K. (2018). A

privacy framework in cloud computing for healthcare

data. In 2018 International Conference on Advances in

Computing, Communication Control and Networking

(ICACCCN), pp. 58-63.

https://doi.org/10.1109/ICACCCN.2018.8748480

[22] Kundalwal, M.K., Chatterjee, K., Singh, A. (2019). An

improved privacy preservation technique in health-cloud.

ICT Express, 5(3): 167-172.

https://doi.org/10.1016/j.icte.2018.10.002

[23] Jebali, A., Sassi, S., Jemai, A. (2019). Inference control

in distributed environment: A comparison study. In

International Conference on Risks and Security of

Internet and Systems, pp. 69-83.

https://doi.org/10.1007/978-3-030-41568-6_5

[24] Grace Yenin Edwige, J., Joel, A., Souleymane, O. (2021).

A mechanism for detecting partial inferences in data

warehouses. International Journal of Advanced Research,

9(3): 369-378. https://doi.org/10.21474/ijar01/12593

[25] Zhu, R., Shu, T., Fu, H. (2017). Empirical statistical

inference attack against PHY-layer key extraction in real

environments. In MILCOM 2017-2017 IEEE Military

Communications Conference (MILCOM), pp. 46-51.

https://doi.org/10.1109/MILCOM.2017.8170755

[26] Bindschaedler, V., Grubbs, P., Cash, D., Ristenpart, T.,

Shmatikov, V. (2017). The tao of inference in privacy-

protected databases. Cryptology ePrint Archive.

Proceedings of the VLDB Endowment, 11(11): 1715-

1728. https://doi.org/10.14778/3236187.3236217

[27] Deznabi, I., Mobayen, M., Jafari, N., Tastan, O., Ayday,

E. (2017). An inference attack on genomic data using

kinship, complex correlations, and phenotype

information. IEEE/ACM transactions on Computational

Biology and Bioinformatics, 15(4): 1333-1343.

https://doi.org/10.1109/TCBB.2017.2709740.

[28] Duncan, G.T., Mukherjee, S. (2000). Optimal disclosure

limitation strategy in statistical databases: Deterring

tracker attacks through additive noise. Journal of the

American Statistical Association, 95(451): 720-729.

https://doi.org/10.1080/01621459.2000.10474260

[29] Basso, T., Matsunaga, R., Moraes, R., Antunes, N.

(2016). Challenges on anonymity, privacy, and big data.

In 2016 Seventh Latin-American Symposium on

Dependable Computing (LADC), pp. 164-171.

https://doi.org/10.1109/LADC.2016.34

[30] Güney, H., Öztoprak, H. (2018). Microarray-based

cancer diagnosis: repeated cross-validation-based

ensemble feature selection. Electronics Letters, 54(5):

272-274. https://doi.org/10.1049/el.2017.4550

[31] Farkas, C., Jajodia, S. (2002). The inference problem: A

survey. ACM SIGKDD Explorations Newsletter, 4(2): 6-

11. https://doi.org/10.1145/772862.772864

[32] Dieng, C.T. (2011). Etude et implantation de l'extraction

de requêtes fréquentes dans les bases de données

multidimensionnelles (Doctoral dissertation. Université

de Cergy Pontoise; Université Gaston Berger

(SENEGAL)).

[33] Brodsky, A., Farkas, C., Wijesekera, D., Wang, X.S.

(2000). Constraints inference channels and secure

databases. In International Conference on Principles and

Practice of Constraint Programming, pp. 98-113.

https://doi.org/10.1007/3-540-45349-0_9

[34] Nagelkerke, N.J. (1991). A note on a general definition

of the coefficient of determination. Biometrika, 78(3):

691-692. https://doi.org/10.1093/biomet/78.3.691

[35] Kim, J.H. (2009). Estimating classification error rate:

Repeated cross-validation, repeated hold-out and

bootstrap. Computational Statistics & Data Analysis,

53(11): 3735-3745.

https://doi.org/10.1016/j.csda.2009.04.009

[36] Berrar, D. (2019). Cross-Validation. in Encyclopedia of

Bioinformatics and Computational, 542-545.

https://doi.org/10.1016/B978-0-12-809633-8.20349-X

[37] Marcot, B.G., Hanea, A.M. (2021). What is an optimal

value of k in k-fold cross-validation in discrete Bayesian

network analysis? Computational Statistics, 36(3): 2009-

2031. https://doi.org/10.1007/s00180-020-00999-9

[38] Mnich, K., Polewko-Klim, A., Golińska, A.K., Lesiński,

W., Rudnicki, W.R. (2020). Super Learning with

Repeated Cross Validation. In 2020 International

Conference on Data Mining Workshops (ICDMW), pp.

629-635.

https://doi.org/10.1109/ICDMW51313.2020.00089

368

