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In this paper, the design of two degree of freedom controller for ball and beam system is 

proposed. The Quantitative Feedback Theory (QFT) constraints are used to design two 

PID controllers to stabilize and compensate the nonlinear system with robust stability, 

robust performance and more desirable time response specifications. A multi objective 

cost function is proposed in this work to represent the function of QFT. The Black Hole 

Optimization (BHO) technique is a useful method to automate the design procedure of the 

proposed controller. The results of simulation indicate that the suggested optimal 

quantitative PID controller can give a desirable performance in comparison to other 

controllers designed in previous work. 
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1. INTRODUCTION

Quantitative Feedback Theory (QFT) is an engineering 

methodology, which was developed by Horowitz (1960). It 

was designed to achieve the closed loop system requirements 

in the presence of system uncertainty. The fundamental idea is 

to convert model needs and plant uncertainty into open-loop, 

which are then used to construct a controller using the gain-

phase loop shaping approach [1, 2]. 

On the other hand, PID controller is still the most significant 

controller, which is commonly used to solve many control 

problems. The ability to make the PID controller with 

automatic tuning, automatic development of gain schedules 

and continuous adaptation has renewed interest in PID control 

[3]. One of the fixed structure controllers is a PID controller 

whose structure has been selected independently of the plant 

order [4-6]. 

Many control approaches have been used to control the 

system using a variety of design methodologies. Mehedi et al. 

[7] in 2018 proposed Fractional Order PD Control (FOC) to

control the ball position. Ali et al. [8] in 2018 proposed PID

controller to stabilize the system, PSO method was used to

tune parameters of the controller. Shah et al. [9] in 2018

proposed LQR controller to control the system. Tahir et al.

[10] in 2019 Proposed PID controller to control the system

where the parameters tuned manual. Abdul Aziz et al. [11] in

2019 proposed a fuzzy PID controller for the system and the

output reference is modified as required by applying a model

reference at the input. The changes of system parameters did

not taken into account. Tsoi et al. [12] in 2020 proposed a

Genetic Algorithm (GA), the purpose of GA is to improve an

extra layer of fuzziness. Many objective functions were

analyzed to develop the performance of cost matrix ITAE, IAE

and ISE. Two events bring the optimum parameter search to a

close. The first was the achievement of the highest number of

chromosomal generations, and the second stage was

determining the optimal controller parameter solution. The

result of ITAE cost function was better than the other cost

functions. Amirudin and Kadir [13] in 2020, the location of the

ball on the system was controlled using adaptive PID (Q-PID). 

The (Q-PID) was compared to traditional PID and heuristic 

PID controllers techniques. It was discovered that the adaptive 

PID which based on Learning, was better than conventional 

PID and heuristic PID controller techniques.  

In this paper, optimal quantitative PID controller is 

proposed for the ball and beam system. The Black Hole 

Optimization (BHO) method is used to automate the procedure 

of (QFT). The method is used to automate the loop shaping 

and obtain the optimal PID controller subject to QFT 

constraints.  

This paper is formatted as follows: The modeling of the 

system is presented in section 2. Section 3 explains the Black 

Hole Optimization (BHO) method. controller design is 

presented in section 4. In section Finally, the results and 

discussion are presented in section5 and the conclusion is 

given in section 6. 

2. BALL AND BEAM MODEL

Figure 1. Ball and beam system structure 

The ball and beam is one of the mechanical systems which 

is commonly related to actual control issues, such as 

horizontally stabilizing the aircraft at the landing and turbulent 
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airflow [14]. The system consists of the ball, beam and the 

ends of the beam are attached with level arms The motor's 

output gear is attached to one of the level arms and the other 

level arm, which is fixed. The drawback of this configuration 

is that it necessitates a more excellent analysis of the 

mechanical components. It has high nonlinearity and 

uncertainty parameters [15, 16]. Figure 1. shows the system.  

The following dynamic equation is created using the 

Newton method as [17]: 

 

𝑓𝑡 + 𝑓𝑟 = −𝑚𝑔𝑠𝑖𝑛⁡ 𝛼  (1) 

 

where, ft is the force produced by translational motion, fr is the 

force produced by rotational motion, g is the gravitational 

constant, and α is the angle of the beam. 

Then, the force due to ball rotational, fr is found as: the 

torque produce by the rotational motion of the ball is equal to 

radius of the ball, R, multiplied by the rotational force as 

follows: 

 

𝑇𝑟 = 𝐹𝑟⁡𝑅  (2) 

 

Also the torque can be written as its moment of inertia 

multiplied by the double derivative of its translational motion  

 

𝑇𝑟 = 𝐹𝑟⁡𝑅 =
𝐽

𝑅
�̈�  (3) 

 

where, J is moment of inertia, R is radius of the ball and �̈� is 

by the double derivative of its translational motion. 

where, J is given as follow: 

 

𝐽 =
2𝑚𝑅2

5
  (4) 

 

The force due to ball rotational is given From Eq. (3) as 

follow: 

 

𝑓𝑟 = (
2𝑚𝑅2

5

𝑅2
�̈�)  (5) 

 

and  

 

𝑓𝑡 = 𝑚�̈�  (6) 

 

where, m represents the mass of the ball, R represent the radius 

of the ball and r is the ball position. 

 

(
2𝑚𝑅2

5

𝑅2
+𝑚) �̈� = −𝑚𝑔𝑠𝑖𝑛⁡ 𝛼  (7) 

 

and 

 

(
7

5
𝑚) �̈� = −𝑚𝑔𝑠𝑖𝑛⁡ 𝛼  (8) 

 

Then 

 

�̈� = −
5

7
𝑔𝑠𝑖𝑛⁡ 𝛼  (9) 

 

The relationship between the beam angle (α) and the servo 

motor angle (θ) is shown in Figure 2. This relation can be 

represented using the geometry and trigonometry of the level 

arm section [18]. 

 
 

Figure 2. The beam angle and the angle of servo motor [18] 

 

By analyzing the vector (d), the following two components 

are obtained: 

 

𝑂𝑋 = 𝑑cos⁡ 𝜃; 𝑇𝑋 = 𝑑sin⁡ 𝜃  (10) 

 

After subtracting OX from OS, the length of XS is obtained 

as: 

 

𝑋𝑆 = 𝑑(1 − cos⁡ 𝜃)  (11) 

 

By analyzing the vector (L), the following two components 

are obtained: 

 

𝑂1𝑀 = 𝐿cos⁡ 𝛼; 𝑄𝑀 = 𝐿sin⁡ 𝛼  (12) 

 

Then subtracting O1M from O1P, yields: 

 

𝑀𝑃 = 𝐿(1 − cos⁡ 𝛼)  (13) 

 

By analyzing the vector (A), the following two components 

are obtained: 

 

𝑇𝑁 = 𝐴sin⁡ 𝛽; 𝑄𝑁 = 𝐴cos⁡ 𝛽 (14) 

 

Then subtracting QM from QN, yields: 

 

𝑀𝑁 = 𝐴cos⁡ 𝛽 − 𝐿sin⁡ 𝛼 (15) 

 

𝑇𝑋 = 𝑀𝑍 −𝑀𝑁 (16) 

 

After substituting Eqns. (10) and (15) in Eq. (16), yields: 

 

𝐿sin⁡ 𝛼 = 𝑑sin⁡ 𝜃 − 𝐴(1 − cos⁡ 𝛽) (17) 

 

By multiplying both sides of Eq. (17) by arcsine, yields: 
 

𝛼 = arcsin⁡ [
𝑑

𝐿
sin⁡ 𝜃 −

𝐴

𝐿
(1 − cos⁡ 𝛽)]  (18) 

 

𝑇𝑁 + 𝑁𝐺 = 𝑋𝑆 (19) 
 

By multiplying both sides of Eq. (19) by arcsine, yields: 
 

𝛼 = 𝑎𝑟𝑐𝑠𝑖𝑛⁡ [
𝑑

𝐿
𝑠𝑖𝑛⁡ 𝜃]  (20) 

 

Then, the relationship between the beam angle (α) and the 

servo motor angle (θ) can be expressed by:  
 

𝛼 =
𝑑

𝐿
𝜃  (21) 
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where, d is the level arm, L represent the beam length, α(s) is 

the beam angle, and θ(s) is the gear angle. 

Substituting Eq. (21) in Eq. (9), yields: 
 

�̈� = 𝐺𝑏𝑏 = −
5

7
𝑔𝑠𝑖𝑛⁡

𝑑

𝐿
𝜃  (22) 

 

The electric equation for the motor is given as [17]: 
 

�̈� =
𝑘𝑚𝑘𝑔

𝑅𝑎𝐽𝑒𝑞
(𝑣𝑎 − 𝑘𝑏𝑘𝑔�̇�)  (23) 

 

where, km represent a motor torque, kg represent a gear ratio, kb 

represent a back emf constant, Ra represent motor resistance 

and Jeq is the equivalent inertia. 

From Eq. (9), the relationship between the motor angle and 

voltage of the motor can be obtained as:  
 

𝜃(𝑠)

𝑣𝑎(𝑠)
=

𝑘𝑚𝑘𝑔

𝑅𝑎𝐽𝑒𝑞

𝑠2+
𝐾𝑚𝐾𝑔𝐾𝑏𝐾𝑔

𝑅𝑎𝐽𝑒𝑞
𝑠
  (24) 

 

The parameters of the ball and beam system are given in 

Table 1. 
 

Table 1. Parameters of ball and beam system [17] 
 

Parameters Value 

Gear ratio 70:1 

Motor torque constant 0.0076 Nm/A 

Beam length 43.18 cm 

Level radius 2.54 cm 

Equivalent inertia 0.0029 kg.m2 

Motor resistance 2.6 Ω 

Mass of ball 0.11 kg 

Constant of Gravitational 9.8 m/s2 

Constant of Back emf 0.00767 v/(rad/sec) 

 

 

3. BLACK HOLE OPTIMIZATION (BHO) METHOD 

 

Black Hole optimization is the population based approach 

to some mechanisms to solve the problem [19]. To implement 

Black Hole, initial population must be generated, and then the 

value of fitness is calculated for each candidate. If the 

candidate has a best fitness namely Black Hole, and other 

namely stars, stars that surround Black Hole can be absorbed 

by Black Hole [20].  

The following is the formula for star absorption by a Black 

Hole [21]: 

 

𝑥𝑠(𝑡 + 1) = 𝑥𝑠(𝑡) + 𝑟𝑎𝑛𝑑 × (𝑥𝑏(𝑡) − 𝑥𝑠(𝑡)) (25) 

 

where, xs represent location of star solution and xb represents 

the black hole. 

When the stars move toward a black hole, they may also 

exceed event horizon. Each star that passes over event horizon 

of black hole will be pulled in [22]. A candidate (star) being 

pulled into the Black Hole, A new candidate solution (star) is 

created and scattered at random throughout search area, and 

the new search is initiated. After all of the stars have been 

relocated, the next iteration begins. In the Black Hole 

algorithm, the radius of the event horizon is determined using 

[23]: 

 

𝐶 =
𝑧

∑  𝑛
𝑖 𝑧𝐶

  (26) 

where, z represents the value of fitness for Black Hole, zC 

represent the value of fitness for candidates and n represent the 

number of candidates solutions. Figure 3 shows the flowchart 

of BHO. 

 

  
 

Figure 3. The flowchart of BHO [24] 

 

 

4. CONTROLLER DESIGN 

 

In this section the procedure to design the proposed optimal 

quantitative PID controller is given. 

 

4.1 Quantitative PID controller design 

 

The proposed controller parameters are tuned by BHO 

subject to Quantitative Feedback Theory (QFT). The 

suggested objective is to satisfy the following QFT 

requirements: 

1. To satisfy the performance requirements by making the 

closed-loop response fall between the given upper tracking 

and lower tracking performances. Upper tracking and lower 

tracking bounds are known structure transfer functions with 

parameters adjusted to meet the requirements. The suggested 

lower tracking bound and upper tracking bound are: 

325



 

𝑇𝑢 =
(4𝑠 + 4)

(𝑠2 + 4𝑠 + 4)
 (27) 

 

Tl =
4

(s + 2)(s + 2)(1 + 0.2s)
 (28) 

 

The specifications of the proposed upper tracking are: rise 

time equals to 0.3 sec, settling time equals to 2 sec, overshoot 

equals 0.135 and the specifications of the proposed lower 

tracking are: rise time equals to 1.7 sec, settling time equals to 

3 sec and overshoot equals zero.  

To satisfy this constraint the following variation must be 

minimize:  

 

𝛿𝑛(𝑗𝑤𝑖) = |
𝑇𝑢(𝑗𝑤𝑖)−𝑇𝐿(𝑗𝑤𝑖)

2
| − |

𝐹(𝑗𝑤𝑖)𝐾(𝑗𝑤𝑖)𝐺𝑝(𝑗𝑤𝑖)

1+𝐾(𝑗𝑤𝑖)𝐺𝑝(𝑗𝑤𝑖)
|  (29) 

 

2. To achieve the robust stability for the controlled system 

by considering [24, 25]: 

 

|
𝐾(𝑗𝑤)𝐺(𝑗𝑤)

1+𝐾(𝑗𝑤)𝐺(𝑗𝑤)
| ≤ 𝑀𝑟  (30) 

 

where, K(jw) represent the controller and Mr represent a 

constant which is obtained according to the desired gain 

margin and phase margin. They are given as: 

 

𝐺𝑀 = 1 +
1

𝑀𝑟
  (31) 

 

PM = 𝑐𝑜𝑠−1⁡ (1 −
1

2𝑀𝑟
2)  (32) 

 

3. To obtain δcl(jwi)⁡for the controlled system which being 

smaller than or equal to δv(jwi) that it equals or less than 

δd(jwi) for each value of⁡wi⁡as: 

 

𝛿𝑐𝑙(𝑗𝑤𝑖) ≤ 𝛿𝑣(𝑗𝑤𝑖) ≤ 𝛿𝑑(𝑗𝑤𝑖) (33) 

 

where, δcl(jwi) represents maximum variation in magnitude for 

closed loop controlled system with uncertainty, δv(jwi) 

represents difference between magnitudes of the upper 

tracking and lower tracking boundaries and δd(jwi) represents 

the maximum variation in magnitudes due to the system 

parameters uncertainty. These relations can be expressed as: 

 

𝛿d(jwi) = |Ĝ(jwi)| − |G(jwi)|  (34) 

 

𝛿v(jwi) = |Tu(jwi)| − |Tl(jwi)|  (35) 

 

where, Ĝ(jwi) represents the overall uncertain system. 

4. To achieve good disturbance rejection by minimizing the 

sensitivity function. 

From all previously mentioned QFT constraints, the 

following cost function can be proposed: 

 

𝐽(ℎ) = |𝛿𝑐𝑙(𝑗𝑤𝑖)| + |𝛿𝑛(𝑗𝑤𝑖)| + |𝑆(𝑗𝑤𝑖)|

+ ∫ 𝑒2(𝑡)𝑑𝑡
𝑡𝑓

0

 
(36) 

 

4.2 Tuning of PID controllers  

 

In this paper, two degree of freedom controllers shown in 

Figure 4 are used to control the ball and beam system. Inner 

loop controller is to control a motor angle. The inner controller 

must be designed in such a way that motor angle follows the 

reference signal. As shown in Figure 5, the outer loop uses the 

inner loop to control a ball position. The structures of both 

controllers are: 

 

𝐾1(𝑠) = 𝑘𝑝1 +
𝑘𝑖1

𝑠
+ 𝑘𝑑1𝑠  (37) 

 

𝐾2(𝑠) = 𝑘𝑝2 +
𝑘𝑖2

𝑠
+ 𝑘𝑑2𝑠  (38) 

 

where, K1(s) and K2(s) represent the inner loop and outer loop 

controllers. 

And 

 

𝐹(𝑠) =
1

(𝜏1𝑠+1)(𝜏2𝑠+1)
  (39) 

 

where, kp1, ki1, kd1, kp2, ki2, kd2, represent the controllers' 

parameters and τ1, τ2 are the time constants of the prefilter 

which are tuned by BHO method subject to QFT constraints 

as shown in Figure 6. 

 

 
 

Figure 4. Block diagram of the controlled ball and beam  

system 

 

where, K1(s) and K2(s) represent two controllers to be designed, 

F(s) is the prefilter, rd is desired position and r is actual 

position. 

 

 
 

Figure 5. Block diagram of Ball and Beam system 

 

 
 

Figure 6. Block diagram of ball and beam system with Black 

Hole 

 

The setting of the Black Hole Optimization method to 

obtain the optimal parameters of the controllers is given as: 

1. The number of dimensions is 8.  

2. Initial population is 50.  

3. Maximum iteration is 50. 

After tuning the controller parameters by Black Hole 

Optimization subject to Quantitative Feedback (QFT), the 

controllers and prefilter are obtained as: 
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𝑘1(𝑠) = 7 +
0.003

𝑠
+ 0.017𝑠  (40) 

 

𝑘2(𝑠) = 0.003 +
0.003

𝑠
+ 5𝑠  (41) 

 

𝐹(𝑠) =
1

(0.24𝑠+1)(0.03𝑠+1)
  (42) 

 

 

5. RESULTS AND DISCUSSION 

 

The desired performance requirements have been satisfied 

by applying proposed controller. An achieved time response 

specifications are: rise time equals 0.9 sec, settling time equals 

1.8 sec, and overshoot is zero, as shown in Figure 7. This 

means that the constraints of QFT represented by Eq. (36) have 

been achieved. It is clear that the resulting steady state error is 

zero which is the main advantage of the integral term in PID 

controller. The nominal system lies between the desired upper 

tracking and lower tracking boundaries. Figure 8 shows the 

time response of the system. 

 

 
 

Figure 7. The ball position 

 

 
 

Figure 8. Time response of the system 

 

 
 

Figure 9. Ball position in the frequency domain 

 

The constraints for robust stability have been achieved 

where the nominal system lies between the upper tracking and 

lower tracking boundaries Figure 9 shows ball position in 

frequency domain. It is obvious that the response of the 

nonlinear system with uncertain parameters lies between the 

given tracking boundaries as shown in Figure 10. Also, it was 

found that the response of the Figure 11 shows the response of 

the uncertain system in the frequency domain. It is clear that 

the robustness requirements were satisfied by the proposed 

controllers. 

The obtained control signal is shown in Figure 12 it is 

shown that a low control voltage is required to control the ball 

and beam system. Table 2 contains a comparison between the 

Optimal Quantitative PID Controller and fuzzy PID controller. 

It is shown that the suggested optimal quantitative PID 

controller can achieve a desirable performance. 

 

 
 

Figure 10. Time response of the uncertain system 

 

 
 

Figure 11. Frequency response properties of uncertain 

system 

 
 

Figure 12. Control signal 

 

Table 2. Comparison between the optimal quantitative PID 

controller and fuzzy PID controller 

 

Controller 
Settling time 

(sec) 

Rise Time 

(sec) 

Overshoot 

(%) 

Fuzzy PID [11] 11.95 6.97 0 

An Optimal 

Quantitative PID 
1.8 0.9 0 
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6. CONCLUSIONS 

 

In this work, the Black Hole Optimization method was 

utilized to develop a quantitative PID controller for the ball 

and beam system. The controller parameters were obtained 

subject to QFT constraints. The results showed that the QFT 

constraints for robust stability and performance have been 

achieved. Moreover, it was found that the proposed 

quantitative PID controller could compensate effectively the 

nonlinear system with parameters uncertainty. It was shown 

that the quantitative PID has satisfied the more desirable 

performance in comparison to a fuzzy PID controller. 
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NOMENCLATURE 

 

d  Level arm, cm 

𝑔 gravitational acceleration, m.s-2 

𝐽𝑒𝑞  the equivalent inertia, kg.𝑚2 

𝑘𝑚  a motor torque Nm/A 

𝑘𝑔  Gear ratio 

𝑘𝑏  Back emf constant, v/(rad/sec) 

𝐿  the beam length, cm 

m mass of the ball kg 

r  the ball position, m 

𝑅𝑎 motor resistance, Ω 

 

Greek symbols 

 

𝛼(𝑠)  Beam angle 

𝜃(𝑠)  Gear angle 

 

Subscripts 

 

BHO Black Hole Optimization 

PID Proportional- Integral-Derivative  

QFT Quantitative Feedback Theory 

  

329




