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Recently all the moving mechanical parts that are subjected to wear and cause errors in the 

future are replaced with the equivalent of electrical. A Brushless Direct Current (BLDC) 

motor is preferable compared to a brushed DC motor because it substitutes the unit of 

mechanical commutations with an electronic unit, enhancing dynamic properties, noise 

level, and efficiency. Since it is fairly inexpensive, simple in structure, and performs well, 

maximum BLDC motor drives use a Proportional-Integral PI controller for controlling the 

machine's speed. The major issue with the PI controller, on the other hand, is altering its 

parameters throughout the deployment. As a result, this work shows how to tune the PI 

controller settings of a BLDC motor drive using Grey Wolf Optimization (GWO) and 

Particle Swarm Optimization (PSO). The results of a comparison of PSO and GWO for 

BLDC motors were obtained. Simulation tests for the BLDC engine in 

MATLAB/Simulink environment show that both PSO and GWO of BLDC motor give 

good results, but the best is GWO in tested in terms of transient response under different 

mechanical loads and speeds. 
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1. INTRODUCTION

Because of their superior qualities and performance, 

brushless direct current motors (BLDC) have quickly acquired 

popularity and are now widely employed in a variety of 

consumer and industrial applications. A few of the advantages 

of BLDC motors over standard DC motors are excellent 

dynamic response, improved efficiency, enhanced speed 

versus torque properties, long-life operation, high-speed 

ranges, less electromagnetic interference, less noise operation, 

good heat dissipation, and compact size. Robotics, computer 

peripherals, actuation drives, machine tools, electric 

propulsion, and electrical power generation are all popular 

uses for BLDC motors [1, 2]. However, the main 

disadvantages are the higher cost, the size of the motor, and 

the requirement for a unique mounting solution for the sensors. 

Furthermore, Hall sensors are temperature sensitive, limiting 

the motor's operation, which could degrade system reliability 

due to the additional components and wiring [3-5]. Many 

researchers have used different approaches in the control 

speed of brushless dc motor (BLDC). In 2015, Venkata et al., 

[4] introduced a hybrid fuzzy PI controller for the BLDC

motor speed control in electric vehicles (EV). The Hybrid

Fuzzy PI controller is a combination of 2 controllers: classic

PI and fuzzy PI controllers, with a selection switch which is

dependent upon speed error. In the case when the speed error

is over 10% of reference speed, the switch selects the FLC; or

else, it selects the classic PI controller. The results reveal that

the BLDC motor responds better to the Hybrid Fuzzy PI

controller. Then, Yasien and Mahmood [5] presented a

comparison  between the new control system (NCS) and the

conventional  control system (CCS) of the BLDC motor. In

addition, the simulation tests for  BLDC motor in a

MATLAB/Simulink environment show that the NCS of

BLDC motor is considered better than CCS in tested in  terms 

of transient response under different mechanical loads and 

speeds. After that, Aymen et al. [6] using PSO, an important 

metaheuristic optimization search method, this work provides 

a design regarding an optimal PI controller for the BLDC 

motor speed control. 

A TMS320F28335 DSP board with MATLAB/SIMULINK 

interface is used in the proposed control system. Dutta and 

Nayak [7] through replacing a mechanical commutation unit 

with an electronic unit, a BLDC motor surpasses a brushed DC 

motor in terms of dynamic characteristics, noise reduction, and 

efficiency. Since it is reasonably inexpensive, simple to 

develop, and performs well, maximal BLDC motor drives 

utilize a PID controller for controlling the machine's speed. 

The biggest issue with PID controllers, however, is altering 

their parameters during deployment. Recent research has 

found that the Particle Swarm Optimization (PSO) approach 

performs well when optimizing PID controllers. The GWO 

algorithm is described in this work, and it is utilized for 

optimizing the parameters of the PID controller. The purpose 

of the present work is to compare the results of tuning a PID 

controller with the use of PSO and GWO approaches, and to 
conclude that the recommended strategy delivers better 

dynamic performance for BLDC motors. Lastly, utilizing the 

Artificial Bee Colony (ABC) algorithm, Vanchinatan and 

Selvaganesan [8] introduced adaptive Fractional Order PID 

(FOPID) controller for increasing the performance of BLDC 

motors. From previous studies, it was seen the BLDC motors 

demanded their high performance and reliable speed 

regulation under a variety of load and speed conditions. 

The aim of this research is how to design a PI controller to 

regulate and control the speed of controlling the brushless DC 

motor (BLDC) and to obtain the required amplitude value for 

the voltage generated by the inverter, so we proposed the two 
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famous methods of BLDC: Particle swarm optimization (PSO) 

and Gray Wolf Optimization (GWO) So that we know which 

is faster to reach an optimal value to PI Controller gains. 

Found that the speed error The brushless DC motor is 

optimized by 3% in PSO and 2% in GWO, respectively. 

Therefore, the results are considered satisfactory and it is 

proved that GWO is better than PSO. 

 

 

2. PROBLEM STATEMENT 

 

To find the best values of Kp and Ki, two solutions have 

been proposed to address the response speed, the first is the 

PSO and GWO algorithm, both of which depend on the 

Integral Square Error (ISE) function as a target function to 

calculate the error rate, and based on it, the values of Kp and 

Ki were determined . 

 

 

3. METHODOLOGY AND MODELLING 

 

This section presents the method of the work and modelling 

of brushless dc motor (BLDC), Modelling is classified as: 

 

3.1 BLDC motor’s mathematical model 

 

The wave-form of the applied current is rectangular, while 

the back electromotive force (EMF) produced by the BLDCM 

is trapezoidal. We'll use a 3-phase, 6-state BLDCM with Y-

connected windings as well as 2-phase excitation as an 

example in order to make things easier. We make the next 

assumptions, to the extent possible: i) 3-phase windings are 

symmetric, ii) magnetic saturation has been ignored, iii) the 

hysteresis and the eddy current loss values are ignored, iv) 

each motor winding's inherent resistance is R, self-inductance 

has been represented by L, and the mutual inductance has been 

represented by M. Thus, the 3-phase stator voltage balancing 

equation could be defined using state equation below [9] 

Figure 1 shows the dynamic equivalent circuit of the BLDC 

Motor. 

 

 
 

Figure 1. BLDC motor equivalent circuit 

 

[
𝑉𝑎
𝑉𝑏
𝑉𝑐

] = [
𝑅𝑠    0     0
0    𝑅𝑠     0
0   0     𝑅𝑠

] [
𝐼𝑎
𝐼𝑏
𝐼𝑐

] + [
𝐿𝑎    𝐿𝑎𝑏     𝐿𝑎𝑐
𝐿𝑏𝑎   𝐿𝑏      𝐿𝑏𝑐
𝐿𝑐𝑎    𝐿𝑐𝑏     𝐿𝑐

]
𝑑

𝑑𝑡
[
𝐼𝑎
𝐼𝑏
𝐼𝑐

]

+ [
𝑒𝑎
𝑒𝑏
𝑒𝑐

] 

La=Lb=Lc=L 

L=L=L=M=0 

(1) 

 

The induced backs EMFs have a trapezoidal form and their 

peak values are equal to λm w. Electromagnetic torque could 

be calculated through [10]: 

𝑇𝑒 =  𝑒𝑎 𝐼𝑎 + 𝑒𝑏 𝐼𝑏 + 𝑒𝑐 𝐼𝑐 / 𝑤
= 𝜆𝑚(𝑓𝑎 𝐼𝑎 + 𝑓𝑏 𝐼𝑏 + 𝑓𝑐 𝐼𝑐) 

(2) 

 

where, fa, fb, and fc have shapes like ea, eb, and e,  respectively, 

and their maximal values are one. For a simple system with 

inertia Js, load torque TL, and friction coefficient Bs, the 

equation of motion is expressed as [9]: 

 

𝐽𝑠
𝑑𝑤

𝑑𝑡
+ 𝐵𝑠 𝑤 = 𝑇𝑒 − 𝑇𝐿 (3) 

 

The rotor speed (w) and the rotor position (θ), can be written 

as [9]: 

 
𝑑𝜃

𝑑𝑡
=

𝑃

2
𝑤 (4) 

 

3.2 BLDC motor drive’s control system 

 

The three basic components of the BLDC motor drive 

control system are the BLDC motor, three-phase inverter, and 

control system. The block diagram design regarding the 

control system scheme for the BLDC motor is shown in Figure 

2. 

 

 
 

Figure 2. Diagram of a control system for BLDC motor drive 

 

3.3 PI speed controllers 

 

As a result of its low cost, ease of use, and capacity to be 

employed in various applications, the proportional-integral 

(PI) controller is widely used in manufacturing. It also 

improves the system's dynamic responsiveness and eliminates 

or decreases the error susceptibility and steady-state error [11]. 

In closed-loop control, a PI controller responds to an error 

signal that specifies the difference between the actual and 

desired signals by modifying the regulated value until the 

needed system response is reached [12]. Proportional integral 

controller (PI) contains two components of proportionate  gain 

(Kp) and integral gain (Ki) parts. The PI controller has the 

general form [11]:  
 

𝑢(𝑡) = 𝐾𝑝 𝑒(𝑡) + ∫ 𝐾𝑖

𝑡

0

 𝑒(𝑡)𝑑𝑡 (5) 

 

where, u(t) represents the output of the PI controller and e(t) 

represents the error signal. Figure 3 shows a Proportional-

Integral PI controller. 
 

 
Figure 3. Block diagram representation of PI controller 
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4. OPTIMIZATION ALGORITHMS 

 

4.1 Particle swarm optimization (PSO) 

 

Eberhart and Kennedy first created the PSO technique in 

1995 as a population-based optimization approach and a form 

of evolutionary computation tool. The technique was shown to 

be robust in addressing problems with nonlinearity and no 

differentiability, high dimensionality, and several optima, 

using adaptation, which is based on social-psychological 

theory. The next is the technique's properties: The approach is 

straightforward to implement, with great computational 

efficiency and a stable convergence characteristic, and it 

depends on swarm research, like bird flocking and fish 

schooling. Particles are a population of possible solutions that 

the PSO flow through search space. In the PSO method, 

particles have a variable velocity which affects how far they 

travel in search space. Every one of the particles has a memory 

as well, which allows it to recall the optimal solution in every 

one of the search spaces it has visited. In addition, Pbest refers 

to the place with the best fitness, whereas gbest refers to the 

overall best of the population's particles. In this work [13], 

PSO was utilized for tuning the weight coefficients in order to 

obtain an optimal controller. In PSO, a swarm of randomly 

selected individuals referred to as particles is produced. Each 

one of the particles represents a possible solution to the 

problem of optimization. Figure 4 shows the mathematical 

model is built using the following data [14]. 

 

Current Position  x(t) 

Current velocity  v(t) 

Personal Best    p(t) 

Global Best     g(t) 

 

 
 

Figure 4. A mathematical model of PSO 

 

Pseudo-code of PSO is described in Algorithm 1. 

Algorithm 1 PSO 

Step 1: Reading data and randomly generating an initial 

solution. 

 

𝑥𝑖, 𝑗 = (𝑥1,1, 𝑥1,2, 𝑥1,3, …………𝑥𝑝𝑜𝑝, 𝑛), 
i=1 to pop and j=1 to n 

𝑣𝑖, 𝑗 = (𝑣1,1, 𝑣1,2, 𝑣1,3, …………𝑣𝑝𝑜𝑝, 𝑛), 
i=1 to pop and j=1 to n 

 

where, pop represents the size of the population and problem 

dimension. 

Step 2: Calculating the objective function’s fitness value. 

Step 3: Calculating the pbest, which represents the value of 

the objective function of every one of the particles in the 

current iteration’s population is compared to the preceding 

iteration and the particle position that has a lower objective 

function value as pbest for the Current iteration has been stated 

[15]:  

 

𝑝𝑏𝑒𝑠𝑡𝑚𝑘+1 = {𝑝𝑏𝑒𝑠𝑡𝑚𝑘  𝑖𝑓 𝑓𝑚𝑘+1 ≥ 𝑓𝑚𝑘} 
= {𝑥𝑚𝑘+1 𝑖𝑓 𝑓𝑚𝑘+1 ≤ 𝑓𝑚𝑘} 

(6) 

 

where, k represented the number of iterations, and f represents 

the objective function that has been assessed for the particle. 

Step 4: Calculating the value of gbest which represents the 

optimal objective function that is related to pbest amongst all 

of the particles in that iteration is compared to that in the 

preceding iteration and the  lower value has been chosen as the 

current overall gbest. 

 

𝑔𝑏𝑒𝑠𝑡𝑚𝑘+1 = {𝑔𝑏𝑒𝑠𝑡𝑚𝑘 𝑖𝑓 𝑓𝑚𝑘+1 ≥ 𝑓𝑚𝑘} 
= {𝑝𝑏𝑒𝑠𝑡𝑚𝑘+1 𝑖𝑓 𝑓𝑚𝑘+1  ≤ 𝑓𝑚𝑘} 

(7) 

 

Step 5: Velocity update, after calculating gbest and pbest, 

the particles’ velocity for the following iteration must be 

updated with the use of equation [15]: 

 

𝑣𝑚𝑘+1 = 𝑤𝑚 𝑣𝑚𝑘 + 𝐶1. 𝑟𝑎𝑛𝑑1 × (𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥𝑚𝑘)
+ 𝐶2𝑟𝑎𝑛𝑑2 × (𝑔𝑏𝑒𝑠𝑡𝑚 − 𝑥𝑚𝑘) 

(8) 

 

where, the above equation’s parameters have been specified in 

advance and ω represents the weight factor of the inertia, 

which has been characterized as [13]: 

 

𝑤 = 𝑤𝑚𝑎𝑥 −
(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
∗ 𝑖𝑡𝑒𝑟 (9) 

 

C1 and C2 represent the coefficients of acceleration 

typically ranging within [1, 2] A large weight of the inertia (w) 

facilitates global search whereas the  small weight facilitates 

the local search . 

Step 6: Checking the constraints of velocity components 

that occur in limits from conditions below: 

 

𝑖𝑓 𝑣𝑖𝑑 > 𝑣𝑚𝑎𝑥 𝑡ℎ𝑒𝑛 𝑣𝑖𝑑 = 𝑣𝑚𝑎𝑥(𝑜𝑟) 𝑖𝑓𝑣𝑖𝑑
< −𝑣𝑚𝑎𝑥 𝑡ℎ𝑒𝑛  𝑣𝑖𝑑 = −𝑣𝑚𝑎𝑥 

 

Step 7: update the position, where every particle’s position 

at the following iteration (k+1) is updated as:   

 

𝑥𝑗𝑘+1 = 𝑥𝑗𝑘 + 𝑣𝑗𝑘+1 (10) 

 

Step 8: In the case where a number of the iterations hits the 

maximal value, then  go to step9 for the gbest, or else, go to 

step 2. 

Step 9: The individual generating the latest value of the 

gbest is optimum PI parameters at minimal objective function. 

The diagram for implementing the PSO algorithm has been 

illustrated in Figure 5. 
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Figure 5. The diagram for implementing the PSO algorithm 

 

4.2 Grey wolf optimization (GWO) 

 

It's a metaheuristic search method inspired by grey wolf 

behaviour. This algorithm has been invented by (S. Mirjalili) 

in 2014, and its accuracy was good when compared to classic 

algorithms like GA, Differential calculus, PSO, and SI. The 

wolves in this algorithm have been placed in a pyramid shape, 

with levels as illustrated in Figure 6. Alpha wolves are at top 

of the food chain and are the group's leader, followed by the 

remainder of the flock. It is believed to be a helper (alpha) in 

decision-making at the second level, which is known as (beta). 

In the third level, the (Delta) sends out wolf scouts. The final 

level is Omega, which is for wolves who follow the dictates of 

the dominating wolves. Grey wolves track, chase, encircle, 

and attack animals as part of their hunting habit. Alpha wolves 

are the ones who conduct the majority of the hunting. Because 

these wolves have a strong understanding of prey spots, the 

beta may start but is directed by the alpha. As a result, three 

options are most appropriate for the problem. Omega wolves 

use alpha, beta, and delta sites to update their sites. The first 

ideal solution is alpha, while 2nd and 3rd ideal solutions are 

respectively (beta) and (delta) [7-16]. 

 

 
 

Figure 6. Hierarchy of grey wolf 

In this algorithm, 4 groups have been defined, similar to the 

social hierarchy of the grey wolves (to live in packs), which 

are: Alpha (α), Beta (β), Delta (δ), and Omega (ω). Wolves’ 

social hierarchy has been modelled at the stage of the design. 

Alpha is the optimal solution, followed by β and δ as 2nd and 

3rd best options. The remaining solutions are regarded as 

Omega since they are the least important [17]. 

 

4.2.1 Searching for prey 

The grey wolves hunt for prey based on positions of the and 

δ. They split apart to look for the prey. 

 

|A|>1 

 

4.2.2 Encircling the prey 

The following equations are given to quantitatively model 

the encircling behaviour [17]: 

 

�⃗⃗� = |𝐶 . 𝑋𝑝⃗⃗⃗⃗  ⃗ (𝑡) − 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | (11) 

 

𝑋 (𝑙 + 1) = 𝑋𝑝⃗⃗⃗⃗  ⃗ (𝑡) − 𝐴𝑋.⃗⃗ ⃗⃗ ⃗⃗  𝐷𝑋⃗⃗ ⃗⃗  ⃗ (12) 

 

where, 

 

𝐴 = 2𝑎 . 𝑟1⃗⃗⃗⃗ − 𝑎 ⃗⃗⃗   (13) 

 

𝐶 = 2. 𝑟1⃗⃗⃗⃗  (14) 

 

𝑎 = 2 ∗ (1 −
𝑙

𝑙𝑚𝑎𝑥

) 

t=Current iteration 

(15) 

 

where, l is the Current iteration. 𝑎  components are reduced 

linearly from 2 to 0 during iterations 𝑟1⃗⃗⃗⃗  & 𝑟2⃗⃗⃗⃗  represent 

random vectors in [0,1]. The grey wolves can encircle victims. 

The mathematical model assumes that the prey does not know 

its location. As a result, alpha, beta, and delta have more 

understanding concerning prey's location. The three best 

candidate answers are alpha (the first best solution), beta, and 

delta. Omega wolves reposition themselves by the upper layer 

wolves. In this approach, the following equations, namely 

themselves by the upper layer wolves. Figure 7 shows the 

flowchart of GWO method. In this approach, Eqns. (16), (17), 

and (18) are proposed [17]: 

 

 

Dα⃗⃗⃗⃗  ⃗ = |C1X⃗⃗ ⃗⃗ ⃗⃗  ⃗. Xα⃗⃗ ⃗⃗  − X⃗⃗ | 

Dβ⃗⃗⃗⃗  ⃗ = |C2⃗⃗ ⃗⃗ . Xβ⃗⃗ ⃗⃗  − X⃗⃗ | 

Dδ⃗⃗⃗⃗  ⃗ = |C3⃗⃗ ⃗⃗ . Xδ⃗⃗ ⃗⃗ − X⃗⃗ | 

(16) 

 

 X1⃗⃗ ⃗⃗  ⃗ = Xα⃗⃗ ⃗⃗  − A1.⃗⃗⃗⃗⃗⃗  Dα⃗⃗⃗⃗  ⃗ 

X2⃗⃗ ⃗⃗ = Xβ⃗⃗ ⃗⃗  − A2.⃗⃗⃗⃗⃗⃗  Dβ⃗⃗⃗⃗  ⃗ 

X3⃗⃗ ⃗⃗ = Xδ⃗⃗⃗⃗ − A3.⃗⃗⃗⃗⃗⃗  Dδ⃗⃗⃗⃗  ⃗ 

(17) 

 

X⃗⃗ (l + 1) =
X1⃗⃗ ⃗⃗ + X2⃗⃗ ⃗⃗  + X3⃗⃗ ⃗⃗  

3
 (18) 

 

4.2.3 The mathematical model for hunting 

The wolves advance on the prey, making the victim's 

position the final position of Alpha. 
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|A|<1 

 

Pseudocode of GWO is described in Algorithm 2. 

Algorithm 2 GOW 

Initialization of grey wolf population Xi (i = 1, 2,..., n) 

Initialize a, A, and C 

Calculating the fitness of every one of the search agents 

Xα = best search agent 

Xβ = 2nd-best search agent 

Xδ = 3rd best search agent While (t < max number of 

iterations) 

For every one of the search agents 

Updating position of current search agent through Eq. (16) 

      End For 

Update a, A, and C 

Calculating fitness of all of the search agents Updating Xα, 

Xβ, and Xδ 

t = t + 1 End while 

Return Xα 

 

 
 

Figure 7. Flow chart of the grey wolf optimization 

algorithm 

 

 

5. SIMULATION RESULTS AND DISCUSSIONS 

 

Figure 8 depicts the simulation model for PI-controlled 

BLDC motor drive. According to the requirements, a reference 

speed is set. The feedback path feeds the observed speed to the 

comparator. The PI controller processes the error signal. The 

motor's various parameters are listed in Table 1. Various 

algorithms are used for evaluating the PI controller's settings 

(KP, KI). For various systems, the GWO algorithm is used for 

evaluating the PI controller parameters, and the output 

response has been put to comparison with the PSO-based 

function. The PSO and GWO based PI controller design for 

BLDC system can be represented by the block diagram in 

Figure 9. 

 

Table 1. BLDC Motor parameters 

 
Rated voltage 80 v 

Rated speed 1500 rpm 

Rotor Inertia - J [kg-m2] 

Inertia, J (Kg-m2) 
5.5e-3 

Resistance - Rs 1.43ohm 

Inductance - Lls 9.4e-3H 

Friction Coefficient -B 2e-3 

Torque constant 10N.m 

Rotor Flux 0.2158 wb 

Number of pole pairs (P) 4 

 

Depending on the Integrated-Square Error (ISE) between 

C(s) and R(s) specified as objective function J in Eq. (19), the 

GWO or PSO block will be fed back for minimizing the ISE 

to achieve appropriate PI Controller settings, i.e., Kp, Ki of PI 

controller producing a satisfying response. 

 

𝐸(𝑆) = 𝑅(𝑆) − 𝐶(𝑆)     

J = ∫ 𝑒2(𝑡). 𝑑𝑡
∞

0

 

 
(19) 

 

Table 2. Basic parameter values of the algorithm 

 
Algorithmic parameters PSO GWO 

Max. no. of search agents 50 40 

Iterations 40 30 

Dimension 2 2 

Lower bound [5 150] [5 150] 

Upper bound [20 500] [20 500] 

 

Table 2 shows the number of search agents and iterations 

for both methods. Comparably, Table 3 shows the KI and KP 

values for the two approaches. The output responses for the 

two cases are produced with the use of controller parameters 

listed in Table 4, as it has been shown in Figure 10, which 

shows that in the case of a GWO-based PI-controlled system, 

peak overshoot and settling time are shorter compared to in 

PSO-based system. Table 4 compares the performance of the 

two systems in the case when the motor is set to 1500 rpm. 

 

Table 3. PI controller parameters for different 

 
Kp Ki Speed algorithm 

9.660415791715693 187.2824720285225 1454.4 PSO 

9.9652 224.4844 1455.2 GWO 

10.7253 238.4021 1458.1 PSO 

11.8736 298.3538 1461 GWO 

12.5275 179.7175 1460 PSO 

4.229 193.3457 1463 GWO 

15.8736 298.3538 1464 PSO 

17.22086 246.6088 1467 GWO 
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Figure 8. A BLDC Motor simulation model 

 

 
 

Figure 9. PSO&GWO-based PI Controller design 

 

 
Time (sec) 

 

Figure 10. Speed response in1500 rpm versus time under 

load 10N.m 

 

Table 4. Performance of the PSO and GWO based PI 

controllers 

 
Algorithm Rise time (s) Overshoot (s) Settling time 

PSO 3.012 3 2.3 

GWO 3.015 2 2.25 

 

The three-phase currents for ramp response are shown in 

Figure 11. The magnitude current is 5 A from 0 to 0.9 sec since 

the motor is running at no load, and it increases to 10 while the 

motor is running at full load. Figure 12 show the three-phase 

back emf and Figure 13 Electromagnetic Torque developed in 

N-m. 

When comparing this work with another work presented in 

2018 [2], which is a comparison between NCS and CCS, it was 

found that the results of PSO and GWO are the best from the 

Figure 14 and 15. 

 

 
Time (sec) 

 

Figure 11. Three-phase stator current 

 

 
Time (sec) 

 

Figure 12. Three Phases back emf 
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Time (sec) 

 

Figure 13. Electromagnetic Torque developed in N.m 

 

 
 

Figure 14. Speed response in 3000 rpm versus time 

 

 
 

Figure 15. Speed response in 3000 rpm versus time 

 

 

6. CONCLUSIONS 

 

The GWO and PSO are proposed for use in designing an 

optimum PI controller for the BLDC motor speed regulation 

in this study. Both GWO and PSO were utilized for getting the 

optimal reaction. A PI controller was used for controlling the 

BLDC speed. BDC motor's speed is controlled using a new 

optimization approach (GWO) which surpasses the PSO 

method in this research. Yet, PSO has some drawbacks, such 

as being easy to slip into a local optimum in a high-

dimensional environment and having a slow rate of 

convergence. Several types of research were undertaken in the 

previous few decades for improving PSO. The data suggest 

that the machine settles down in a shorter time than the PSO-

based method. Even though the GWO approach takes 

somewhat longer to alter the PI controller parameters 

regarding a BLDC motor compared to the PSO approach, the 

significant improvements in time domain performance justify 

its adoption. The suggested approach could give the field of 

BLDC motor drive system controller design a new dimension. 
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