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Artificial intelligence and the Internet of Things (IoT) have resulted in more 

computationally demanding and time-sensitive applications. Given the limited 

processing power of current mobile computers, there is a need for on-demand 

computing resources with minimal latency. Edge computing has already made a 

significant contribution to mobile networks, enabling the distribution, scaling, and 

faster access of computational resources at network margins closer to users, especially 

in power-constrained mobile devices. Offloading tasks efficiently on the Mobile Edge 

Computing Server (MECS) is an important part of our proposed method. We propose a 

method of offloading multiple tasks for Mobile Edge Computing servers that require 

fixed memory capacities and low latency. We calculate the optimum cumulative 

intrinsic profit of the number of offloaded tasks efficiently using the Ant Colony 

Optimization (ACO) model, which is flexible and versatile in the context of real-time 

applications. 
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1. INTRODUCTION

The concept of mobile edge computing (MEC) was 

introduced in the 5th generation of mobile communications 

technology, where computing resources such as mobile edge 

computing servers (MECS) are brought near users at the edge 

of the network. The offloading of tasks from user equipment 

(UE) to these high-performance servers through access 

networks reduces latency, ensures greater scalability, 

minimizes energy consumption, and eases distribution, but 

also puts more pressure on the MECS. The MEC is designed 

as a decentralized cloud computing environment and the 

servers have different capacities and properties. Due to the 

limited capacities of each server, allocating services and tasks 

to these distributed servers using an efficient algorithm is an 

effective solution to optimize the services of MEC and 

mitigate unnecessary lags, as summarised in Figure 1. 

Figure 1. Schematic diagram of Edge Computing 

Architecture 

The efficiency of MECSs and the UEs depends, among 

other parameters, on the optimal allocation of offloaded tasks 

to MECS. This paper discusses the problem of the allocation 

of tasks to MECs. The objective is to maximize the profits 

intrinsically related to the task by allocating to the MECS or 

rejecting them altogether based on some constraints discussed 

later.  

ACO algorithms are used to approximate or solve hard 

combinatorial optimization problems. A multi-agent system is 

one in which low-level interactions between multiple agents 

(e.g., artificial ants) produce complex behavior in the entire 

colony. An ACO algorithm is based on the pheromones that 

are deposited by ant colonies on the ground (called 

pheromones). The presence of more pheromone on a particular 

path increases the chances of the ant choosing it. Our proposed 

model will address how the ACO algorithm behaves exactly 

as the artificial ants are represented.  

It is shown in section 3 that the resource sharing model of 

the offloading could be reduced to a simple Multiple Knapsack 

Problem (MKP). An MKP entails allocating n items, which 

have some inherent profit and consume some resources, to m 

Knapsacks. Optimal allocation maximizes profit while not 

exceeding resource constraints. As MKP is NP-complete, it 

cannot be used in real-time applications. In this case, Ant 

Colony Optimization (ACO) is used as a heuristic algorithm. 

However, ACO in its original form is not suitable for subset 

problems such as MKP as its early applications were for 

ordering problems such as the Travelling Salesperson Problem. 

So, we have modified the algorithm according to the need of 

this model.  

The main contributions of these works are: namely, the 

advantages of computational offloading with respect to profit 
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maximization and latency reduction when the ME can offload 

its computational tasks to MECS; considering the analytical 

contingency, our proposed algorithms are based on solving 

Multiple Knapsack problems using Ant colony optimization; 

according to the results, the ACO-based approaches can 

achieve close to optimal performance and can reduce latency 

to a suitable level. 

The rest of the paper is organized as follows. Our research 

is divided into five sections: Literature Review in section 2, 

Problem Formulation in section 3, Solution Methodology in 

section 4, which introduces the Ant Colony Optimization 

System for Multiple Knapsack Problems, followed by 

numerical results in section 5 and concluding the work in 

section 6. 

 

 

2. LITERATURE REVIEW 
 

Leguizamon and Michalewicz [1] proposed a new class of 

ACO algorithms for the subset problem, which incorporated 

the computational study of the Multiple Knapsack Problem 

(MKP) to demonstrate its inherent potential. Model-based 

searches like ACO are likely to be associated with model 

biases in decision making. The effectiveness of such biasness 

was carefully observed and represented by Fidanova [2] based 

on two non-identical pheromone models. A pheromone model 

has been used to solve the Multiple Knapsack Problem (MKP), 

and the results show how useful it is for achieving quality 

solutions. Based on integer linear optimization, an optimized 

offloading algorithm was proposed by Khan [3], that allows 

the selection of execution modes between local execution, 

offloading execution and dropped tasks for all mobile devices. 

The NP-hard problem and its allied methods for deployment, 

resource sharing, load balancing, and fairness practices on 

multi-user 5G mobile networks are expounded on by Ketyko 

et al. [4] and NP-hard problems such as multichannel wireless 

interference can be solved in a centrally optimized way for 

mobile-edge cloud computing using multiuser offloading. In 

order to achieve better efficiency, game theory was employed 

to compute the offloading in the distributed environment [5]. 

Cena et al. [6] introduced a new version of the ACO model for 

the Multiple Knapsack Problem (MKP). Guo et al. [7] 

proposed a flexible framework of offloading methods based 

on array signal processing for MEC networks. Each antenna 

was responsible for performing some computations tasks per 

user. Instead of performing the tasks at the user end with 

limited computational resources and limited resource 

capabilities, it could be computed at some competent 

neighboring computational access points (CAPs), 

compromising with transmission cost. The costs of the system 

were calculated using computational price, energy 

consumption, and latency. The proposed ACO method was 

able to reduce the system expense by randomly visiting each 

CAP to obtain the final results. A difficult challenge for 

executing applications remotely on a mobile device in MCC is 

computation offloading. Bao et al. [8] addressed this challenge 

with an ACO based solution with low computational 

complexity. It can be easily implemented in practice. Zakaryia 

studied a task scheduling method using mobile edge 

computing (MEC) with multiple base stations (BS), each 

consisting of a MEC server, that guides multiple latency-

sensitive user equipment (UE) in computing [9, 10]. Sheng et 

al. [11] also have worked on computing offloading techniques 

in mobile edge computing. Lee and Bau's work [12] 

beautifully explains an ant colony optimization method for 

solving Multidimensional Knapsack problems.  

 

 

3. PROBLEM FORMULATION 

 

We propose to model the problem of task offloading as a 

multi-dimensional knapsack (MKP) problem, intending to 

maximize the cumulative intrinsic profits of the offloaded 

tasks for servers with fixed memory capacities and minimum 

delay. This model consists of multiple tasks derived from a 

single UE and each task can be offloaded to different MECS 

with different performance specifications. Both UE and 

MECS are connected via an access network that provides the 

same bandwidth for all tasks during offloading. 

The following symbols with meaning are given in Table 1, 

which have been used in the problem formulation and solution 

methodology. 

 

Table 1. List of symbols with description 

 
Symbol Meaning 

N the set of User Equipment (UEs). 

M the set of Mobile Edge Computing Servers. 

bn 
the uploaded tasks and the downloaded results 

are both measured in bytes. 

dn the number of CPU cycles. 

L the set of possible computation locations. 

o(n): N → 

L 

the description of a specific offloading setup of 

UEN for location L mapping. 

Dn,l 

a constant amount of processor time, which is 

constant throughout the decision-making 

process. 

CPUn 
the number of CPU cycles required by the user 

equipment n to complete the tasks. 

Cm the capacity of mth Knapsack. 

Pi the profit for ith UE. 

I{} 
a function that equals 1 when the statement 

within the brackets is true, and otherwise 0. 

Xij 
1, if the item i is in the jth Knapsack, otherwise 0 

is returned. 

bi 
In the solution of the item i at time t = 0, it 

represents the number of ants that were present. 

Na the total number, in a population of ants. 

τi(t+Nmax) the Trail/path intensity at time t+Nmax. 

Ρ is the evaporation coefficient. 

Nmax 
In some ants, Nmax is the maximum number of 

items they can add to a solution. 

Lk the profit obtained by the kth ant. 

allowedk 

the set of items x is not taken into consideration 

by the k-th ant, and the solution still satisfies all 

constraints if some of them are added. 

uj(k) the sum of all the items visited by the kthant. 

𝛿ij 
When the item i is added to the solution, 𝛿ij 

represents the tightness of item i on constraint j. 

ηi(t,k) thepseudo-utility for MKP. 

α,β 
It allows a user to control how much importance 

is given to trial versus heuristic. 

Δτi the change in pheromone. 

tabuk the stores the set of items traversed by the kth ant. 

NC 
the number of iteration counts of the proposed 

algorithm. 

NCMAX 
the maximum number of iteration counts 

permitted for the proposed algorithm. 
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There are N ={1, 2, ... , n} as a set of user equipments (UEs) 

and M ={1, 2, . . . , m} as a set of MECSs. Every UE has a user 

equipment computation task that is either computed by the UE 

itself or offloaded to the MECS; di is the CPU cycles count for 

the ith task, qi is the memory required for each task i. Let L = 

M + {0} represents the set of possible locations for 

computation. Let l ∈ L indicates an actual location; l = 0 

indicates a UE executing processing, l∈M offloading to one of 

the MECSs. The function o(n): N → L gives the location L to 

the UEn mapping, describing a specific offloading setup. 

While offloading tasks, users encounter latency in real 

scenarios. The latency of the access network is formulated as 

follows according to the study [1]: 

The offloading setup defines latency (tn) as the sum of two 

components: transfer time(tn
transfer) and execution 

time(tn
execution). 

 

tn = tn
transfer + tn

execution
 (1) 

 

𝑡𝑛
transfer = {

𝑏𝑛

𝑟𝑛,𝑜(𝑛)

 if 𝑙 > 0

0 if 𝑙 = 0

 (2) 

 

𝑡𝑛
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 =

𝑑𝑛 

𝑓𝑛,𝑜(𝑛)
 (3) 

 

where, fn,l represents the CPU speed in cycles/second for UEn 

at location l; rn,m represents the bandwidth between MECSm 

and UEn; bn represents the byte size of both the uploaded tasks 

and the downloaded results and dn represents the number of 

CPU cycles. 

Definition: The term UEn refers to a low-latency user in the 

case of a specific offloading setup, if tn < τ, 𝜏 𝜖 ℝ+. Here, 𝜏 

refers to the maximum permissible latency of tasks [1]. 

This concept of latency has been used later in our model to 

allow only low latency users to offload tasks. 
The Resource Sharing Model (RSM) affects the edge to 

edge computational resource consumption through the 

definition of fn,l. According to the RSM in the cloud, a user can 

get a predecided quality of memory (Qn,l), which will remain 

fixed all through the decision-making process. But, MECSs 

cannot grant users more than their memory capacity (Cm) 

allows. fn,l is the CPU speed obtained in cycles/second for 

UEn at location l. An MECS rejects offloading attempts if it 

exceeds the memory capacity or if it violates the latency 

constraints: 

 

𝑓𝑛,𝑙 = {

𝐷𝑛,𝑙 𝑙 > 0 and offloading is admitted 

0 𝑙 > 0 and offloading is rejected 

CPU𝑛 𝑙 = 0
 (4) 

 

where, CPUn is the number of CPU cycles required by the user 

equipment n to complete the task and Dn,l is the predetermined 

amount of processor time constant throughout the decision 

making process. 

Definition: A user is said to be offloaded if o(n) > 0; o(n): 

N →L describes a specific offloading setup, where UEn is the 

destination and L is the offload location [1]. 

In this setup, there are many goals that can be optimized, 

but we consider that each task has an intrinsic profit Pi that 

needs to be maximized. Mathematically, enumerated as Z is 

Maximum offloaded (Maxo). 

𝑍 = Max𝑜 ∑  

𝑁

𝑖=1

𝑔(𝑖), where 𝑔(𝑖) {
0   𝑜(𝑖) ≤ 0
𝑃𝑖    𝑜(𝑖) > 0

 (5) 

 

The problem can be formulated as follows when taking the 

capacity of each server into account 

 


=

=
N

i

io PMaxZ
1

 (6) 

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      𝑜(𝑛) ∈ 𝐿         ∀𝑛 ∈ 𝑁 (7) 

 

 = llioli clQ })({, Ml  (8) 

 

𝑡𝑖 ≤ 𝜏 (9) 

 

where, l{} represents the function which is equal to 1 if the 

statement in the parentheses is true, and otherwise 0. Every 

server combination can effectively include the UEs that are 

allocated to that specific server only. In this way, the resulting 

problem closely resembles the Multiple Knapsack Problem 

(MKP). 

The optimization problem can be expressed as follows in 

the MKP framework: 

Objective Function (Total cumulative intrinsic profits 

Maximize): 

 

 = =
=

N

i

M

j iji xPMaxZ
1 1

 (10) 

 

Subject to 

 =


N

i jiji CxQ
1

, ∀𝑗 ∈ 𝑀 
(11) 

 

 =


M

j ijx
1

1, ∀𝑗 ∈ 𝑁 (12) 

 

𝑡𝑖 ≤ 𝜏 (13) 

 

𝑥𝑖𝑗  ∈ {0.1}  ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑀 (14) 

 

The objective function (10) maximizes the total cumulative 

intrinsic profit of offloaded tasks; Constraint (11) specifies 

that the cumulative sum of all memory requirements of tasks 

assigned to a server does not exceed the server’s memory 

capacity; Constraint (12) signifies that each task can be 

assigned to a single server only; Constraint (13) determines the 

low latency that each task must be low latency; Constraint (14) 

specifies that the if xij is 1 in the Knapsack j, otherwise 0 in 

item i.  

An MKP model involves a set of elements (UEs) with their 

associated weights (requested memory capacity) and profit, as 

well as a set of Knapsacks (MECSs) with capacity (maximum 

memory capacity), and exploring to find the ordering 

(offloading setup) with the maximum profit. 

 

 

4. SOLUTION METHODOLOGY OF THE PROBLEM 

 

This section introduces our proposed optimization 

framework for determining an optimal task allocation decision 
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that minimizes latency and maximizes the intrinsic profits of 

all tasks. 
 

4.1 Ant Colony Optimization (ACO) model 
 

The ACO model explores the minimum cost of the path on 

a weighted graph and uses artificial ants to achieve this. An 

artificial ant behaves similar to a real ant in that it deposits 

pheromones along its path and chooses its path based on the 

probabilities of concentration that have been previously laid 

out. It is possible to create pheromone trails to simulate 

artificial evaporation to make the model more realistic. We can 

find optimal solutions for complex problems using a 

population-based metaheuristic using this proposed model. 
 

4.2 ACO model based edge computing 
 

For the MKP solution, the model of an ant colony has to be 

adapted because the purpose of the ant here is not only to 

reduce the cost of the route but also to find the best solution so 

that the profit of the path is maximized where all resources are 

satisfied. 

Let bi be the number of ants in the solution item 'i' at time t 

= 0 and suppose Na = =

n

ib
1

is the total number of ants. 

Since MKP is a subset problem, it is necessary to estimate the 

path intensity and path visibility so that it can be calculated in 

a slightly different way for the absence of a clear path. We 

define τi(t+Nmax) as the path intensity of the item ‘i’ at the 

time (t+Nmax), given by: 
 

τi(t+Nmax)= ρ τi (t) + Δ τi(t,t+Nmax) (15) 
 

where, ρ represents evaporation coefficient and Nmax 

represents the maximum number of items some ants add to a 

solution.  

In τi(t, t+ Nmax) = =

Na

k 1

Δτik (t,t+ Nmax), where Δτik (t,t+ 

Nmax) represents the amount of substance per unit length of  

path (pheromone in real ants) laid on item ‘i’ between the time 

‘t’ and t+Nmax by the kth ant, and is calculated as follows:  
 

Δ𝜏𝑖
𝑘(𝑡, 𝑡 + 𝑁𝑚𝑎𝑥) = {

𝐿𝑘

𝑄
, if kth  ant includes item 'i' 

0, otherwise 

 (16) 

 

where Q is a constant and Lk is the profit attained by the kth ant 

at time t = 0, so the intensity of path τi (0) is set at a randomly 

selected value. In the next (t+Nmax) time, the probability of the 

kth ant selecting item ‘i’ to complete the solutionk is:  
 


 kallowedj

ii

ii

tkt

tkt








)],([)]([

)],([)]([
kallowedi  

Pi(t, k) =  

 

                          0                                    
kallowedi  

(17) 

 

A solutionk that has the constraints satisfied by all of the 

allowedk items is the solutionk if they are added to the allowedk 

set. A local heuristic, or pseudo-utility, the parameter η this 

case. We have chosen ηi for item ‘i’ as follows: 
 

;
)(

),(
k

p
tk

ij

i
i


 =

m

k
k

m

j j

ij

 =
=

1
)(

)(


  (18) 

δij(k) = 
𝐷𝑖

(𝑐𝑗−𝑢𝑗(𝑘)+1)
 ;  

=
ksolutionl lj Dku )(  (19) 

 

where (cj - uj(k)) is the remainder of the amount which has 

reached the boundary of constraint j; Di ≤ (cj - uj(k)) and 

𝛿𝑖𝑗𝜖(0,1) are the tightness of item ‘i’ on constraint ‘j’ when 

adding item ‘i’ to the solution. As a result of this is that pseudo-

utility ηi (t, k) gets larger and δij(k) (tightness average) gets 

smaller.  

By setting the parameters α and β, the user can control the 

relative importance of heuristics (pseudo-utilities for MKP) 

compared with trial. As a result, transition probability is a 

trade-off between pseudoutilities, where items that benefit the 

user while using fewer resources are more likely to be chosen 

with a high probability, and trail intensity, where items that are 

part of many solutions are highly desirable. 

The tabuk list is a data structure that is associated with every 

ant, so that it can select items more than once, since the tabuk 

list keeps track of the items added by kth ant over time 't'.The 

list also maintains uj(k) (j= 1, 2,..., m) of the necessary 

computations so that computation times are reduced. 

A set is defined as: allowedk = [ j | j * tabuk] and when item 

j is added to solutionk, it satisfies all constraints. The item hk 

is selected from the kth tabu list when all ants have added as 

many solutions as possible. A kth ant with an initial solution 

of hk is released after the kth tabu list is emptied. 

 

4.3 Maximize Cumulative Intrinsic Profit of the Task 

Offloading Algorithm 

 
In the above discussion, we have explained the ACO-based 

Maximize Cumulative Intrinsic Profit of the Tasks Offloading 

method in the Mobile Edge Computing through a flowchart 

which is shown below in Figure 2. 

 

 
 

Figure 2. Flowchart of the maximize cumulative intrinsic 

profit of the tasks offloading 
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In addition to the above discussion we have developed an 

ACO-based Maximize Cumulative Intrinsic Profit of the 

Tasks Offloading algorithm as follows: 

_________________________________________________ 

Algorithm 1: Maximize Cumulative Intrinsic Profit of the 

Tasks Offloading 

 

Steps: 

 

1. Set time counter t  0  

Set an initial value is τi (t) for each item ‘i’ 

    Set Δτi(t,t+Nmax ) 0 for each item ‘i’ 

bi is the number of ants choosing item i at time 0 

Set tabu list index j1  

 For i1 to NDo                   

         For k1 to bi Do                     

   tabuk (j)  i  

2. For k 1 to Na Do 

          Set tabu list index j 2 

          Repeat until all constraints are not satisfied by kth ant 

Choose the item ‘i’ with the highest probability Pi(t,k) 

given by the equation (17) that doesn’t violate  

 tabu k (j)  i 

 j  j + 1 

3. For k  1 to Na Do  

        Compute Lk  

        For s 1 to number of items in tabuk Do    

            H tabuk(j) 

  Δτh (t,t+ Nmax ) Δτh (t,t+ Nmax) + Lk/Q 

           j  j +1 

4. Calculate τi(t+ Nmax ) according to the equation (15) for each 

item ‘i’ 

     Set time t  t + Nmax 

     Set Δτi (t,t+Nmax)  0 for each item ‘i’   

5. Memorize the best solution found up as follows  

     If ((NC < NCMAX) or (Not all ants find the same solution)  

Then 

 hkrandomly selected item from tabuk 

 Clear all tabu list 

          tabu k (1)  hk 

 Goto Step 2 

      Else 

          Write Best Solution 

6. Finish 

 

Following is a step-by-step explanation of the above ACO-

based Maximize Cumulative Intrinsic Profit of the Tasks 

Offloading algorithm for Mobile Edge Computing: 

In the step 1, time counter ‘t’ is initially set to 0. We assign 

an initial value of pheromone(τ) on each item and we also 

assign the change in pheromone (Δτi) on each item as 0. Then 

we have assigned the starting item for each ant. The 

information about the starting item of each ant is stored in the 

tabu list of the ant. 

In the step 2, one of the ants among the kth ant is taken into 

consideration at a time. The probability of visiting all the items 

in the set of items that the ants have yet to traverse while 

satisfying all the constraints is calculated for each individual 

ant. The item with the highest probability and low latency is 

chosen as the next item to be visited by the ant. The ant’s next 

destination is recorded in its tabu list as the ant moves to its 

next destination. This process of choosing the next item is 

continued until there are no items left such that they are not 

traversed and satisfy all the constraints. This is repeated until 

all the ants have their set of items they have traversed in order 

recorded in their tabu lists. 

In the step 3, one ant out of the k ants is taken into 

consideration at a time. The total profit, L, obtained from the 

items chosen by the ant is calculated by adding the profit for 

each item. For every item in the ant’s tabu list, the change in 

pheromone, Δτi, is calculated and updated. This process is 

repeated until the pheromone deposited by all ants on the items 

in their tabu lists is calculated. 

In the step 4, the present pheromone value (τ), for each item 

is calculated by adding the change in pheromone (Δτi), by the 

ants obtained from the previous step. Then for each item, the 

change in pheromone (Δτi) is again set to 0. 

In the step 5, if the number of iterations does not exceed the 

maximum allowable cycle, then the solution (set of items) 

which was traversed by the maximum number of ants is better 

than the solution found earlier. Otherwise, it is discarded. If all 

ants do not reach a consensus regarding a solution, the tabu 

lists of the ants are emptied and step 2 is followed. If the 

algorithm cycles are exhausted, the best solution is printed. 

 

 

5. RESULTS ANALYSIS 

 

A number of parameters have been considered for analyzing 

the results of the ACO-based Maximized Cumulative Intrinsic 

Profit of the Tasks Offloading Algorithm in Mobile Edge 

Computing. Table 2 shows how the test of this algorithm used 

different input parameters and their values. 

 

Table 2. Different sets of input parameters with their values 

 

S. 

No. 
Input parameters Input values 

1 Number of iterations (n) 10 20 50 

2 Number of ants (N) 100 100 100 

3 
Evaporation coefficient 

(ρ) 
0.7 0.7 0.7 

4 

Trade-off between trailing 

and pseudo-utility factors 

(α , β) 

(0.3, 

0.7) 

(0.65, 

0.35) 

(0.9, 

0.1) 

 

Table 3. The following data for each test case 

 

Dataset 

<N,M> 
α β Ants 

Profit(without 

latency) 

Profit(with 

latency) 

<6,2> 0.3 0.7 100 345 265 

<6,2> 0.65 0.35 100 345 265 

<10,2> 0.3 0.7 100 333 266 

<10,2> 0.65 0.35 100 333 266 

<10,2> 0.3 0.7 100 452 407 

<10,2> 0.65 0.35 100 452 407 

 

The dataset size is <N, M>, where N is the number of tasks 

and M is the number of servers. With the parameters α and β, 
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we contrast the importance of trial and heuristic, the number 

of ants, and the maximum profit for the data as provided with 

the dataset. and our algorithm calculates the maximum profit 

considering latency. 

We consider an interconnected network of UEs and MECSs. 

Each UE owns a channel with 12 bytes/s transfer speed and τ 

which is 2 seconds. All of these have been chosen randomly.  

Each test case has been tested for three different sets of 

pseudo-utility while keeping the number of ants constant. 

Naturally, profit, when latency limiting is not considered, is 

greater than when considered. As is clear from the results, 

changes in the value of parameters don’t affect the results in 

the test cases as shown in Table 3. 

To calculate running time and space consumed, a 

benchmarking test was performed on a system with the 

following specifications: CPU: AMD Ryzen 3 3250U, 2.6GHz; 

RAM: 12GB; HDD: 1 TB; Number of ants were incremented 

in steps and time and space requirements were duly noted for 

three randomly generated datasets. The number of ants (Na) = 

10, comparing the time and space consumption of different 

data sets is shown graphically in Table 4. The number of ants 

(Na) = 50, comparing the time and space consumption of 

different data sets is shown graphically in Table 5. The number 

of ants (Na) = 100, comparing the time and space consumption 

of different data sets is shown graphically in Table 6. 

 

Table 4. The Time and Space Consumption of different problems with no. of ants (Na) = 10 

 

Dataset <N,M> 
Time taken 

in seconds 

Space consumed 

in MB 

Compare of Time and Space Consumption 

for 10 Ants of different problem size in Graphically 

<100,50> 14.18 12.67 

 

<1000,50,> 100.30 14.70 

<1000,100> 886.94 17.30 

 

Table 5. The Time and Space Consumption of different problem with no. of ants (Na) = 50 

 

Dataset <N,M> 
Time taken 

in seconds 

Space consumed 

in MB 

Compare of Time and Space Consumption 

for 50 Ants of different problem size in Graphically 

<100,50> 32.54 12.85 

 

<1000,50> 1795.07 17.10 

<1000,100> 3668.03 19.25 

 

Table 6. The Time and Space Consumption of different problem with number of ants (Na) = 100 

 

Dataset 

<N,M> 

Time taken  

in seconds 

Space consumed  

in MB 

Compare of Time and Space Consumption  

for 50 Ants of different problem size in Graphically 

<100,50> 49.2 12.85 

 

<1000,50> 2795.07 17.8 

<1000,100> 6668.03 20.25 
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Time and space taken by the algorithm increases according 

to the polynomial complexity of the algorithm. The runtime of 

the algorithm may be further reduced if it is supported by 

multithreading or runs on a CPU with a higher clock cycle or 

both. 

6. CONCLUSIONS

This paper proposes an offloading framework that allows a 

single UE to offload tasks across multiple Mobile Edge 

Computing Systems (MECS). We have achieved our goal to 

maximize profits and limit performance and transmission 

latency. In order to find efficient solutions to the NP-hard 

nature of overall optimization problems, we presented the 

ACO-based Efficiency functions for the Maximized 

Cumulative Intrinsic Profit of Offloading algorithms. 

The ACO algorithm performs reasonably as it has not 

regurgitated any result that doesn’t follow the constraints. Our 

algorithm has shown high accuracy even during the initial 

iterations. Hence real-time use of this algorithm for load 

balancing could also be considered. Also, the algorithm could 

be made more streamlined or accurate using optimal numbers 

of ants and values of α and β. There are also plenty of methods 

to model the ant colony optimization algorithm to fit the MKP. 

These methods can be tested for a comparative study. 
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