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The millimeter-wave frequencies planned for 6G systems present challenges for channel 

modeling. At these frequencies, surface roughness affects wave propagation and causes 

severe attenuation of millimeter-wave (mmWave) signals. In general, beamforming 

techniques compensate for this problem. Analog beamforming has some major advantages 

over its counterpart, digital beamforming, because it uses low-cost phase shifters for 

massive MIMO systems compared to digital beamforming that provides more accurate and 

faster results in determining user signals. However, digital beamforming suffers from high 

complexity and expensive design, making it unsuitable for mmWave systems. The 

techniques proposed so far for analog beamforming are often challenging in practice. In this 

work, we have proposed a deep learning model for analog beams training that helps predict 

the optimal beam vector. Our model uses an available dataset of 18 base stations, over 1 

million users, 60 GHz frequency. The training process first applies a stacked autoencoder 

to extract the features from the training datasets, and then uses a multilayer perceptron 

(MLP) to train and predict the optimal beams. Then, the results are evaluated by computing 

the mean squared error between the expected and predicted beams using the test set. The 

results show high efficiency compared to the benchmark method, which uses only the MLP 

for the training process. 
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1. INTRODUCTION

The standardization of fifth-generation services has created 

fierce competition to develop new-generation services on a 

global scale. The United States, Japan, South Korea and other 

developed countries, as well as some European countries, have 

begun to study and formulate the development plan for sixth-

generation technology [1]. 

6G technology will realize data-driven and machine 

learning-based systems that integrate artificial intelligence (AI) 

technologies. These new communication architectures are 

designed to realize comprehensive self-organization, self-

learning, self-healing, self-aggregation, self-protection, and 

self-optimization of the network. 

Artificial intelligence (AI) will also help 6G deliver highly 

personalized and connected intelligent services to individuals, 

businesses and other users to meet refined needs [2, 3].  

Although the specifications of 6G, such as frequency bands 

and data rate requirements, have not yet been finally defined, 

its applications have already been considered. A consensus has 

been reached for 6G - 6G will be an intelligent mobile 

communications network of much larger scale that 

encompasses 5G [4, 5]. While the quasi-two-dimensional 5G 

network covers only a limited portion of the globe, the 6G 

network will extend in three dimensions, connecting satellites, 

aircraft, ships, and land-based infrastructures and providing 

truly global coverage. The mmWave technologies will play an 

important role in enabling the various wireless connections 

with higher speed and reliability than 5G. In addition, the use 

of terahertz as part of the frequency bands for 6G 

communications has also been proposed [5]. However, the 

corresponding key devices of terahertz chips, front-end 

components, and systems are not yet as mature and reliable as 

those operating at mmWave frequencies for long-range, high-

fidelity communications. Millimeter-wave communications 

can fully exploit the abundant spectrum resources in the 

frequency band above 26 GHz to realize ultra-high-speed data 

transmissions and 0.1−10 THz band expected for the 6G era 

[6]. At the same time, the higher the working frequency band 

of millimeter-wave communications, the greater the scattering 

loss. Researchers often use large antenna arrays to form 

multiple-input multiple-output (MIMO) systems to generate 

highly directional beams and compensate for scattering loss. 

In addition, 6G is supported by an unexpected speed level 

that can reach 1 TB per second [7]. This will improve the 

performance of 5G applications and increase its ability to 

support new and innovative applications. To achieve this 

speed, 6G should include the use of very high frequencies 

(millimeter waves) of the radio spectrum. The bandwidth 

capacity of the 5G network is due to the use of high radio 

frequencies; the higher the radio spectrum, the more data can 

be transmitted. The sixth-generation (6G) network could 

eventually approach the upper limit of the radio spectrum, 

reaching very high frequencies in the 300 GHz or even 

terahertz bands [2, 8-11]. 

For these reasons, several methods and approaches for 

millimeter-wave beam selection have been proposed. Beam 

selection uses simulated transmit and receive beams to detect 

Ingénierie des Systèmes d’Information 
Vol. 27, No. 3, June, 2022, pp. 479-485 

Journal homepage: http://iieta.org/journals/isi 

479

https://crossmark.crossref.org/dialog/?doi=10.18280/isi.270315&domain=pdf


 

millimeter-wave MIMO channels and find the combination of 

receive and transmit beams with the largest received signal 

energy, i.e., the most suitable beam pair for channel 

transmission, avoiding the need for large-dimensional air 

interfaces data. 

Inspired by the great breakthroughs achieved by deep 

learning (DL) in computer vision and natural language 

processing, DL has also been used for wireless communication 

[12]. Compared to methods based on mathematical models, 

DL offers two key advantages. First, mathematical tools are 

generally based on idealized assumptions, such as the presence 

of pure additive white Gaussian noise, which may not be 

compatible with practical scenarios. In contrast, DL adaptively 

learns the characteristics of the channel to support reliable 

beam training [13]. Second, the parameters of the DL models 

capture the high-dimensional features of the propagation 

scenario. For these reasons, this paper investigates DL 

techniques for training beams since they are very well suited 

to deal with the nonlinear and nonmonotonic properties of 

channel power leaks in mmWave communications. The paper 

is organized as follows: Section 2 presents the previous works 

of mmWave beamforming, Section 3 describes the 

beamforming training problem, the dataset used and the deep 

learning algorithms studied, Section 4 explains our proposed 

approach, Section 5 evaluates and discusses the results, and 

finally Section 6 summarizes the goal of our work and 

perspectives. 

 

 

2. RELATED WORKS 

 

Millimeter waves are the critical components of wireless 

communication systems, posing challenges in training and 

selecting the best beam. Several previous works focused on 

selecting the optimal mm-wave beam using machine learning 

and deep learning techniques. Wang et al. proposed a machine 

learning approach combined with situation awareness for 

beam training. They considered observations of the vehicle 

environment, receiver locations, and surrounding vehicles [14]. 

The authors used multimodal neural networks to learn the 

beams using a dataset from the wireless communication 

environment. In addition, they evaluated their approach on a 

real vehicle dataset [15]. They used image classification and 

residual networks to predict beam and blockage directly from 

RVB cameras and sub-6 GHz channels [16]. Tarun et al. [17] 

proposed a deep neural network model for millimeter-wave 

beam prediction by mapping the complex patterns from 

received signal strengths to the receiver's optimal spatial beam. 

The authors focused on a small number of beams to detect the 

best beam faster. Alrabeiah et al. [18] realized an advanced 

dataset with different base stations, mobile users, and rich 

dynamics. They also proposed visual wireless mm-wave beam 

tracking with recurrent neural networks. Bian et al. [19] 

implemented a two-input neural network, which they named 

fusionNet, to predict the best mm-wave beam. They proposed 

to use channel sparsity and data augmentation to avoid the 

overfitting problem. Ma et al. used the low-frequency channel 

state information to extract out-of-band information and 

predict the mm-wave beam with deep learning [20]. Catak et 

al. [21] proposed an artificial neural network to predict mm-

wave beams using a realistic dataset and then applied an 

adversarial machine learning method to increase the prediction 

security. Alrabieh et al. [22] proposed learning mapping 

functions and predicting the optimal beam and blockages 

directly from the sub-6 GHz channel. Ying et al. [23] used 

object recognition to locate users based on the RGB images 

captured by the cameras. Then they used a multilayer 

perceptron to predict the angles between the users and the 

cameras. They then selected the optimal beam according to the 

extracted angle information and a predefined beam codebook. 

Aldalbahi et al. [24] investigated long-term memory for 

instantaneous prediction of alternative beam directions when 

the main beam is blocked. In the same context, this work 

focused on predicting the optimal beam using a simple and a 

real-time solution to increase the reliability and accuracy of 

mmWave systems for the sixth generation of mobile 

applications without consuming a high cost and time. In our 

strategy, the serving base station uses the beam sequence it has 

offered to mobile users in the past to predict the best beams for 

the following instants. This enables improved system 

reliability and reduced latency overhead. To this end, we 

develop a deep learning model based on multilayer 

perceptrons and a stacked autoencoder for feature extraction. 

Simulation results show that the proposed solution predicts the 

optimal beams with minimal error, improving the reliability of 

the mmWave large antenna system. 

 

 

3. PRELIMINARIES AND DATASET PRESENTATION 

 

3.1 mmWave beamforming prediction 

 

6G mobile networks are a key enabler for transmitting large 

amounts of data with low latency. However, with the 

deployment of more bandwidth, 6G networks also face the 

problem of high path loss in the MMwave band. To address 

this degradation, beamforming technology has been applied to 

improve antenna gain by establishing a highly directional 

transmission link between user equipment (UE) and mmWave 

node base stations (gNBs). 

Beamforming is a spatial filtering technique that uses an 

array of radiators to capture or radiate energy in a specific 

direction of an aperture. An improvement over 

omnidirectional transmit/receive is transmit/receive gain. In 

modern communication systems, smart antenna systems are 

used to combine array gain with diversity gain while 

suppressing interference and increasing the capacity of the 

communication link. This is achieved by using a phased array 

and a radiation setup consisting of several elements with a 

specific geometric configuration to control the electronic beam. 

Beamforming is an important requirement for 6G networks, 

which operate in the mmWave frequency band to improve 

network coverage. Depending on the unit that performs the 

signal processing, i.e. in the baseband or RF range, 

beamforming is classified into digital beamforming (DBF), 

analog beamforming (ABF), and hybrid beamforming (HBF) 

[25]. 

In this paper we study the ABF. In ABF, a single signal is 

delivered via analog phase shifters to each antenna element in 

the array, where the signal is amplified and radiated to the 

desired receiver. Amplitude/phase variation is applied to the 

analog signal at the end of the transmission, adding the signals 

from the different antennas before analog-to-digital 

conversion. Analog beamforming is the most economical way 

to build a beamforming network, but it can only manage and 

generate one signal beam. Figure 1 shows the architecture of 

the analog beamforming; Analog beamforming is realized by 

a phased array with only a radio frequency chain controlled by 
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a digital-to-analog converter in the transmitter or an analog-to-

digital converter in the receiver. A transmitter RF chain 

consists of a frequency up-converter, a power amplifier, etc.; 

a receiver RF chain consists of a low-noise amplifier, a 

frequency down-converter, etc. 

 

 
 

Figure 1. Receiver and transmitter analog beamforming 

architecture (RF: Radio frequency, DAC: digital-to-analog 

converters, ADC: analog-to-digital converter) 

 

Figure 1(a) illustrates an analog beamforming transmitter: 

the transmitted baseband signal is first modulated. This radio 

signal is divided with a power divider and passes through the 

beamformer, which can change the amplitude (ak) and phase 

shift (θ𝑘) of the signals in each of the paths leading to an 

antenna stack. The power divider depends on the number of 

antennas used in the antenna stack. 

Figure 1(b) illustrates an analog beamforming receiver. As 

the block diagram of the receiver shows, complex weighting 

is applied to the signal from each antenna in the array. The 

complex weighting includes both amplitude and phase shift 

(Formula 1 and 2). Then the signals are combined to produce 

an output signal, which provides the desired directional pattern 

of an antenna array [25]. 

 

𝑊𝑘 = 𝑎𝑘 ∗ 𝑒
𝑗𝑠𝑖𝑛(Ɵ) (1) 

 

𝑊𝑘 = 𝑎𝑘 ∗ cos(Ɵ𝑘) + 𝑗𝑎𝑘sin(Ɵ𝑘) (2) 

 

where, Wk is the complex weights of the K-th network antenna, 

ak is the relative amplitude of weights, and Ɵk is the phase shift. 

In mmWave communications, large-scale antenna arrays 

are used to generate highly directional beams to compensate 

for severe path loss. Beam prediction avoids estimating high-

dimensional channel matrices by selecting the best beam. 

Leveraging machine learning algorithms is a novel solution for 

mmWave training and scanning of a large number of narrow 

beams. Beams depend on environmental conditions such as 

user location and base station location, furniture, trees, 

buildings, etc. It is difficult to define these environmental 

conditions in closed-form equations. The solution is to use 

omnidirectional and quasi-omnidirectional beam patterns to 

predict the optimal RF beamforming vector. The advantage of 

using these beam patterns is that reflections and diffractions of 

the pilot signal can be taken into account. 

A deep learning solution consists of two phases: training 

and prediction. First, the deep learning model learns the beam 

based on the received omnidirectional pilots. Second, the 

model uses the trained data to predict the current state of the 

RF beamforming vector. The following sections present the 

principal aspects of our suggested beamforming prediction 

approach. 

 

3.2 Dataset presentation 

 

In this work, we used the DeepMIMO dataset generator for 

mmWave applications presented in ref. [26], applying the O1 

scenario. Figure 2 illustrates the bird's eye view and the top 

view of the O1 ray-tracing scenario, which represents an 

outdoor area with two streets and one intersection, with 18 BS 

and more than one million users and 60 GHz frequency. To 

generate this dataset, we have considered the following 

parameters: 

The active base stations: 3, 4,5, and 6. 

The active users: 1000-1300. 

The number of BS antenna: Mx=1, My=32, Mz=8. 

Antenna spacing: 0.5. 

Number of OFDM subcarriers: 1024. 

OFDM sampling factor: 1. 

OFDM limit: 64. 

Number of paths: 5. 
 

 

 
 

Figure 2. Bird’s eye view and top view of the scenario O1 

[26] 
 

3.3 Deep learning studied model 

 

Artificial Neural Networks (ANNs) are biologically 

inspired computer networks. Among the different types of 

artificial neural networks, this article focuses on Multilayer 

Perceptrons (MLPs) with back-propagation learning 

algorithms. MLPs are commonly used to solve various 

problems, are complementary to feedforward neural networks. 

It consists of three types of layers - the input layer, the output 

layer, and the hidden layer, as shown in Figure 3. The input 

layer receives the input features to be processed. Required 

tasks such as prediction and classification are performed by 

the output layer. An arbitrary number of hidden layers located 

between the input and output layers is the actual computational 

engine of MLP. Similar to feedforward networks, data in MLP 

flows from the input layer to the output layer in the forward 

direction. The neurons in an MLP are trained using a 

backpropagation learning algorithm. MLP is designed to 

approximate any continuous function and can solve linearly 

inseparable problems. The main use cases for MLP are pattern 

recognition, classification, prediction and approximation [27]. 

An autoencoder is a special type of ANNs that condenses 

inputs into a low-dimensional code and rebuilds the output 

from this representation. The code is the compression of the 

inputs. An autoencoder is composed of three main components: 
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Encoder, Code, and Decoder. The encoder compresses the 

input and generates a code. The decoder then uses only this 

code to reconstruct the output. 

Figure 4 depicts the architecture of the autoencoder. Firstly, 

the input goes through the encoder, which is a fully connected 

artificial neural network, to generate the code (bottleneck). 

The decoder has a similar ANN design but uses only the code 

to generate the output. The goal is to get the same output as 

the input. Note that the architecture of the decoder is the 

corresponding image of the encoder. This is not required but 

is usually the case. The only condition is that the dimensions 

of the input and the output must be the same. Anything in 

between can be played. 

 

 
 

Figure 3. Multilayer perceptrons architecture 

 

 
 

Figure 4. The autoencoder architecture 

 

 

4. OUR PROPOSED APPROACH 

 

The mmWave channels data is nonlinear and has a complex 

nature.  

 

 
 

Figure 5. Our proposed beam training using a stacked 

autoencoder and multilayer perceptrons 

For the prediction of mmWave channels, we propose to use 

a stacked autoencoder to extract the features from the dataset 

and an MLP model to predict the optimal beams. Figure 5 

depicts the architecture of our proposed model, which we 

construct by following a number of steps namely the data 

acquisition and preprocessing, feature extraction, and training 

process. 

 

4.1 Dataset acquisition and generation 

 

In this step, we use the dataset described in section 3.2. To 

create the framework of the DeepMIMO dataset shown in 

Figure 2, we defined the ray tracing scenario and parameters 

to generate the dataset adopted for our application. 

Specifically, the steps to create this dataset can be summarized 

as follows: 

 

• Download the DeepMIMO generation code file from the 

DeepMIMO dataset website [28] and unzip it.  

• Download the ray tracing output file for the selected 

scenario from the DeepMIMO dataset website [28]. For 

example, "O1" scenario and extend it.  

• Add the ray tracing scenario folder, e.g. the "O1" folder, 

to the 'DeepMIMO Dataset Generation/RayTracing 

Scenarios/' path. 

• Open the "DeepMIMODatasetGeneration.m" file and 

adjust the parameters of the DeepMIMO dataset. (The 

adopted parameters are described in Section 3.2).  

• In the MATLAB command window, call the function 

[DeepMIMOdataset]=DeepMIMODataseGenerator(). 

This function generates the DeepMIMO dataset based on 

the defined ray tracing scenario and the assumed 

parameters. 

 

To prepare the dataset for the following steps, we divided it 

into two subsets: the training set, which contains 80% of the 

global data, and the test set, which contains the remaining 20%. 

It is used to evaluate the prediction accuracy. 

 

4.2 Feature extraction 

 

This step consists of extracting the relevant features and 

characteristics from the data. The relevance of the selected 

information is estimated based on its ability to influence the 

prediction. Stacked autoencoders have gained immense 

popularity due to their amazing success in a variety of areas 

such as image classification [29] and speech processing [30]. 

They are automated feature extraction techniques that require 

little insight into the problem. 

Recently, several works [30, 31] have motivated the use of 

deep networks to effectively learn abstract features in a 

hierarchical manner. These deep architectures have been 

shown to provide a more robust and comprehensive 

representation [31] of the input data.  

In this work, we used a stacked autoencoder to extract the 

important information and reconstruct a simple input 

representation from the original dataset. The stacked encoder 

starts by training the original inputs, then we use the model 

from the beginning to the bottleneck (code part) and ignore its 

reconstruction part. This proportion of code gives a 

compressed representation of the inputs. 

Figure 6 illustrates the autoencoder architecture that we use 

for the feature extraction. It is composed by multiple fully 

connected neural layers separated by batch normalization 
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layers. The batch normalization stabilizes the learning process 

and greatly decreases the number of training epochs needed to 

train deep neural networks. 

 

 
 

Figure 6. The stacked architecture of the proposed 

autoencoder 

 

4.3 Training process 

 

After reconstructing the input data, we start the training 

process by applying an MLP model. MLP is often 

recommended for classification and regression problems. 

Unlike traditional artificial neural networks, MLP can have 

many layers of neurons and is capable of learning more 

complex patterns. It is very flexible and can be used in general 

to learn a mapping from inputs to outputs. This flexibility 

allows it to be applied to many types of data such as images, 

time-series data signals [32, 33], etc. To this end, in our work, 

we applied an MLP model that uses the uplink pilot received 

with Omni antennas at multiple base stations to predict the best 

beamforming vector at each of the coordinating base stations. 

MLP is characterised by a high number of hyperparameters. 

The choice of these values affects the behaviour of the 

algorithms in terms of error tolerance, variants, number of 

iterations, etc.  

Table 1 shows the optimal hyperparameter values that we 

adopted after tuning several combinations of our MLP model. 

We used five hidden MLP layers with a rectified linear unit 

activation function (reLu) and one output layer with a linear 

activation function. The reLu function is more powerful than 

other activation functions because it avoids the problem of the 

gradient vanishing, which allows the model to learn faster [34]. 

We also used the Adam optimizer because it can handle noisy 

problems and is suitable for most problems [35]. After training 

our model with these parameters, we obtain the beam 

predictions, which we will evaluate using the test set and the 

performance metric presented in the next section. 

Table 1. The hyperparameters variables used for the MLP 

model 

 
Hyperparameter Values 

MLP layers (number of units) + 

Activation function 

1 input layer 

A hidden layer of 200 

units + reLu 

A hidden layer of 300 

units + reLu 

A hidden layer of 300 

units + reLu 

A hidden layer of 300 

units + reLu 

A hidden layer of 200 

units + reLu 

1 output layer of 256 

unit + linear 

Batch size 128 

Epochs 20 

Optimizer Adam 

Loss function Mean squared error 

 

 

5. EXPERIMENTAL RESULTS 

 

It is important to get the most accurate answers. Claiming 

wrong results can lead to great losses. To this perspective, this 

section presents the results of our autoencoder MLP model. 

The results are evaluated using the mean squared error metric, 

which we present in the first subsection, and the results are 

discussed and compared in the second subsection. 

 

5.1 Performance metric 

 

To evaluate the performance of a model the deviation 

between the predicted values and actual observations is 

calculated using different statistical methods [36]. In our work, 

we use Mean Squared Error (MSE), a commonly used and 

very simple performance metric. MSE represents the squared 

difference between the actual value and the predicted value. It 

represents the squared distance between the predicted value 

and the actual value. This metric is used to avoid the 

cancellation of negative terms, which is the advantage of MSE. 

The MSE is calculated according to the formula 3. 

 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦 − ŷ)2 (3) 

 

where, N is the number of samples; y is the real values and ŷis 

the predicted values. 

 

5.2 Results discussion 

 

One of the open issues in beamforming prediction research 

is the difficulty of comparing the performance of papers in the 

literature due to the diversity of datasets studied and the 

performance metrics used by the authors. For this reason, we 

use a simple MLP as a benchmark and compare it with our 

proposed model.  

Figure 7 (a) shows the fitting history of the beamforming 

prediction with MLP only and Figure 7 (b) shows the fitting 

history when using MLP and Autoencoders for feature 

extraction. We can note that the fitting curve of our proposed 

model is very well fitted compared to the MLP model. This 

confirms that our model experiences from neither overfitting 

nor underfitting. 
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Figure 8 shows the mean squared results of the predicted 

beams when using MLP only and when using autoencoder for 

feature extraction and MLP for training. We find that MLP has 

an error of 0.00058 and our model has an error of 0.00032. 

This shows the efficiency of the autoencoder for feature 

extraction because this new set of features summarizes much 

relevant information contained in the original dataset, which 

helps to increase the explain ability of the model and speed up 

model training. 

 

 
(a)  

 
(b) 

 

Figure 7. (a) The fitting history of the MLP; (b) The fitting 

history of the stacked autoencoder (for feature extraction + 

MLP) 

 

 
 

Figure 8. The mean squared error of our proposed model 

against the MLP model only 

 

 

6. CONCLUSIONS 

 

This article proposes a deep-learning technique for mm-

wave analog beamforming prediction. In contrast to the 

practically challenging existing approaches, our work is very 

simple and not expensive. It is based on the application of a 

stacked autoencoder to compress the datasets and Multilayer 

Perceptrons to train and predict the best beams. Our approach 

is tested on an available dataset and evaluated using the mean 

squared error metric. The results were promising and 

outperformed the benchmark method. For future work, we 

plan to use different attention-based Deep Learning models 

and test them in different scenarios of datasets and frequencies. 
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