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Temporomandibular joint (TMJ) disorder is a wide term that encompasses a variety of 

disorders with varying etiologies. The purpose of this study was to analyses 

electromyographic signals with wavelet transform for the diagnostic methods which help 

in TMJ issues in patients who visited the Dental Centre. Due to the increasing importance 

of electromyography signals in diagnosing muscular disorders, such as temporomandibular 

joint disorder, it has been widely used. Through various techniques, such as discrete wavelet 

transform and power spectral density, it is possible to identify and minimize the noise in 

the signals, which can be very useful in the diagnosis of the disorder. This paper presents 

an algorithm that combines the features of discrete wavelet transform and multivariate 

analysis in order to detect temporomandibular joint disorder. Support vector machine model 

is giving the better performance in terms of training, testing time and accuracy with 93% 

compared to other models. Multivariate analysis shows the significant difference in the 

feature variable chosen. 
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1. INTRODUCTION

Electromyography is a technique that uses electrical signals

from the muscles of the central nervous system to diagnose 

and detect various disorders [1]. This study shows that the 

signals from the masticatory muscles have been used to detect 

the temporomandibular joint disorder (TMD). The internal and 

external muscles of the masticatory joint are two types of 

muscles. The external muscles are the temporalis and the 

masseter muscles [2]. The symptoms of temporomandibular 

joint disorder vary. Some of these include clicking and biting 

on the jaw joint. It can also cause shoulder and neck pain [3]. 

This study explores the use of a signal processing tool known 

as wavelet transform to extract the various features of an 

electromyography signal. Wavelets were then used to extract 

the necessary components from an electromyography signal 

[4]. The resulting signal was reconstructed using minimal 

interference. The wavelet transform was then used to extract 

the various features of an effective EMG signal. The results of 

the study revealed that only the first and second level features 

of the wavelet transform were able to improve the class 

separability [5]. The signal-to-noise ratio of an 

electromyography signal is affected by the size of the 

electrode's impedance [6]. After recording the signals, the 

feature extraction, pre-processing, and the reconstruction of 

the signal were carried out. Techniques used to detect and 

classify the signals from the muscles are usually advanced [5]. 

In this study, the wavelet transform was used to remove noise 

from the surface EMG. In this paper, section 2 is discussed on 

related work, section 3 on materials and methods, section 4 on 

experimental results followed by data analysis and conclusion. 

2. RELATED WORK

Recent studies also reported that the SMEG protocol is not

as accurate as electromyography due to the lack of relevant 

and significant studies [7]. These studies cited various factors 

such as inadequate sample selection and improper use of 

equipment [8]. However, these limitations could be overcome 

if the procedures are followed properly. For instance, if the 

results are reproducible and follow the same standards, SMEG 

could be an efficient method to study the electrical activity of 

masticatory muscles [9]. 

Current literature supports the use of SMEG for the 

diagnosis of TMD in the masticatory muscles [10]. The use of 

the electromyography (EMG) in various medical domains has 

been widely used. It is commonly used for the diagnosis of 

various disorders such as neuromuscular disorder and 

myopathy [11]. 

The results of the study revealed that the SPO-SVM 

performed better than other classifiers when it came to 

classification accuracy. The Random Forest classifier was also 

able to achieve a higher accuracy than the other classifiers. The 

temporal features of the EMG signals were extracted using the 

entropies. They were then classified using the K-NN and DWT 

classifiers.  

3. MATERIALS AND METHODS

3.1 Signal acquisition 

A study was carried out at a Noble Hospital and Research 

Centre in India to identify male and female patients who were 

Revue d'Intelligence Artificielle 
Vol. 36, No. 3, June, 2022, pp. 503-508 

Journal homepage: http://iieta.org/journals/ria 

503

https://crossmark.crossref.org/dialog/?doi=10.18280/ria.360320&domain=pdf


screened for various symptoms. The subjects were selected 

based on their demographic information, with 100 patients 

with age group of 20-60 years included in the study, 45% male 

and 55% were females. The study was carried out from 2017 

to 2018. Information about the nature of the research project 

and the conditions that it seeks to study must be provided to 

enable people to make informed decisions regarding their 

participation in the study. This information should also include 

details about the health condition that the study is designed to 

address. The patients were asked to fill out a consent form. The 

individuals in this research had no history of orthodontic 

treatment and had not received any TMJ surgical operation for 

any underlying illness. The study was approved by the 

Neurology Department of the hospital and research Centre. All 

participants were asked to follow proper instructions. The 

EMG signals were collected simultaneously from two face 

muscles, the masseter and temporalis, using two pairs of 

bipolar AG/Agcl electrodes positioned on the midline of each 

muscle belly [10]. Each bipolar pair has a one-inch center-to-

center spacing. On the forehead, the reference electrode was 

inserted. The two-channel EMG signal system was further 

connected to a data collecting card (6024 E). On the SEMG 

for non-invasive assessment of muscles (SENIAM) project, a 

group of European specialists cooperated to create an 

established set of criteria for the collection and processing of 

SEMG signals; one followed these guidelines [12]. 

3.2 Subjects 

Over eighty male and female adolescent participants were 

evaluated for their muscle function to detect the 

Temporomandibular joint disorder. The inclusion criteria were 

based on the participant's informed consent. The exclusion 

criteria included a history of psychological or medical 

treatment, previous surgical procedures, and a history of 

orthodontic treatment for the jaws [11]. Sample size is based 

on the root mean square and the electromyographic signals 

from the anterior bundles and masseter muscles with α=0.05, 

β=0.20 and 80% test power [8]. The current research recruited 

the support of 84 subjects. There were 41 participants in the 

monitoring healthy group and the rest were in the study group. 

Each subject has a full dental history taken and intraoral 

photographs from an Orth pentagram (OPG) are taken to 

identify radiographic evaluation of TMJ parameters. The non-

invasive method for acquiring EMG signals was chosen over 

the invasive method [13], which used single use and sticky 

type electrodes for EMG signal acquisition. Because the study 

concentrated on the temporal and masseter muscles, the first 

electrode was put on the masseter, the second on the temporal 

muscle as a reference electrode, and the reference on the 

forehead as a ground electrode [14]. The EMG recording of 

these muscles was done in both groups at rest position and 

during maximum clenching. 

The signals were obtained using an 4-channel module 

(EMG System do Brasil Ltda®), that consists of a conditioner 

and a band pass filter with cut-off frequencies of 20 and 1,000 

Hz, an amplifier gain of 1,000 and a common mode rejection 

ratio > 120 dB [9]. All data was acquired and processed using 

a 16-Bit analog to digital converter with a sampling frequency 

of 2 kHz. 

The system was composed of bipolar electrodes positioned 

on the floor. The participants were asked to remain seated 

while their heads were parallel to the ground. The attachment 

sites were cleaned with a cotton ball to remove any impurities. 

The Ag/AgCl surface electrodes were attached to the belly 

region of the muscle after performing moderate intercuspation. 

Bandage tape was utilized to secure the electrodes [15]. The 

distance between the two electrodes was 20 mm, which is as 

suggested by an international organization [11]. Figure 1 

shows the raw electromyographic signals during maximal 

voluntary clenching. 

Figure 1. Raw EMG signal during maximal voluntary 

clenching 

3.3 Signal processing methods 

The wavelet transform is an efficient and suitable tool for 

non-stationary signals analysis such as EMG [16]. It 

decomposes the signal into a set of wavelets obtained by 

dilatation in scale and translation in time of mother wavelet 

[17]. It can be defined as follows. Generally, the wavelet 

transform can be expressed by the following Eq. (1): 

𝐹(𝑎, 𝑏) = ∫ 𝑓(𝑥)𝜑(𝑎,𝑏)
∗

∞

−∞

𝑥 𝑑𝑥 (1) 

where the * is the complex conjugate symbol and function ψ 

is some function. This function can be chosen arbitrarily 

provided that it obeys certain rules.  

∅(𝑥) = ∑ 𝑎𝑘∅(𝑆𝑥 − 𝑘)

∞

−∞

(2) 

where, S is a scaling factor [18]. Moreover, the area between 

the function must be normalized and scaling function must be 

orthogonal to its integer translations. Discrete wavelet 

transform can be used for easy and fast denoising of a noisy 

signal [10]. If we take only a limited number of highest 

coefficients of the discrete wavelet transform spectrum, and 

we perform an inverse transform (with the same wavelet basis) 

we can obtain more or less denoised signal. The wavelet is 

obtained from the scaling function as: 

𝜙(𝑥) = ∑ (−1)𝑘

𝑘=+∞

𝑘=−∞

𝑎𝑁−1−𝑘𝜙(2𝑥 − 𝑘) (3) 

where, N is an even integer [14]. The set of wavelets than 
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forms an orthonormal basis which we use to decompose signal. 

 

3.4 Feature extraction method  

 

Discrete wavelet transform (DWT) is usually used to 

decompose the digital signals into discrete coefficients [5]. It 

uses the space-saving coding based on orthogonal or bi-

orthogonal wavelet, and thus does not produce the redundant 

analysis. The DWT decomposition is given by the following 

Eq. (4). 

 

𝐷𝑊𝑇(𝑗, 𝑘) =
1

√|𝑎|
∑ 𝑆(𝑖)𝜑(𝑎,𝑏)(𝑖)

𝑛

1=1

 (4) 

 

where a=2j, b= 2j k, S (i) is the original signal, and DWT (j, k) 

is a sampling of ψ(a, b) at discrete points j and k. The wavelet 

decomposition is performed by taking into account the 

selection of the mother wavelet, which should be similar shape. 

The SEMG is a time and force dependent signal that can be 

used to define characteristic properties [19]. Data sets are very 

difficult to analyses, as statistical calculations require many 

points to be available for analysis. Instead, many of the data 

points can be obtained through a process known as windowing. 

The popularity of wavelet analysis has been increasing, as it 

can be performed in frequency range. This has led to the 

emergence of discrete wavelet transform, which is a better 

alternative to continuous wavelet transform. The DWT 

algorithm has been used for the Denoising of the SEMG [6]. It 

has yielded better results than the previous method due to the 

use of a different wavelet for a different window of 40 

coefficients. 

 

 
 

Figure 2. Block diagram of the proposed system 

 

Wavelet denoising happens by performing a multilevel 

decomposition by obtaining approximation and detailed 

coefficients then analysing the details and identifying the 

threshold in techniques and lately they showed the detailed 

coefficients and reconstructing the signals [20]. 

Figure 2 shows block diagram of proposed system. DWT 

helps in representing the SEMG signal with fewer coefficients 

after De noising and compressing the signal which enables 

Sparse representation DWT is similar to comparing a signal 

with discrete multi rate filter bank which is hierarchal [5]. 

These filters have ability to reconstruct the sub-bands in all 

level of decomposition with this technique we have captured 

the signal with few large magnitude DWT coefficient while 

the smaller DWT coefficients is the noise [9, 10]. we note that 

filter coefficients for l (low pass) and h (high pass) should be 

related as follows:  

 

hk=(−1)kln−k−1, k∈{0,...,n−1} (5) 

where n denotes the length of the filter.  

This is how the multi resolution happens while analysing 

signals progressively narrow sub bands at different resolution 

by helping the denoising and compressing [18]. The function 

outputs the fifth level approximation coefficients along with 

detailed coefficients from level 1 to 5. These filters in Figure 

2 have ability to reconstruct the Sub bands in all levels of 

decomposition. Machine learning applications in medical 

domain are discussed in [19]. LRA DNN methods offered a 

complete overview of the newest neural network known as 

Capsule Network (CapsNet), which finds use in a variety of 

sectors including IoT [20]. 

 

 

4. EXPERIMENTAL RESULTS  

 

After taking the energy components from each band and 

applying different threshold level each feature was scaled and 

applied to different classifiers [21]. 75% is chosen as the 

margin to select feature so as dominant feature values are 

selected. A lower margin value would select values due to 

noises and a higher value may exclude features vectors of 

average values which would contribute in detecting the 

disorder. 

Wavelet based features reduces the dimension by spectral 

analysis and has improved the classification in detecting the 

TMJ disorder. After applying the extracted and scaled features 

to different classifiers like logistic regression (LR) [13], Linear 

discriminant analysis (LDA) [12] and support vector machine 

(SVM) [11] SVM is giving the better accuracy. A summary of 

SEMG classification technique is shown in Table 1. 

 

Table 1. Summary of performance of different classifiers 

 

Model 

Training 

process time 

(SEC) 

Testing 

process time 

(SEC) 

Accuracy 

(%) 

LR 1.80 0.28 91 

SVM 0.10 0.05 93 

LDA 0.09 0.04 87 

KNN 0.11 0.06 91.5 

Decision tree 0.11 0.042 92.1 

 

The study demonstrates that by employing sophisticated 

denoising algorithms, numerous uncertain noise sources in a 

signal may be greatly reduced. Researchers are employing a 

variety of signal processing technologies to eliminate or 

attenuate sounds that arise during recording and processing. 

Based on the research examined, the DWT showed to be the 

best strategy. In the case of the TMJ problem detection system, 

two primary criteria were used: a comprehensive list, as well 

as reliability and accuracy. He proposed the SVM classifier 

[14] for classification. Furthermore, a hybrid classification 

algorithm or a mix of processing methods is proposed for 

improving classification accuracy and other performance 

characteristics. Because of the enormous number of recovered 

features for the filtered signal, the detection accuracy is 

increased. 

 

 

5. DATA ANALYSIS 

 

The objective of this study is to investigate and examine 

interaction impact of gender and group on right temporalis rest 

and left temporalis.  
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Hypothesis  

Hypothesis 1 

Null: There is no significant interaction impact of gender 

and group on right temporalis rest.  

Alternative: There is a significant interaction impact of 

gender and group on right temporalis rest. 

 

Hypothesis 2 

Null: There is no significant interaction impact of gender 

and group on left temporalis MVC. 

Alternative: There is a significant interaction impact of 

gender and group on left temporalis MVC.  

 

Research methodology  

The current study adopts descriptive research design and 

deductive approach of research. Table 2 shows the descriptive 

statistics for the variable right temporalis rest. Similar 

calculations are done for other features during rest and 

maximum voluntary clenching as seen in Table 3. The total 

sample size is 100 divided into control and experimental group. 

Probability simple random sampling has been used for the 

current study. Table 4 represents multivariate analysis for the 

variable right temporalis rest. Both primary and data collection 

sourced have been used. SPSS 26 tool and multivariate two-

way ANOVA technique [20] is used to evaluate interaction 

impact of gender and group on right temporalis rest and left 

temporalis MVC. 

 

Table 2. Descriptive statistics for the variable right 

temporalis rest (Dependent variable: Right temporalis rest) 

 

Gender Group Mean 
Std. 

Deviation 
N 

male 

experimental 24.4578 7.16797 23 

control 3.9821 3.15609 22 

Total 14.4475 11.72972 45 

female 

experimental 18.0968 9.01439 27 

control 3.2940 3.01229 27 

Total 10.6954 10.00645 54 

Total 

experimental 21.0229 8.74308 50 

control 3.6029 3.06472 49 

Total 12.4009 10.92936 99 

 

Table 3. Multivariate analysis for the variable right 

temporalis rest (Dependent variable: Right temporalis rest) 

 

Source 
Type III Sum of 

Squares 
df 

Mean 

Square 
F Sig. 

Corrected Model 8017.993a 3 2672.664 68.842 .000 

Intercept 15233.077 1 15233.07 392.371 .000 

Gender 304.835 1 304.835 7.852 .006 

Group 7635.096 1 7635.096 196.664 .000 

Gender * Group 197.419 1 197.419 5.085 .026 

Error 3688.196 95 38.823   

Total 26930.575 99    

Corrected Total 11706.189 98    

a. R Squared = .685 (Adjusted R Squared = .675) 

 

Table 4. Descriptive statistics for the variable left temporalis 

MVC (Dependent variable: Left temporalis MVC) 

 
Gender Group Mean Std. Deviation N 

male 

experimental 119.8190 21.66850 23 

control 98.8683 20.37376 22 

Total 109.5764 23.34619 45 

female 
experimental 128.5338 17.73017 27 

control 89.4992 13.96943 27 

Total 109.0165 25.25983 54 

Total 

experimental 124.5250 19.92135 50 

control 93.7057 17.59189 49 

Total 109.2710 24.28714 99 

 

 
 

Figure 3. Normal Q_Q plot for EMM of right temporalis rest 

 

Parametric multivariate two way ANOVA is applied to 

examine interaction impact of Gender & group (Control and 

Experimental) on Right Temporalis Rest. Group sizes of Male 

- control, Male – Experimental, Female – control, Female – 

Experimental are comparable thus the t-statistics / ANOVA 

can be quite robust to violence to normality and power of t / f 

also appear to be relative unaffected by non-normality 

(Donaldson 1968) p value of Levene’s test > 0.05 indicating 

homogeneity of variance in four groups. 

P value of interaction effect = 0.026 indicating significant 

interaction impact of gender and group (control and 

experimental on Right Temporalis Rest. It is seen from Figure 

3 that mean score of Right Temporalis Rest is more for both 

male and female in case of experimental group. Estimated 

marginal means (EMM) of all features were calculated using 

normal Q-Q plot to check the normality. The same plot is 

shown for one of the feature left temporalis MVC in Figure 4. 

 

 
 

Figure 4. Normal Q-Q plot for EMM of left temporalis MVC 

 

Parametric multivariate two-way ANOVA is applied to 

examine interaction impact of Gender & group (Control and 

Experimental) on Left Temporalis MVC. Group sizes of Male 

- control, Male – Experimental, Female – control, Female – 

Experimental are comparable thus the t-statistics / ANOVA 

can be quite robust to violence to normality and power of t / f 

also appear to be relative unaffected by non-normality 

(Donaldson 1968) p value of levene’s test > 0.05 indicating 

homogeneity of variance in four groups.  
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P value of interaction effect = 0.017 indicating significant 

interaction impact of gender and group (control and 

experimental on Left Temporalis MVC. It is seen that mean 

score of Left Temporalis MVC is more for both male and 

female in case of experimental group. 

 

 

6. CONCLUSION 

 

The aim of this paper is to process the noise associated with 

raw SEMG signals and extract the feature features and apply 

to the classification algorithms followed by multivariate 

statistical analysis. This study emphasis on wavelet analysis. 

These methods of de-noising, classifying and analysing with 

multivariate approach and counter the optimal method for the 

detection of TMG disorder using SEMG. This method will 

definitely help the doctors and researchers in diagnosing the 

disorders related to different muscles. Therefore, this paper 

developed new approach of signal representation and 

classification with multivariate approach for further analysis 

of classification, we can interlink the features of left and right 

side muscles and there variations to improve the decision. The 

approach of feature fusion for multiple observations and there 

inter correlative variations could give better decision in 

detecting Temporomandibular joint disorder. 
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