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ABSTRACT 
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 Data warehouses are environments used for data analysis and efficient decision making 

within companies. They are tools that allow the execution of complex and multidimensional 

queries. One of the security vulnerabilities that can be used by malicious users is data 

inference, which is the deduction of private information by devious means. In the present 

work, we tried to show that the existence of functional dependencies in the data can help to 

perform an inference attack by using supervised learning algorithms to infer private 

information. These algorithms are Support Vector Machine (SVM), Random Forest (RF), 

Bayesian Regularized Neural Network (BRNN) and K-Nearest Neighbors (K-NN). The 

BRNN provided a better performance in our study. This paper implements an inference 

attack using regression learning algorithms, studies different dependency situations in the 

data, and uses the combination of COUNT, SUM, AVG and STDEV queries. The use of 

several methods in this study allows the prevention of inferences when one of these methods 

is used by a malicious user. We managed to achieve this attack by detecting 09.12% 

inferences on all methods compared to BRNN whose realized inference rate is 03.94%. 
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1. INTRODUCTION 

 

A data warehouse is a non-volatile, subject-oriented 

statistical database. The data are historized and do not suffer 

from updates [1]. Therefore, it is an environment that allows 

large-scale data storage. Data warehouses are at the heart of 

many decision-making systems. Given the amount of data 

being analyzed, these environments are outsourced to the 

cloud to take advantage of the almost unlimited storage space 

and computing power to boost the speed of query execution. 

These environments are favorable for data analysis and help 

companies to manage their business better. They also offer an 

environment for the execution of aggregated and 

multidimensional queries. Data warehouses require access 

control to protect the data from unauthorized access. However, 

these access policies are insufficient for ensuring flawless 

security. Indeed, the Online Analytical Processing (OLAP) 

server does not guarantee data confidentiality in the presence 

of data inference channels [2-4] realized by the combination 

of queries. Note that data inference is the process of deducing 

forbidden information by devious means. 

Furthermore, with the evolution and popularization of 

automated learning algorithms, which are statistical inference 

methods, the primary use of learning algorithms can be 

misused to infer sensitive information during an inference 

attack [5, 6]. Supervised learning techniques attempt to discern 

results and learn by trying to find patterns in a labeled data set. 

The predictions made from these learning algorithms can 

allow the inference of sensitive information when multiple 

aggregative functions are combined. Specifically, how can a 

malicious user, infer sensitive data from models such as a 

Support Vector Machine (SVM) [7], Random Forest (RF) [8], 

Bayesian Regularized Neural Network (BRNN) [9] and K-

Nearest Neighbors (K-NN) [10]? Interest in using these 

algorithms lies in their different functioning. SVM is a 

generalization of linear classifiers; RF is based on decision 

trees; BRNN is an example of a neural network and K-NN is 

based on the distance. Our study used algorithms from various 

families. These algorithms have been recommended for robust 

regressions [11-16]. 

There may also be dimensions that influence the measure 

through statistical [17] or functional dependencies. 

Knowledge of these dependencies can guide malicious users 

during their attacks. In this study, we evaluated the impact of 

dependencies in an inference attack, using a combination of 

aggregative functions such as SUM, COUNT, AVG and 

STDEV. These functions summarize a set of rows from a 

clustering criterion by returning a statistical value. In this 

study, we established a logical rule to prevent inference attacks 

deployed on a data warehouse analysis server. This rule is 

based on a set of learning algorithms, to prevent inference 

attacks, when one of the methods is used by a malicious user. 

All queries executed by the analysis server were subjected to 

control to predict the realization of possible attacks. Thus, in 
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the context of access restriction on queries to be executed in 

the warehouse, our study has the following particularities: 

(1) Highlighting an inference attack based on statistical 

dependencies between public data allows us to deduce 

sensitive data. 

(2) Using these dependencies in the formulation of queries 

composed of aggregative functions such as SUM, 

COUNT, AVG, STDEV and a GROUP BY clause. 

(3) Algorithms such as SVM, Random Forest, Generalized 

Bayesian Neural Network, and k-nearest neighbors are 

used to perform our attack. 

(4) An inference control rule based on the algorithms is 

proposed to control inference if one of these methods is 

used. 

As the paper goes on, Section 2 presents a review of the 

work done in this field of study. Section 3 presents the 

inference attack scenario that we studied, and Section 4 

presents our new approach. Section 5 implements our 

approach using the proposed example, shows the results 

obtained and proposes rules for managing detected inferences. 

Finally, Section 6 concludes our paper. 
 

 

2. RELATED WORK 
 

The problem of inference in data has attracted the attention 

of several researchers for decades, who have proposed various 

solutions to address this problem. Several studies have been 

conducted on the detection of inference attack that do not 

require automated learning algorithms [4, 17-24]. Each 

approach addresses a specific need and concerns different 

types of inference attacks. For example, the authors [20] 

proposed addressing the problem of inference in a data 

integration context. Indeed, dependencies in data lead to 

security breaches when they are not integrated into the 

specifications of local security policies. This approach consists 

of using formal concept analysis by proposing algorithms 

based on semantic constraints. Thus, we propose a global 

security policy that ensures the security of data during 

combinations of several queries which could lead to security 

violations. Another example is presented in the reference [4] 

which proposes limiting inferences in statistical databases. In 

a context in which the user is only allowed to perform queries 

on aggregated data, this study implements a solution to prevent 

a combination of multiple queries from disclosing the sensitive 

information of a single individual. The proposed approach is 

based on a frequent pattern mining technique. Following 

previous work, we present the state of the art related to the use 

of supervised learning models for performing inference attacks. 

An example of an inference attack using a deep neural 

network was performed on data from a Chinese social network 

where the confidential data was the gender of individuals [5]. 

Owing to the confidentiality of this data, it was masked. In 

addition, there was no dependency on data. In this attack, the 

goal is to infer the age of the users from their public data. The 

neural network performed better than compared to the k 

nearest neighbors and the decision tree.  

The authors [25] presented an example of an inference 

attack on secret cryptographic keys. By exploiting the 

vulnerability of Link Signature-Based (LSB) secret key 

extraction techniques, this study applies empirical Statistical 

Inference Attacks (SIA) to LSB key extraction. In these 

inference attacks, an attacker infers the signature of a target 

link, and retrieves the secret key extracted from the signature, 

by observing the surrounding links. Using several machine 

learning algorithms, such as Support Vector Machine, 

Artificial Neural Network, Multivariate Linear Regression and 

ensemble methods, the attack was successfully performed 

showing their effectiveness in finding keys of several orders 

of magnitude. This study did not consider the correlations 

between the links that may exist. However, the results revealed 

some correlations indicating that they can be exploited to 

improve certain attacks.  

The authors [26] presented an inference attack on sensitive 

databases encrypted by the Property-Revealing Encryption 

(PRE) method and performed it using a multinomial inference 

technique. It takes advantage of the existing correlations 

between columns to improve the accuracy of predictions made 

by machine learning methods to deduce the columns protected 

by encryption. The proposed methodology was successfully 

evaluated using the medical data. The results of this study 

revealed that strong encryption with PRE is insufficient to 

protect data from inference attacks. Moreover, the authors 

advocate encrypting columns that can help infer sensitive data. 

However, the robustness of some learning algorithms may 

succeed in inferring sensitive data in some contexts. The 

problem of inference in strongly encrypted databases remains 

open.  

The authors [27] presented a framework for sharing partial 

genomic data (sensitive data) on public platforms. They 

showed that the special features of genomic data and 

background knowledge that can be obtained from the web, and 

family relationships between individuals, can infer the hidden 

parts of shared (and unshared) genomes. This work improves 

on the existing work by proposing an inference-based attack 

on genomic privacy. Based on the complex correlations in the 

genome, information about the phenotype of the victims and 

the use of an observable Markov model and a recombination 

model between haplotypes, the authors propose an inference 

algorithm capable of inferring genomic data with greater 

efficiency.  

The authors [6] presented a general framework called F-

PAD to estimate the risk of the disclosure of private attributes. 

Indeed, in a context where users share some information on 

social networks to gain benefits (personalized services), F-

PAD uses a set of learning methods (Generalized Bayesian 

Model, Logistic Regression, Support Vector Machine, and 

Random Forest) to reveal, with a high level, the disclosure risk 

in terms of probability, of the attributes "current city", 

"gender" and "age". This tool is intended for individual users 

of social networks and provides them with countermeasures to 

help reduce risk. The F-PAD can also be useful for regulatory 

sections of governments and organizations to promulgate 

privacy standards for social networks. 

Section 2 demonstrates that it is possible to use supervised 

learning algorithms to realize inference attacks. Indeed, for 

each type of security present in the databases or data 

warehouse, an attacker can use a Machine Learning method 

depending on the context and the data to be manipulated, while 

also considering the robustness of the learning model. The 

presented works reveal that the dependencies in the data have 

an impact on the realization of an inference attack. To the best 

of our knowledge, existing learning-based methods using 

dependencies do not consider the combination of aggregative 

functions SUM, COUNT, AVG and STDEV in a query 

composed of a GROUP BY clause.  

The following Section presents an inference attack on 

employee salary data considering the particularities mentioned 

above. 
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3. INFERENCE ATTACK ON A DATA WAREHOUSE 

 

In this section, we discuss the scenario of an inference attack 

using supervised learning algorithms, in the context of 

dependency in the data using a combination of several 

aggregative functions. We consider the following scenario: 

We assume a data warehouse aggregating the 2021 salary 

data of employees in Allegheny County 

(https://data.wprdc.org/dataset/allegheny-county-employee-salaries) 

(employeSalary2021), located in Pennsylvania. Note that an 

individual's salary is personal and private information. 

Knowledge of salary can incite a malicious person to perform 

social engineering which is a psychological fraud in the 

context of information security. It consists of using knowledge 

about an individual and abusing his trust, ignorance, or 

credulity, to obtain a service in a fraudulent way. 
 

3.1 Security constraints 
 

The security constraints associated with accessing and using 

the warehouse stipulate that the salary data is confidential, and 

the other attributes are public. Moreover, a user can only 

perform an aggregation query on the salary data if and only if 

the resulting dataset has a cardinality greater than one. This 

constraint is relative to the results of queries from a user of the 

data warehouse. Indeed, an aggregation query composed of 

aggregative functions returns statistics about a set of data or 

records resulting from that query. According to the work of 

Duncan and MUKHERJEE [28] and Basso et al. [29], the 

motivation for inference control through query restriction is 

that if a query produces a unique record, then that record can 

be identified, and sensitive information can be obtained from 

that record. Therefore, this constraint is necessary in this study. 
 

3.2 Realization of the inference attack 
 

A warehouse analyst, a malicious user, with restricted 

access as defined in Section 3.1, wants to perform an inference 

attack on warehouse data to infer the salaries of individuals for 

social engineering purposes. Here, we assume that he has 

knowledge of the public attributes of all employees. 

Furthermore, is known that some public attributes influence 

salaries. In our illustration, these public attributes are 

department (employee's department) and jobTitle (the position 

held by the employee). From the data warehouse, the 

malicious user executes queries of type: 

"SELECT SUM(AnnualSalary), COUNT(AnnualSalary), 

AVG(AnnualSalary), STDEV(AnnualSalary) FROM 

employeeSalary2021 GROUP BY department, jobTitle". 

This query returns a matrix composed of the results of each 

aggregative function in the column vector. The sum, number, 

mean, and standard deviation of each class concerned by the 

query are presented in a row vector. The subsets concerned by 

these results have cardinalities different from one. From the 

defined security constraints, all subsets with cardinalities 

equal to 1 are excluded by the analysis server. 

From these informations, the malicious user can use one or 

more supervised learning algorithms to carry out his attack. To 

do so, he needs to train a model based on the salary data. It is 

assumed that, through fraudulent means, he obtains an old 

human resources file containing the salaries of employees in 

the same Allegheny County. In our study we used salary data 

from the year 2018 (employeSalary2018) 

(https://data.wprdc.org/dataset/allegheny-county-employee-salaries). 

this old data, the attacker models a learning matrix consisting 

of the following columns: Count, Sum, Avg, Stdev, SalaryMin, 

SalaryMax and Salary, which is the column to be predicted. 

Here, Count, Sum, Avg, Stdev are obtainedfrom the result of 

the query: 

"SELECT SUM(AnnualSalary), COUNT(AnnualSalary), 

AVG(AnnualSalary), STDEV(AnnualSalary) FROM 

employeeSalary2018 GROUP BY department, jobTitle". 

SalaryMin is the difference between the mean and the 

standard deviation and SalaryMax is the sum of the mean and 

the standard deviation. In our example, the user can use 

algorithms such as Gaussian Kernel SVM, Random Forest, 

Generalized Bayesian Neural Network, and k-nearest 

neighbors for their predictions. We use the repeated cross 

validation technique for better prediction performance. We 

justify this statement in section 5 (in 5.3 Training and testing 

phase). Indeed, this method is derived from cross-validation. 

It decomposes the data set into k folds so that each fold can be 

used in the training and testing phase. The performances of this 

method are presented in the work of Güney and Öztoprak [30]. 

After obtaining each model, an application was made with 

employee data for the year 2021. The data used for the 

prediction had the same characteristics as those of the trained 

2018 data. That is, Count, Sum, Avg, Stdev, SalaryMin and 

SalaryMax. Here, the AnnualSalary column is confidential and 

unknown, and we wish to predict it. The inference attack was 

successfully performed. We present the results in Section 5.  

In the following, we present our inference control approach 

in such a scenario. 
 

 

4. PROPOSED APPROACH 
 

This study addresses the problem of inference [24, 31] in 

queries when analyzing stored data. More explicitly, we show 

that in a scenario as we have described, it is possible to 

perform inference by combining the aggregative functions 

SUM, COUNT, AVG and STDEV. Next, we show the impact 

of statistical dependencies on the realization of inference 

attacks. Indeed, studies indicate that we can exploit these 

dependencies in queries [17, 32, 33] for better data selection. 

Furthermore, we show that a user can perform an inference 

attack based on regression learning methods. Therefore, we 

propose an inference detection approach based on regression 

learning methods and dependencies in the data. Section 5 

presents the results and implications of this approach. 

 

4.1 Proposed solution architecture 

 

We assume that the inference attack to be produced 

considers some knowledge of the dependencies [17] between 

the dimensions (also called attributes or features) of the data 

warehouse. This knowledge leads the attacker to compose his 

query with a GROUP BY clause grouping the dimensions on 

which the measure depends. Each executed query is subjected 

to predefined access control constraints. In the traditional 

architecture of access control as shown in Figure 1, for an 

executed query, the OLAP server checks the query compliance. 

If the query is compliant then the result is returned. 

After performing our inference attack, we showed that a 

compliant query can be used by a malicious user according to 

the experiments performed. Therefore, our control system is 

located at the server level and intercepts any query result to 

validate any query that cannot be used in an inference attack 

based on SVM, RF, KNN or BRNN. Figure 2 shows the 

architecture of the proposed monitoring system. 
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Figure 1. Traditional access control architecture 

 

 
 

Figure 2. Proposed inference control architecture 

 

The goal is to monitor query results and notify when these 

methods could infer at least one piece of information 

(confidential data) from these results. Our approach is based 

on the proposed architecture and allows the prediction of data 

inference if the results (yi= (y1,…, ym)) of the queries can be 

used by the above methods to infer sensitive information. 

 

4.2 Our inference control system 

 

The inference control module we propose is built around 

four main steps: 

(1) Determine the dimensions that influence the 

measure: To highlight these statistical dependencies, 

we analyze the influence of the public dimensions on 

the confidential measure, using a linear regression. To 

realize this analysis, certain conditions must be 

respected such as the independence of the observations 

and the existence of a linear relation between the 

variable to be explained and the explanatory variables. 

Moreover, we must observe a normal conditional 

distribution with a constant variance. In this study, we 

highlight the probable dependencies that could exist 

between the quantitative variable to be explained (the 

measure) and the explanatory variables which can be of 

qualitative type. With the R language, we have the 

function lm which is used to define a regression model, 

either simple or multiple. In the case of qualitative 

explanatory variables, a transformation of these 

variables into dummies is realized to obtain numerical 

values and to proceed with the regression. In section 5, 

precisely in point 5.2 (see Table 4 and Table 5), we just 

present the Rsquared metric which indicates some 

 

Functional 
dependencies 

Qi= (GB, E, F) 

OLAP analysis server 

yi= (y1,…, ym) 

Return result after checking access control 

 
Result of the query 

yi= (y1,…, ym) 

Predefined access rules: 

1. Let be a user U. Let q be an aggregative query 

of U with a GROUP BY on E. The result of this 

query must not concern a single tuple of the 

warehouse.  

2. We admit results concerning data sets whose 

cardinalities are different from 1 

Qi : th query 

GB: set of dimensions specified in the 
GROUP BY section of the query 

E: data warehouse 

F: set of aggregate functions {f1,...,fm} (i.e. 
sum, count, min, max) 

yi: answer to the query 

 

 
Inference control 

system 

Functional 

dependencies 

Qi= (GB, E, F) 

OLAP analysis server 

yi= (y1,…, ym) 

Return result after 

inference management 

 

Result of the query after 

checking access control 

yi= (y1,…, ym) 

Predefined access rules: 

1. Let be a user U. Let q be an aggregative query of U with a 

GROUP BY on E. The result of this query must not concern 

a single tuple of the warehouse.  

2. We admit results concerning data sets whose cardinalities 

are different from 1 

Functional 

dependencies  

Qi : th query 

GB: set of dimensions specified in the GROUP BY 

section of the query 
E: data warehouse 

F: set of aggregate functions {f1,...,fm} (i.e. sum, 

count, min, max) 

yi: answer to the query 
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dependence with the variable to be explained. In the 

following, we designate the set of public dimensions 

that influence the measure by GBD. Our approach is 

suitable for controlling queries that have a GROUP BY 

clause composed of dimensions that influence the 

measure (GB). Note that if the dimensions specified by 

the user in a query (i.e., GB the set of these dimensions) 

all appertain to GBD, then we assume that there is an 

inference attempt; then our approach is indicated for 

controlling the query. The following steps to be 

performed assume that the user-specified dimensions 

influence the measurement.  

(2)  Formalize the following user query Q and run it on 

the data warehouse: Select GB, Sum(measure), 

Count(measure), Avg(measure), STDEV (measure) 

GROUP BY GB; GB represents the set of dimensions 

specified in the GROUP BY clause. The measure 

represents the confidential numerical data. The result is 

presented in the form y = (Sumi, Counti, Avgi, Stdevi), 

with i = 1,2..., m. m represents the number of subsets 

obtained and Sumi, Counti, Avgi and Stdevi represent 

column vectors composed of m elements. We recover 

the measure vectors of the subsets Si, Mi = (mi1, mi2, mij); 

(3) Search for old salary data on the same employees 

and run the query from previous step. Train each 

selected learning method on the data. Next, organize 

the MOld matrix (presented by Eq. (1)) to be learned 

with the following features in column: Sum (y1i), Count 

(y2i), Avg (y3i), Stdev (y4i), SalaryMin (Avg-Stdev: y5i), 

SalaryMax (Avg+Stdev: y6i) and AnnualSalary (the 

column to be predicted: xip). NB: the data that make up 

the MOld matrix, are old data (in our study, they are from 

2018). 
 

11 21 1 11

11 21 1 1

1 2 1

1 2

=

m

m j

Old

i i mi i

i i mi ip

y y y x

y y y x

M

y y y x

y y y x

 
 
 
 
 
 
 
 
 
 
 

 (1) 

 

(4) Represent the MNew matrix from the 2021 current 

salaries data warehouse: Use each prediction model 

obtained in the previous step on MNew to predict the 

current salaries from the warehouse. Next, organize the 

MNew matrix to be learned using the following features 

in the column: Sum (y1i), Count (y2i), Avg (y3i), Stdev 

(y4i), SalaryMin (Avg-Stdev: y5i), SalaryMax 

(Avg+Stdev: y6i). This matrix presented by Eq. (2), 

does not have an AnnualSalary column because this 

data is sensitive and unknown to the attacker. It is this 

data that we try to infer. NB: the data that make up the 

MNew matrix relate to the real salaries of the secured 

warehouse (in our study, they date from 2021). 
 

11 21 1

12 22 2

1 2

...

...

... ... ... ...

...

m

m

New

i i mi

y y y

y y y
M

y y y

 
 
 =
 
 
 

 (2) 

The goal of our approach is to show that it is possible to 

predict certain warehouse measures from a combination of 

SUM, COUNT, AVG, and STDEV queries based on the 

previously stated assumptions and using a supervised 

regression learning method as the inference method. The 

measures are predicted by subset. 

 

4.3 Our inference control model 

 

This section presents our inference control model capable 

of preventing a user from inferring an AnnualSalary using a 

combination of COUNT, SUM, AVG, and STDEV queries 

using a supervised learning method such as BRNN, RF, K-NN, 

or SVM. Table 1 presents the annotations used in the proposed 

approach. 

 

Table 1. Predicted values by inference method 

 
Variables used Expression 

Predicted value �̂�𝑚𝑜𝑑 𝑒𝑙 = (�̂�1𝑚𝑜𝑑𝑒𝑙
, �̂�2𝑚𝑜𝑑𝑒𝑙

, ⋯ , �̂�𝑚𝑚𝑜𝑑𝑒𝑙
) 

∆ predicted 
𝛥𝑖𝑚𝑜𝑑𝑒𝑙

= (𝛥𝑖1𝑚𝑜𝑑𝑒𝑙
, 𝛥𝑖2𝑚𝑜𝑑𝑒𝑙

, ⋯ , 𝛥𝑖𝑛𝑚𝑜𝑑𝑒𝑙
) 

Threshold 

Predicted 

𝑆𝑑𝑚𝑜𝑑 𝑒𝑙

= (𝑆𝑑1𝑚𝑜𝑑𝑒𝑙
, 𝑆𝑑2𝑚𝑜𝑑𝑒𝑙

,⋯ , 𝑆𝑑𝑚𝑚𝑜𝑑𝑒𝑙
) 

Models used SVM, RF, BRNN, KNN 

 

With m: the number of subsets; n: the number of elements 

per subset and i = 1, 2, ..., m. In [24], the control rule used to 

control partial-type inferences are follows:  

Rule 1: We assume that we wish to infer the measure from 

the arithmetic mean. For a given query, subdividing the data 

into n subsets (Si), we compute for each Si (with i ϵ {1,…,m}), 

the absolute value of the deviations of its elements from the 

mean by Eq. (3):  

 

ij ij ix x X = −  (3) 

 

Then, for each 𝑥𝑖𝑗
′ , we determine the contribution to the 

mean by Eq. (4): 

 

1
ij

ij ij

i

x
x f

X
 =  −  (4) 

 

If one of these contributions is lower than a threshold [24], 

presented by the Eq. (5): 

 

1 i

i

i i

sd
m X


=   (5) 

 

Next, we say that there has been an inference. Based on 

previous works, we define a new learning-based inference 

control rule against inferences based on SVM, RF, BRNN and 

KNN methods.  

Rule 2: From rule 1, considering each model, we compute 

for each predicted value obtained, the contribution ∆ij by Eq. 

(6) and the corresponding threshold Sdi in Eq. (7): 

 

mod

mod

1
ˆel

el

ij

ij ij

i

x
f

y
 =  −  (6) 
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mod

mod

1

ˆel

el

i

i

i i

Sd
m y


=   (7) 

 

Then, considering all the inferences made by the model, and 

to propose a control based on all the methods used, we propose 

a logical rule presented by the following expression: 

 

=

SVM SVM

RF RF

BRNN BRNN

KNN KNN

ij i

ij i

ij i

ij i

Sd

OR

Sd

OR TRUE

Sd

OR

Sd

 

 

 

 

 (8) 

 

For a given query, if this predicate is verified then an 

inference attack can be performed. 

 

4.4 Proposed algorithms 

 

We describe the functioning of our system with the help of 

flowcharts to better understand the different steps described 

above. In a native manner, all database management systems 

or data warehouses record all the activities of a user in a single 

log file. For the sake of organization, although a log file 

already exists, we propose recording the history of all queries 

that produce inferences in a specific log file that is different 

from the basic log file. This has the advantage of facilitating 

the exploitation of the history of queries processed by our 

system, by reducing the search time in the log file. In addition, 

we propose two flowcharts that differ in the level of control 

performed. Figure 3 shows the scenario using control based on 

rule 2 presented above. If at least one of the above inference 

methods is used, then this rule is used. For a given query, all 

controls of this rule are checked. Figure 4 presents a scenario 

based on the choice of a better control model. This choice aims 

to reduce the checking time for a given query, by not checking 

all models simultaneously. The results show that this scenario 

is not optimal in terms of inference detection. However, it 

reduces the computation time.  

Note that each step in the different scenarios is a series of 

instructions that may contain loops and control structures to 

obtain viable computed data without error. For example, the 

learning step consists of an iteration imposed by the cross-

validation method. This iteration aims at improving the quality 

of the different predictions (see section 5). However, we have 

added a control structure after the second step. This check 

consists in testing the dependencies of the dimensions coming 

from the user's query. 

 

 
 

Figure 3. Flowchart of the control system operation considering all models for an optimal result 

Begin 

Determine the set of dimensions in dependence with the 

measure: GBD  

 

Use the previously obtained models in application on 

MNew to predict current confidential salaries  

 GB ⸦ GBD 

YES 

formalize the query Q using the GB set according to 

the proposed model 

Retrieve the results of the query 
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Figure 4. Flowchart of the control system operation by selecting the best model to guarantee a better processing time of the 

request 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

5.1 Data model 

 

The data of this study are the salary data of the years 2018 

and 2021 of the employees of the county of Allegheny 

(https://data.wprdc.org/dataset/allegheny-county-employee-salaries). 

The simulations were performed at the National center of 

Computing of Ivory Coast (https://cncci.edu.ci/cncci/). This 

choice was made because of the massive amount of data to be 

processed and the computing power of this computer. Its 

computing power is 322.56 TFlops (322.56 thousand billion 

elementary calculations in one second); it has 7200 cores and 

300 nodes; with 1.6 Po of data storage. The simulation tool 

used was Rstudio. Table 2 shows the data structure of the year 

2021. In our study, the confidential data is the gross annual 

salary. The PayStatus column contains two values: Active and 

Terminated. For our experiments, we consider that employees 

are still active in the system. The number of non-active 

employees was 457 and the number of active employees was 

5453. The initial dataset of salaries for the year 2021 had 5910 

observations. After preprocessing the data, the final dataset 

consists of 5070 observations. 

The second dataset of year 2018 salaries consists of 6073 

data. Table 3 shows the data structure of this dataset. This 

dataset does not have a Sex column. Therefore, we proceeded 

to cross-reference the datasets employeSalary2021 and 

employeSalary2018 to assign gender to employees in the 

employeSalary2018 dataset. Finally, we obtained the 2018 and 

2021 salaries of 2697 employees, which we used to simulate 

the inference attack. 

 

Table 2. Structure of 2021 salary data for Allegheny County 

employees (employeSalary2021) 

 
Column Type 

FirstName text 

LastName text 

Department text 

JobTitle text 

ElectedOfficial text 

DateStarted timestamp 

Sex text 

Ethnicity text 

OrigStart timestamp 

DateTerm timestamp 

PayStatus text 

AnnualSalary numeric 

RegularPay numeric 

OvertimePay numeric 

BonusPay numeric 

 

The final datasets selected were characterized by the 

following nine columns: LastName, FirstName, JobTitle, 

Department, DateStarted, Sex, Ethnicity, OrigStart and 

AnnualSalary. The remaining columns cannot be used among 

the cross-datasets because they characterize the employee at a 

given date (either 2021 or 2018). 

 

Begin 

Determine the set of dimensions in dependence 

with the measure: GB 
 

Use the previously obtained models in application 
on MNew to predict current confidential salaries  

Formalize the query Q using the set GB 

Retrieve the results of the query:  

 

Learning of the MOld measures by the SVM, RF, 

XGBT, BRNN and KNN models  

 

Formalize the Matrix to learn:  

MOld and MNew 

 

 GB ⸦ GBD 

YES 

NO 

End 

Return the result to the 

user Write in the inference 

log file 

Manage detected 

inferences 

NO 

YES 

Compute the contributions and the 

threshold for each predicted value:  

 et  

Select the best model:  

 et  
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Table 3. Structure of 2018 salary data for Allegheny County 

employees (employeSalary2018) 

 
Column Type 

LastName text 

FirstName text 

JobTitle text 

Department text 

OriginalStartDate timestamp 

DateStarted timestamp 

DateTerm. text 

Status text 

AnnualSalary numeric 

YTDGrossPaythru  text 

 

5.2 Analysis of the dependencies in the data 

 

This section presents how the choice of dimensions in 

functional dependencies with AnnualSalary was performed. 

We recall that the purpose of this process is to show that such 

a choice could favor query results leading to inferences. 

Because the dimensions are specified in a GROUP BY clause, 

the data are grouped into sets that have the same criteria. This 

allows to have homogeneous groupings of salaries. Then, 

given the dependencies, the salaries in the same subset are 

relatively close. Similarly, a bad choice of dimensions would 

present varied subsets of salaries. 

Table 4 presents the influence of the variables in the dataset 

on the "AnnualSalary" variable. We used the "lm" function of 

the R language which is used for regression analysis or 

analysis of variance. This analysis uses the Rsquared metric 

(Pearson's linear coefficient of determination) to show the 

importance of a variable in a regression model. This Table 4 

shows the dependencies that exist between the public 

dimensions and the measure, when we consider the datasets 

employeSalary2018 and employeSalary2021. For each dataset, 

we analyze the dependencies in the variables from the 

regression models in Table 4 and their corresponding 

Rsquared value. A definition of Rsquared is given by 

Nagelkerke [34] who expresses it as the proportion of the 

variance explained by the regression model thus allowing the 

success of the prediction of the dependent variable from the 

independent variables. Thus, each value of Rsquared in Table 

4 presents the proportion of the variance explained by the 

regression model according to the selected data set. 

 

Table 4. Interaction of each variable in the dataset salaries 

through regression analysis 

 

Regression model 

Multiple 

Rsquared 

(2018) 

Multiple 

Rsquared 

(2021) 

lm( AnnualSalary ~ JobTitle) 0.8599 0.9267 

lm( AnnualSalary ~ Department) 0.2232 0.2755 

lm(AnnualSalary ~ Sex) 0.008755 0.01074 

lm(AnnualSalary ~ DateStart) 0.06486 0.03284 

lm(AnnualSalary ~ Ethnicity) 0.01171 0.0113 

lm( AnnualSalary ~ OrigineStart) 0.06332 0.03322 

 

First, we analyzed the influence of each variable on 

AnnualSalary. These results reveal that the variable JobTitle 

has an influence of 85.99% on 2018 salaries and 92.67% on 

2021 salaries. Next, the Department variable influences 2018 

salaries at 22.32% and 2021 salaries at 27.55%. The other 

variables influence the AnnualSalary very weakly. 

When we consider the simultaneous interaction of the two 

variables on salaries (Table 5), we find that all combinations 

containing the JobTitle variable strongly influence 

AnnualSalary. This is justified by the strong dependence 

between AnnualSalary and JobTitle. In this study we restrict 

ourselves to the interaction of two variables on AnnualSalary. 

 

Table 5. Interaction of variables (combination of two) in the 

annual salary dataset through regression analysis 

 

Regression model 

Multiple 

Rsquared 

(2018) 

Multiple 

Rsquared 

(2021) 

lm(Annualsalary ~ JobTitle + 

Department) 

0.864 0.9338 

lm(Annualsalary ~ JobTitle + Sex) 0.8599 0.9267 

lm(Annualsalary ~ JobTitle + 

DateStart) 

0.8876 0.936 

lm(Annualsalary ~ JobTitle + 

Ethnicity) 

0.86 0.9268 

lm(Annualsalary ~ JobTitle + 

OrigineStart) 

0.8877 0.9361 

 

From this analysis of the dependencies between 

AnnualSalary and the other variables, we have shown that 

JobTitle strongly influences AnnualSalary compared to the 

Department variable. The other variables had almost no 

influence on AnnualSalary. To highlight the influence of the 

dependencies, in a regression learning context, during an 

inference attack, we classify these queries into three groups: 

high risk (above 80%), medium risk (above 20% and below 

80%) and low risk (below 20%). We justify this division of the 

risks into three groups, according to the value of the Rsquared 

corresponding to the selected model. The more this estimated 

percentage value tends towards 100%, the higher the risk of 

having a perfect fit of the regression model. Thus, the risk of 

inferring information is high. Based on these hypotheses, we 

conducted our experimentations. Consider the following 

queries Q1 and Q2 whose respective dependencies are 86.4% 

with the 2018 data and 93.38% with the 2021 data. 

Q1 = "SELECT SUM(AnnualSalary), 

COUNT(AnnualSalary), AVG(AnnualSalary), 

STDEV(AnnualSalary) FROM employeeSalary2018 GROUP 

BY department, jobTitle". 

Q2 = "SELECT SUM(AnnualSalary), 

COUNT(AnnualSalary), AVG(AnnualSalary), 

STDEV(AnnualSalary) FROM employeSalaire2021 GROUP 

BY department, jobTitle". 

 

5.3 Training and testing phase  

 

This section explains the experiments used to train the 

different prediction models. All data were used for training 

and testing using cross validation. 

Cross-validation: Cross-validation is a technique used in 

the implementation of learning models to evaluate any 

machine learning algorithm. It is used in prediction 

frameworks where one wishes to estimate the accuracy of the 

performance of a predictive model. The goal of cross-

validation is to significantly reduce the overfitting problems. 

It helps to generalize the model to an independent data set. 

This technique decomposes the data into k folds: k-1 folds are 

used for training and the last fold for testing. This process was 

repeated to involve each fold in the training and testing phases. 

In our study, we used a variation of this method which is 

repeated cross-validation, and which offers better performance 

364



 

[30] compared to cross-validation. It consists of repeating the 

cross-validation process several times. The purpose of this 

repetition was to optimize the prediction performance. The 

authors [35-37] recommended a value of k in the range from 5 

to 10. However, other values were used [30, 38]. This leads us, 

for our study, to conduct several experiments to choose the 

best hyperparameters (number of folds and number of 

repetitions). We varied k from 5 to 30, by step of 5. Then for 

each number of folds, we proceeded to evaluate several 

numbers of repetitions r varying from 5 to 100, by step of 5. 

The goal of this approach is to choose the best couple (k,r) of 

hyperparameters having the best performance.   

The results indicate that as the number of folds increases, 

the computation time of each algorithm increases. For example, 

Figure 5 shows the evolution of the CPU time required for 

prediction using the BRNN. Similarly, increasing the number 

of repetitions increases the execution time of the algorithms. 

Thus, there is a trade-off between computation time and 

accuracy to be achieved. 

 

 
 

Figure 5. Impact of increasing the number of folds and the number of repetitions during the training by the " Bayesian 

Regularized Neural Network " algorithm for the query Q1 

 

Given this growth in execution time when the number of 

folds increases, we opt for a maximum number of 10 folds as 

recommended by previous work [35-37] with several 

repetitions equal to 10. These results in terms of CPU 

computing time, expressed in milliseconds, are obtained 

thanks to the computing power made available to us by the 

National Computing Center of Côte d'Ivoire. 

Performance measure: the performance metric used in this 

study was Rsquared. This metric is always positive and allows 

us to measure the differences between the predicted and actual 

values. Rsquared also known as the coefficient of 

determination, is between 0 and 1. The more this coefficient 

tends towards 1, the better it fits. This metric was used, when 

comparing several prediction models, to choose the best 

performing model. Eq. (9) allows to calculate this metric: 

where �̂� is the predicted value; 𝑦𝑖  is the actual value; �̅� is the 

average of the values to be predicted and n is the number of 

observations. 
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Table 6 presents the results of the cross-validation as 

described above. The results for the Rsquared metric present 

the best performance, in terms of predicting June 2018 salaries 

using the algorithms. Overall, the BRNN predicts June 2018 

salaries better than the others models. In addition, the choice 

of 10 folds is justified by achieving better performance 

compared to several 5 folds. 

 

Table 6. Performance (Rsquared) of each prediction 

regarding query Q1, with a repetition number of 10 

 

 SVM  RF  BRNN  KNN  

5 folds 73.10 % 72.98 %  76.06 %   69.88 %  

10 folds 73.25 %  73.21 %   76.11 %   70.06 %  

 

5.4 Validation of the results 

 

 
 

Figure 6. Inferences performed on 2021 salary data, 

combining the aggregative functions AVG, SUM, COUNT 

and STDEV and using several methods such as SVM, RF, 

BRNN, KNN 

 

The prediction models selected in Table 8 were used to 

predict the 2021 salaries in the inference attack. We recall that 

for our study, we assume that the June 2021 salaries are 
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unknown, and we wish to infer them from the results of the 

queries combining the aggregative functions AVG, COUNT, 

SUM and STDEV. Figure 6 shows the results of the inferences 

made in the inference attack. We detect the inferences using 

the different checking rules stated in section 4. This figure 

shows that, the number of observations concerned by the 

inference attack is 1853. While initially, the number of 

observations for the 2021 salaries was 2697. This is explained 

by the pre-processing that is performed after the execution of 

the queries: it is the exclusion of subsets consisting of a single 

element or whose standard deviation is zero. The exclusion of 

sets consisting of one element is justified by the access control 

constraint specified at the data warehouse level. Similarly, we 

exclude sets with zero standard deviations because in these 

cases, the mean accurately infers the salaries of these subsets. 

Our results show that it is possible to perform an inference 

attack on year 2021 salary data, when the AnnualSalary 

column is private and not accessible. This attack is performed 

in a context where the salary data of the year 2018 is known; 

where the attack is performed by combining the aggregative 

functions AVG, SUM, COUNT and STDEV, where learning 

algorithms are used as inference mechanisms. The results 

show that as the prediction model performs better, the number 

of inferences performed increases. For example, the BRNN 

performed in terms of prediction (76.11%) and allows the most 

inferences to be made (3.94%). Then comes the SVM with a 

prediction performance of 73.25% and an inference rate of 

3.51%. Then, the RF has a prediction performance of 73.21% 

and an inference rate of 3.45%. Finally, the KNN which is the 

least performing (70.06%) has an inference rate of 3.08%. 

The advantage of our study is that it uses a basket of several 

methods to ensure better control when one of its methods is 

used by an attacker. This control based on our basket of 

inference methods, is made possible by proposing a logical 

rule considering the inferences made by method. Figure 7 

shows the detection capacity based on the logical rule 

proposed in our study. Our INF_GLOBAL approach, for the 

query Q2, presents a rate of 9.12%. We note that the detection 

rate presented by this figure is not defined as the sum of the 

inferences of each method.  

We note that the detection rate presented by this figure is 

not defined as the sum of the inferences of each method. 

Indeed, some algorithms may or may not produce the same 

inferences. To illustrate our statements, we present the 

following Table 7 summarizing all the results obtained in 

terms of inferences realized. 

 

 
 

Figure 7. Inference check performed by queries, based on 

our method basket and the proposed logical rule 

Table 7. Analysis of the prediction time (CPU) of each 

algorithm 

 
Algorithmes SVM RF BRNN KNN 

INF_SVM 23 8 14 5 

INF_RF 8 18 13 5 

INF_BRNN 14 13 26 1 

INF_KNN 5 5 1 36 

INF_RF / 

INF_BRNN 

10 0 0 5 

INF_RF / INF_KNN 1 0 5 0 

INF_BRNN / 

INF_KNN 

0 5 0 0 

INF_SVM / 

INF_KNN 

0 1 0 0 

INF_BRNN / 

INF_SVM 

0 10 0 0 

INF_SVM / INF_RF 0 0 10 1 

ALL 4 4 4 4 

REALIZED 

INFERENCES Q2 / 

2021 Salary (%) 

3.51% 3.45% 3.94% 3.08% 

 

This Table 7 presents the inferences made by models, 

showing the particularity of each case. The SVM, RF, BRNN 

and KNN algorithms have respectively detected 23, 18, 26 and 

36 cases of inferences. In other terms, these 23 cases obtained 

by the SVM, were not detected by the other models. Similarly, 

the 18 inferences made by the RF, were not detected by the 

other models. This analysis is the same for the 26 BRNN 

inferences and the 36 KNN inferences. Also, this table shows 

the inferences that could be performed simultaneously by two, 

three or all four models in our study. For example, the BRNN 

makes 14 inferences that the SVM also manages to make. 

Similarly, the BRNN makes 10 inferences that the SVM and 

the RF also manage to make. The colored values represent the 

inferences made by combining all the models. They are 

without duplicates. The number of these inferences realized (in 

color) is 169, representing 9.12% which is the rate of 

inferences detected by our INF_GLOBAL approach.  

 

Table 8. Analysis of the prediction time (CPU) of each 

algorithm 

 
Algorithms CPU Time (milliseconds) 

BRNN 9.63 

KNN 11.27 

RF 436.69 

SVM 45.89 

Total CPU time 

(INF_GLOBAL) 
503.48 

 

Although these results are satisfactory, insofar as the 

inferences are targeted according to the inference method used, 

there is a limit. Indeed, the computation time may be high 

because the proposed control is based on the combination of 

the inferences made from each predicted model and for an 

executed query. The following Table 8 presents the prediction 

time (CPU) of each regression algorithm and of our 

INF_GLOBAL approach. We estimate the computation time 

of INF_GLOBAL as the sum of the CPU prediction times of 

all the algorithms used in our model. For 1853 observations 

used in this study, we have the corresponding computation 

times recorded in Table 8. 

Thus, in a real-world context of cloud data warehouse 

operations, where the data is much larger and expressed in 

terabytes, the computation times will be much higher than the 
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CPU times observed in this study. Since our approach has the 

advantage of ensuring the inference control against several 

methods simultaneously, we advise to take advantage of the 

computational performances available from physical or cloud 

computing centers to overcome this limitation. Another 

compromise would be to select from our basket of methods 

used for inference attacks, the method with the best 

performance in terms of inference realization. Figure 8 shows 

the selection of the BRNN method for the Q2 query. 

 

 
 

Figure 8. Selection of the method with the best performance 

in terms of inference realization 

 

5.5 Management of detected inferences 

 

The main objective of the inference control performed in 

this study is to generate alerts for risky queries. To realize an 

inference control support tool, we propose the following 

additional actions to be implemented by the data warehouse 

administrator: 

(1) Categorize users by responsibility or by position held.  

(2) Create two access permissions (PA): 

• PA1: "Can infer". No limitation is made for these users. 

This type of request discussed in this study is legitimate 

for these cases.  

• PA2: "cannot infer". Any query producing inferences 

from the approach proposed in this study will be rejected 

for these users. 

(3) Select the categories of users whose inferences may be 

legitimate. Then, give them the ability to execute queries 

that can produce inferences by granting them the PA1 

permission. For the other users, grant the PA2 permission. 

(4) Restrict access to sets with cardinalities greater than one 

and with standard deviations of zero, for users with PA2 

permission 

(5) Analyze user habits from the query history to detect 

certain suspicious habits. 

These proposed actions make it possible to manage and 

delimit legitimate requests from those that are not. 

 

 

6. CONCLUSION 

 

This work is in the context of inference control in data 

warehouses when combining COUNT, SUM, AVG and 

STDEV aggregative features. We first presented a study 

highlighting an inference attack using supervised learning 

models such as Support Vector Machine (SVM), Random 

Forest (RF), Regularized Bayesian Neural Network (BRNN) 

and k-nearest neighbors (KNN). Then, we proposed a control 

rule based on these algorithms. Our study reveals that 

confidential information can be inferred from the combination 

of COUNT, SUM, AVG, and STDEV aggregate functions 

using the supervised regression learning algorithms SVM, RF, 

BRNN, and KNN. We note that the dependencies in the data, 

guarantee powerful prediction models and allow the 

realization of inference attacks. The more powerful the model, 

the more data it can infer. The proposed control logic rule 

allows to detect inferences when one of its inference methods 

is used. This work improves our previous study by exploring 

another inference attack scenario and proposing an appropriate 

control rule. 
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