
Intrinsic Profit Maximization of the Offloading Tasks for Mobile Edge Computing with

Fixed Memory Capacities and Low Latency Constraints Using Ant Colony Optimization

Harinandan Tunga1*, Samarjit Kar2, Debasis Giri3

1 Department of Computer Science & Engineering, RCC Institute of Information Technology, Kolkata 700015, India
2 Department of Mathematics, National Institute of Technology, Durgapur 713209, India
3 Department of Information Technology, Maulana Abul Kalam Azad University of Technology, West Bengal 741249, India

Corresponding Author Email: harinandan.tunga@gmail.com

https://doi.org/10.18280/mmep.090313 ABSTRACT

Received: 5 December 2021

Accepted: 13 June 2022

Artificial intelligence and the Internet of Things (IoT) have resulted in more

computationally demanding and time-sensitive applications. Given the limited

processing power of current mobile computers, there is a need for on-demand

computing resources with minimal latency. Edge computing has already made a

significant contribution to mobile networks, enabling the distribution, scaling, and

faster access of computational resources at network margins closer to users, especially

in power-constrained mobile devices. Offloading tasks efficiently on the Mobile Edge

Computing Server (MECS) is an important part of our proposed method. We propose a

method of offloading multiple tasks for Mobile Edge Computing servers that require

fixed memory capacities and low latency. We calculate the optimum cumulative

intrinsic profit of the number of offloaded tasks efficiently using the Ant Colony

Optimization (ACO) model, which is flexible and versatile in the context of real-time

applications.

Keywords:

Ant Colony Optimization, efficiency tasks

offloading, mobile edge computing servers,

Multiple Knapsack, user equipment

1. INTRODUCTION

The concept of mobile edge computing (MEC) was

introduced in the 5th generation of mobile communications

technology, where computing resources such as mobile edge

computing servers (MECS) are brought near users at the edge

of the network. The offloading of tasks from user equipment

(UE) to these high-performance servers through access

networks reduces latency, ensures greater scalability,

minimizes energy consumption, and eases distribution, but

also puts more pressure on the MECS. The MEC is designed

as a decentralized cloud computing environment and the

servers have different capacities and properties. Due to the

limited capacities of each server, allocating services and tasks

to these distributed servers using an efficient algorithm is an

effective solution to optimize the services of MEC and

mitigate unnecessary lags, as summarised in Figure 1.

Figure 1. Schematic diagram of Edge Computing

Architecture

The efficiency of MECSs and the UEs depends, among

other parameters, on the optimal allocation of offloaded tasks

to MECS. This paper discusses the problem of the allocation

of tasks to MECs. The objective is to maximize the profits

intrinsically related to the task by allocating to the MECS or

rejecting them altogether based on some constraints discussed

later.

ACO algorithms are used to approximate or solve hard

combinatorial optimization problems. A multi-agent system is

one in which low-level interactions between multiple agents

(e.g., artificial ants) produce complex behavior in the entire

colony. An ACO algorithm is based on the pheromones that

are deposited by ant colonies on the ground (called

pheromones). The presence of more pheromone on a particular

path increases the chances of the ant choosing it. Our proposed

model will address how the ACO algorithm behaves exactly

as the artificial ants are represented.

It is shown in section 3 that the resource sharing model of

the offloading could be reduced to a simple Multiple Knapsack

Problem (MKP). An MKP entails allocating n items, which

have some inherent profit and consume some resources, to m

Knapsacks. Optimal allocation maximizes profit while not

exceeding resource constraints. As MKP is NP-complete, it

cannot be used in real-time applications. In this case, Ant

Colony Optimization (ACO) is used as a heuristic algorithm.

However, ACO in its original form is not suitable for subset

problems such as MKP as its early applications were for

ordering problems such as the Travelling Salesperson Problem.

So, we have modified the algorithm according to the need of

this model.

The main contributions of these works are: namely, the

advantages of computational offloading with respect to profit

Mathematical Modelling of Engineering Problems
Vol. 9, No. 3, June, 2022, pp. 668-674

Journal homepage: http://iieta.org/journals/mmep

668

https://crossmark.crossref.org/dialog/?doi=10.18280/mmep.090313&domain=pdf

maximization and latency reduction when the ME can offload

its computational tasks to MECS; considering the analytical

contingency, our proposed algorithms are based on solving

Multiple Knapsack problems using Ant colony optimization;

according to the results, the ACO-based approaches can

achieve close to optimal performance and can reduce latency

to a suitable level.

The rest of the paper is organized as follows. Our research

is divided into five sections: Literature Review in section 2,

Problem Formulation in section 3, Solution Methodology in

section 4, which introduces the Ant Colony Optimization

System for Multiple Knapsack Problems, followed by

numerical results in section 5 and concluding the work in

section 6.

2. LITERATURE REVIEW

Leguizamon and Michalewicz [1] proposed a new class of

ACO algorithms for the subset problem, which incorporated

the computational study of the Multiple Knapsack Problem

(MKP) to demonstrate its inherent potential. Model-based

searches like ACO are likely to be associated with model

biases in decision making. The effectiveness of such biasness

was carefully observed and represented by Fidanova [2] based

on two non-identical pheromone models. A pheromone model

has been used to solve the Multiple Knapsack Problem (MKP),

and the results show how useful it is for achieving quality

solutions. Based on integer linear optimization, an optimized

offloading algorithm was proposed by Khan [3], that allows

the selection of execution modes between local execution,

offloading execution and dropped tasks for all mobile devices.

The NP-hard problem and its allied methods for deployment,

resource sharing, load balancing, and fairness practices on

multi-user 5G mobile networks are expounded on by Ketyko

et al. [4] and NP-hard problems such as multichannel wireless

interference can be solved in a centrally optimized way for

mobile-edge cloud computing using multiuser offloading. In

order to achieve better efficiency, game theory was employed

to compute the offloading in the distributed environment [5].

Cena et al. [6] introduced a new version of the ACO model for

the Multiple Knapsack Problem (MKP). Guo et al. [7]

proposed a flexible framework of offloading methods based

on array signal processing for MEC networks. Each antenna

was responsible for performing some computations tasks per

user. Instead of performing the tasks at the user end with

limited computational resources and limited resource

capabilities, it could be computed at some competent

neighboring computational access points (CAPs),

compromising with transmission cost. The costs of the system

were calculated using computational price, energy

consumption, and latency. The proposed ACO method was

able to reduce the system expense by randomly visiting each

CAP to obtain the final results. A difficult challenge for

executing applications remotely on a mobile device in MCC is

computation offloading. Bao et al. [8] addressed this challenge

with an ACO based solution with low computational

complexity. It can be easily implemented in practice. Zakaryia

studied a task scheduling method using mobile edge

computing (MEC) with multiple base stations (BS), each

consisting of a MEC server, that guides multiple latency-

sensitive user equipment (UE) in computing [9, 10]. Sheng et

al. [11] also have worked on computing offloading techniques

in mobile edge computing. Lee and Bau's work [12]

beautifully explains an ant colony optimization method for

solving Multidimensional Knapsack problems.

3. PROBLEM FORMULATION

We propose to model the problem of task offloading as a

multi-dimensional knapsack (MKP) problem, intending to

maximize the cumulative intrinsic profits of the offloaded

tasks for servers with fixed memory capacities and minimum

delay. This model consists of multiple tasks derived from a

single UE and each task can be offloaded to different MECS

with different performance specifications. Both UE and

MECS are connected via an access network that provides the

same bandwidth for all tasks during offloading.

The following symbols with meaning are given in Table 1,

which have been used in the problem formulation and solution

methodology.

Table 1. List of symbols with description

Symbol Meaning

N the set of User Equipment (UEs).

M the set of Mobile Edge Computing Servers.

bn
the uploaded tasks and the downloaded results

are both measured in bytes.

dn the number of CPU cycles.

L the set of possible computation locations.

o(n): N →

L

the description of a specific offloading setup of

UEN for location L mapping.

Dn,l

a constant amount of processor time, which is

constant throughout the decision-making

process.

CPUn
the number of CPU cycles required by the user

equipment n to complete the tasks.

Cm the capacity of mth Knapsack.

Pi the profit for ith UE.

I{}
a function that equals 1 when the statement

within the brackets is true, and otherwise 0.

Xij
1, if the item i is in the jth Knapsack, otherwise 0

is returned.

bi
In the solution of the item i at time t = 0, it

represents the number of ants that were present.

Na the total number, in a population of ants.

τi(t+Nmax) the Trail/path intensity at time t+Nmax.

Ρ is the evaporation coefficient.

Nmax
In some ants, Nmax is the maximum number of

items they can add to a solution.

Lk the profit obtained by the kth ant.

allowedk

the set of items x is not taken into consideration

by the k-th ant, and the solution still satisfies all

constraints if some of them are added.

uj(k) the sum of all the items visited by the kthant.

𝛿ij
When the item i is added to the solution, 𝛿ij

represents the tightness of item i on constraint j.

ηi(t,k) thepseudo-utility for MKP.

α,β
It allows a user to control how much importance

is given to trial versus heuristic.

Δτi the change in pheromone.

tabuk the stores the set of items traversed by the kth ant.

NC
the number of iteration counts of the proposed

algorithm.

NCMAX
the maximum number of iteration counts

permitted for the proposed algorithm.

669

There are N ={1, 2, ... , n} as a set of user equipments (UEs)

and M ={1, 2, . . . , m} as a set of MECSs. Every UE has a user

equipment computation task that is either computed by the UE

itself or offloaded to the MECS; di is the CPU cycles count for

the ith task, qi is the memory required for each task i. Let L =

M + {0} represents the set of possible locations for

computation. Let l ∈ L indicates an actual location; l = 0

indicates a UE executing processing, l∈M offloading to one of

the MECSs. The function o(n): N → L gives the location L to

the UEn mapping, describing a specific offloading setup.

While offloading tasks, users encounter latency in real

scenarios. The latency of the access network is formulated as

follows according to the study [1]:

The offloading setup defines latency (tn) as the sum of two

components: transfer time(tn
transfer) and execution

time(tn
execution).

tn = tn
transfer + tn

execution
 (1)

𝑡𝑛
transfer = {

𝑏𝑛

𝑟𝑛,𝑜(𝑛)

 if 𝑙 > 0

0 if 𝑙 = 0

 (2)

𝑡𝑛
𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 =

𝑑𝑛

𝑓𝑛,𝑜(𝑛)
 (3)

where, fn,l represents the CPU speed in cycles/second for UEn

at location l; rn,m represents the bandwidth between MECSm

and UEn; bn represents the byte size of both the uploaded tasks

and the downloaded results and dn represents the number of

CPU cycles.

Definition: The term UEn refers to a low-latency user in the

case of a specific offloading setup, if tn < τ, 𝜏 𝜖 ℝ+. Here, 𝜏

refers to the maximum permissible latency of tasks [1].

This concept of latency has been used later in our model to

allow only low latency users to offload tasks.
The Resource Sharing Model (RSM) affects the edge to

edge computational resource consumption through the

definition of fn,l. According to the RSM in the cloud, a user can

get a predecided quality of memory (Qn,l), which will remain

fixed all through the decision-making process. But, MECSs

cannot grant users more than their memory capacity (Cm)

allows. fn,l is the CPU speed obtained in cycles/second for

UEn at location l. An MECS rejects offloading attempts if it

exceeds the memory capacity or if it violates the latency

constraints:

𝑓𝑛,𝑙 = {

𝐷𝑛,𝑙 𝑙 > 0 and offloading is admitted

0 𝑙 > 0 and offloading is rejected

CPU𝑛 𝑙 = 0
 (4)

where, CPUn is the number of CPU cycles required by the user

equipment n to complete the task and Dn,l is the predetermined

amount of processor time constant throughout the decision

making process.

Definition: A user is said to be offloaded if o(n) > 0; o(n):

N →L describes a specific offloading setup, where UEn is the

destination and L is the offload location [1].

In this setup, there are many goals that can be optimized,

but we consider that each task has an intrinsic profit Pi that

needs to be maximized. Mathematically, enumerated as Z is

Maximum offloaded (Maxo).

𝑍 = Max𝑜 ∑  

𝑁

𝑖=1

𝑔(𝑖), where 𝑔(𝑖) {
0 𝑜(𝑖) ≤ 0
𝑃𝑖 𝑜(𝑖) > 0

 (5)

The problem can be formulated as follows when taking the

capacity of each server into account


=

=
N

i

io PMaxZ
1

 (6)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑜(𝑛) ∈ 𝐿 ∀𝑛 ∈ 𝑁 (7)

 = llioli clQ })({, Ml (8)

𝑡𝑖 ≤ 𝜏 (9)

where, l{} represents the function which is equal to 1 if the

statement in the parentheses is true, and otherwise 0. Every

server combination can effectively include the UEs that are

allocated to that specific server only. In this way, the resulting

problem closely resembles the Multiple Knapsack Problem

(MKP).

The optimization problem can be expressed as follows in

the MKP framework:

Objective Function (Total cumulative intrinsic profits

Maximize):

 = =
=

N

i

M

j iji xPMaxZ
1 1

 (10)

Subject to

 =


N

i jiji CxQ
1

, ∀𝑗 ∈ 𝑀
(11)

 =


M

j ijx
1

1, ∀𝑗 ∈ 𝑁 (12)

𝑡𝑖 ≤ 𝜏 (13)

𝑥𝑖𝑗 ∈ {0.1} ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑀 (14)

The objective function (10) maximizes the total cumulative

intrinsic profit of offloaded tasks; Constraint (11) specifies

that the cumulative sum of all memory requirements of tasks

assigned to a server does not exceed the server’s memory

capacity; Constraint (12) signifies that each task can be

assigned to a single server only; Constraint (13) determines the

low latency that each task must be low latency; Constraint (14)

specifies that the if xij is 1 in the Knapsack j, otherwise 0 in

item i.

An MKP model involves a set of elements (UEs) with their

associated weights (requested memory capacity) and profit, as

well as a set of Knapsacks (MECSs) with capacity (maximum

memory capacity), and exploring to find the ordering

(offloading setup) with the maximum profit.

4. SOLUTION METHODOLOGY OF THE PROBLEM

This section introduces our proposed optimization

framework for determining an optimal task allocation decision

670

that minimizes latency and maximizes the intrinsic profits of

all tasks.

4.1 Ant Colony Optimization (ACO) model

The ACO model explores the minimum cost of the path on

a weighted graph and uses artificial ants to achieve this. An

artificial ant behaves similar to a real ant in that it deposits

pheromones along its path and chooses its path based on the

probabilities of concentration that have been previously laid

out. It is possible to create pheromone trails to simulate

artificial evaporation to make the model more realistic. We can

find optimal solutions for complex problems using a

population-based metaheuristic using this proposed model.

4.2 ACO model based edge computing

For the MKP solution, the model of an ant colony has to be

adapted because the purpose of the ant here is not only to

reduce the cost of the route but also to find the best solution so

that the profit of the path is maximized where all resources are

satisfied.

Let bi be the number of ants in the solution item 'i' at time t

= 0 and suppose Na = =

n

ib
1

is the total number of ants.

Since MKP is a subset problem, it is necessary to estimate the

path intensity and path visibility so that it can be calculated in

a slightly different way for the absence of a clear path. We

define τi(t+Nmax) as the path intensity of the item ‘i’ at the

time (t+Nmax), given by:

τi(t+Nmax)= ρ τi (t) + Δ τi(t,t+Nmax) (15)

where, ρ represents evaporation coefficient and Nmax

represents the maximum number of items some ants add to a

solution.

In τi(t, t+ Nmax) = =

Na

k 1

Δτik (t,t+ Nmax), where Δτik (t,t+

Nmax) represents the amount of substance per unit length of

path (pheromone in real ants) laid on item ‘i’ between the time

‘t’ and t+Nmax by the kth ant, and is calculated as follows:

Δ𝜏𝑖
𝑘(𝑡, 𝑡 + 𝑁𝑚𝑎𝑥) = {

𝐿𝑘

𝑄
, if kth ant includes item 'i'

0, otherwise

 (16)

where Q is a constant and Lk is the profit attained by the kth ant

at time t = 0, so the intensity of path τi (0) is set at a randomly

selected value. In the next (t+Nmax) time, the probability of the

kth ant selecting item ‘i’ to complete the solutionk is:


 kallowedj

ii

ii

tkt

tkt








)],([)]([

)],([)]([
kallowedi

Pi(t, k) =

 0
kallowedi

(17)

A solutionk that has the constraints satisfied by all of the

allowedk items is the solutionk if they are added to the allowedk

set. A local heuristic, or pseudo-utility, the parameter η this

case. We have chosen ηi for item ‘i’ as follows:

;
)(

),(
k

p
tk

ij

i
i


 =

m

k
k

m

j j

ij

 =
=

1
)(

)(


 (18)

δij(k) =
𝐷𝑖

(𝑐𝑗−𝑢𝑗(𝑘)+1)
 ;  

=
ksolutionl lj Dku)((19)

where (cj - uj(k)) is the remainder of the amount which has

reached the boundary of constraint j; Di ≤ (cj - uj(k)) and

𝛿𝑖𝑗𝜖(0,1) are the tightness of item ‘i’ on constraint ‘j’ when

adding item ‘i’ to the solution. As a result of this is that pseudo-

utility ηi (t, k) gets larger and δij(k) (tightness average) gets

smaller.

By setting the parameters α and β, the user can control the

relative importance of heuristics (pseudo-utilities for MKP)

compared with trial. As a result, transition probability is a

trade-off between pseudoutilities, where items that benefit the

user while using fewer resources are more likely to be chosen

with a high probability, and trail intensity, where items that are

part of many solutions are highly desirable.

The tabuk list is a data structure that is associated with every

ant, so that it can select items more than once, since the tabuk

list keeps track of the items added by kth ant over time 't'.The

list also maintains uj(k) (j= 1, 2,..., m) of the necessary

computations so that computation times are reduced.

A set is defined as: allowedk = [j | j * tabuk] and when item

j is added to solutionk, it satisfies all constraints. The item hk

is selected from the kth tabu list when all ants have added as

many solutions as possible. A kth ant with an initial solution

of hk is released after the kth tabu list is emptied.

4.3 Maximize Cumulative Intrinsic Profit of the Task

Offloading Algorithm

In the above discussion, we have explained the ACO-based

Maximize Cumulative Intrinsic Profit of the Tasks Offloading

method in the Mobile Edge Computing through a flowchart

which is shown below in Figure 2.

Figure 2. Flowchart of the maximize cumulative intrinsic

profit of the tasks offloading

671

In addition to the above discussion we have developed an

ACO-based Maximize Cumulative Intrinsic Profit of the

Tasks Offloading algorithm as follows:

Algorithm 1: Maximize Cumulative Intrinsic Profit of the

Tasks Offloading

Steps:

1. Set time counter t  0

Set an initial value is τi (t) for each item ‘i’

 Set Δτi(t,t+Nmax) 0 for each item ‘i’

bi is the number of ants choosing item i at time 0

Set tabu list index j1

 For i1 to NDo

 For k1 to bi Do

 tabuk (j)  i

2. For k 1 to Na Do

 Set tabu list index j 2

 Repeat until all constraints are not satisfied by kth ant

Choose the item ‘i’ with the highest probability Pi(t,k)

given by the equation (17) that doesn’t violate

 tabu k (j)  i

 j  j + 1

3. For k  1 to Na Do

 Compute Lk

 For s 1 to number of items in tabuk Do

 H tabuk(j)

 Δτh (t,t+ Nmax) Δτh (t,t+ Nmax) + Lk/Q

 j  j +1

4. Calculate τi(t+ Nmax) according to the equation (15) for each

item ‘i’

 Set time t  t + Nmax

 Set Δτi (t,t+Nmax)  0 for each item ‘i’

5. Memorize the best solution found up as follows

 If ((NC < NCMAX) or (Not all ants find the same solution)

Then

 hkrandomly selected item from tabuk

 Clear all tabu list

 tabu k (1)  hk

 Goto Step 2

 Else

 Write Best Solution

6. Finish

Following is a step-by-step explanation of the above ACO-

based Maximize Cumulative Intrinsic Profit of the Tasks

Offloading algorithm for Mobile Edge Computing:

In the step 1, time counter ‘t’ is initially set to 0. We assign

an initial value of pheromone(τ) on each item and we also

assign the change in pheromone (Δτi) on each item as 0. Then

we have assigned the starting item for each ant. The

information about the starting item of each ant is stored in the

tabu list of the ant.

In the step 2, one of the ants among the kth ant is taken into

consideration at a time. The probability of visiting all the items

in the set of items that the ants have yet to traverse while

satisfying all the constraints is calculated for each individual

ant. The item with the highest probability and low latency is

chosen as the next item to be visited by the ant. The ant’s next

destination is recorded in its tabu list as the ant moves to its

next destination. This process of choosing the next item is

continued until there are no items left such that they are not

traversed and satisfy all the constraints. This is repeated until

all the ants have their set of items they have traversed in order

recorded in their tabu lists.

In the step 3, one ant out of the k ants is taken into

consideration at a time. The total profit, L, obtained from the

items chosen by the ant is calculated by adding the profit for

each item. For every item in the ant’s tabu list, the change in

pheromone, Δτi, is calculated and updated. This process is

repeated until the pheromone deposited by all ants on the items

in their tabu lists is calculated.

In the step 4, the present pheromone value (τ), for each item

is calculated by adding the change in pheromone (Δτi), by the

ants obtained from the previous step. Then for each item, the

change in pheromone (Δτi) is again set to 0.

In the step 5, if the number of iterations does not exceed the

maximum allowable cycle, then the solution (set of items)

which was traversed by the maximum number of ants is better

than the solution found earlier. Otherwise, it is discarded. If all

ants do not reach a consensus regarding a solution, the tabu

lists of the ants are emptied and step 2 is followed. If the

algorithm cycles are exhausted, the best solution is printed.

5. RESULTS ANALYSIS

A number of parameters have been considered for analyzing

the results of the ACO-based Maximized Cumulative Intrinsic

Profit of the Tasks Offloading Algorithm in Mobile Edge

Computing. Table 2 shows how the test of this algorithm used

different input parameters and their values.

Table 2. Different sets of input parameters with their values

S.

No.
Input parameters Input values

1 Number of iterations (n) 10 20 50

2 Number of ants (N) 100 100 100

3
Evaporation coefficient

(ρ)
0.7 0.7 0.7

4

Trade-off between trailing

and pseudo-utility factors

(α , β)

(0.3,

0.7)

(0.65,

0.35)

(0.9,

0.1)

Table 3. The following data for each test case

Dataset

<N,M>
α β Ants

Profit(without

latency)

Profit(with

latency)

<6,2> 0.3 0.7 100 345 265

<6,2> 0.65 0.35 100 345 265

<10,2> 0.3 0.7 100 333 266

<10,2> 0.65 0.35 100 333 266

<10,2> 0.3 0.7 100 452 407

<10,2> 0.65 0.35 100 452 407

The dataset size is <N, M>, where N is the number of tasks

and M is the number of servers. With the parameters α and β,

672

we contrast the importance of trial and heuristic, the number

of ants, and the maximum profit for the data as provided with

the dataset. and our algorithm calculates the maximum profit

considering latency.

We consider an interconnected network of UEs and MECSs.

Each UE owns a channel with 12 bytes/s transfer speed and τ

which is 2 seconds. All of these have been chosen randomly.

Each test case has been tested for three different sets of

pseudo-utility while keeping the number of ants constant.

Naturally, profit, when latency limiting is not considered, is

greater than when considered. As is clear from the results,

changes in the value of parameters don’t affect the results in

the test cases as shown in Table 3.

To calculate running time and space consumed, a

benchmarking test was performed on a system with the

following specifications: CPU: AMD Ryzen 3 3250U, 2.6GHz;

RAM: 12GB; HDD: 1 TB; Number of ants were incremented

in steps and time and space requirements were duly noted for

three randomly generated datasets. The number of ants (Na) =

10, comparing the time and space consumption of different

data sets is shown graphically in Table 4. The number of ants

(Na) = 50, comparing the time and space consumption of

different data sets is shown graphically in Table 5. The number

of ants (Na) = 100, comparing the time and space consumption

of different data sets is shown graphically in Table 6.

Table 4. The Time and Space Consumption of different problems with no. of ants (Na) = 10

Dataset <N,M>
Time taken

in seconds

Space consumed

in MB

Compare of Time and Space Consumption

for 10 Ants of different problem size in Graphically

<100,50> 14.18 12.67

<1000,50,> 100.30 14.70

<1000,100> 886.94 17.30

Table 5. The Time and Space Consumption of different problem with no. of ants (Na) = 50

Dataset <N,M>
Time taken

in seconds

Space consumed

in MB

Compare of Time and Space Consumption

for 50 Ants of different problem size in Graphically

<100,50> 32.54 12.85

<1000,50> 1795.07 17.10

<1000,100> 3668.03 19.25

Table 6. The Time and Space Consumption of different problem with number of ants (Na) = 100

Dataset

<N,M>

Time taken

in seconds

Space consumed

in MB

Compare of Time and Space Consumption

for 50 Ants of different problem size in Graphically

<100,50> 49.2 12.85

<1000,50> 2795.07 17.8

<1000,100> 6668.03 20.25

673

Time and space taken by the algorithm increases according

to the polynomial complexity of the algorithm. The runtime of

the algorithm may be further reduced if it is supported by

multithreading or runs on a CPU with a higher clock cycle or

both.

6. CONCLUSIONS

This paper proposes an offloading framework that allows a

single UE to offload tasks across multiple Mobile Edge

Computing Systems (MECS). We have achieved our goal to

maximize profits and limit performance and transmission

latency. In order to find efficient solutions to the NP-hard

nature of overall optimization problems, we presented the

ACO-based Efficiency functions for the Maximized

Cumulative Intrinsic Profit of Offloading algorithms.

The ACO algorithm performs reasonably as it has not

regurgitated any result that doesn’t follow the constraints. Our

algorithm has shown high accuracy even during the initial

iterations. Hence real-time use of this algorithm for load

balancing could also be considered. Also, the algorithm could

be made more streamlined or accurate using optimal numbers

of ants and values of α and β. There are also plenty of methods

to model the ant colony optimization algorithm to fit the MKP.

These methods can be tested for a comparative study.

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to the

supervisors and to all anonymous reviewers for their help,

knowledge sharing, and suggestions for improving the clarity

and proficiency of his research work.

REFERENCES

[1] Leguizamon, G., Michalewicz, Z. (2002). A new version

of ant system for subset problems. Proceedings of the

1999 Congress on Evolutionary Computation-CEC 99

(Cat. No. 99TH8406), 2: 1459-1464.

https://doi.org/10.1109/CEC.1999.782655

[2] Fidanova, S. (2004). Ant colony optimization for Multiple

Knapsack problem and model bias. International

Conference on Numerical Analysis and Its Applications

NAA, 3401: 280-287. https://doi.org/10.1007/978-3-540-

31852-1_33

[3] Khan, P.W., Abbas, K., Shaiba, H., Muthanna, A.,

Abuarqoub, A., Khayyat, M. (2020). Energy efficient

computation offloading mechanism in multi-server

mobile edge computing-An integer linear optimization

approach. Electronics, 9(6): 1010.

https://doi.org/10.3390/electronics9061010

[4] Ketyko, I., Kecskés, L., Nemes, C., Farkas, L., Labs, B.,

Nokia, R. (2016). Multi-User Computation Offloading as

a Knapsack Problem for 5G Mobile Edge Computing.

2016 European Conference on Networks and

Communications (EuCNC), 2016, pp. 225-229.

https://doi.org/10.1109/EuCNC.2016.7561037

[5] Chen, X., Jiao, L., Li, W.Z., Fu, X.M. (2016). Efficient

multi-user computation offloading for mobile edge cloud

computing. IEEE/ACM Transactions on Networking,

24(5): 2795-2808.

https://doi.org/10.1109/TNET.2015.2487344

[6] Cena, M., Crespo, M.L., Kavka, C., Leguizamón, G.

(2000). The ant colony metaphor for multiple knapsack

problem. Journal of Computer Science and Technology,

1(2). Retrieved from

https://journal.info.unlp.edu.ar/JCST/article/view/1019.

[7] Guo, Y.H., Zhao, Z.C., Zhao, R., Lai, S.W. (2020).

Intelligent offloading strategy design for relaying mobile

edge computing networks. IEEE Access, 8: 35127-35135.

https://doi.org/10.1109/ACCESS.2020.2972106

[8] Bao, W.D, Ji, H.R., Zhu, X.M., Wang, J., Xiao, W.H., Wu,

J.H. (2016). ACO-based solution for computation

offloading in mobile cloud computing. AIMS, 1: 1-13.

https://doi.org/10.3934/bdia.2016.1.1

[9] Wang, Z.L., Li, P.F., Shen, S., Yang, K. (2021). Task

offloading scheduling in mobile edge computing

networks. Procedia Computer Science, 184: 322-329.

https://doi.org/10.1016/j.procs.2021.03.041

[10] Zakaryia, S.A., Ahmed, S.A., Hussein, M.K. (2021).

Evolutionary offloading in an edge environment.

Egyptian Informatics Journal, 22(3): 257-267.

https://doi.org/10.1016/j.eij.2020.09.003

[11] Sheng, J.F., Hu, J., Teng, X.Y., Wang, B., Pan, X.X.

(2019). Computation offloading strategy in mobile edge

computing. Information 10(6): 191.

https://doi.org/10.3390/info10060191

[12] Lee, S., Bau, Y. (2012). An ant colony optimization

approach for solving the Multidimensional Knapsack

Problem. International Conference on Computer &

Information Science (ICCIS), pp. 441-446.

https://doi.org/10.1109/ICCISci.2012.6297286

674

https://www.semanticscholar.org/author/Z.-Michalewicz/1728743
https://doi.org/10.1109/CEC.1999.782655
https://link.springer.com/conference/naa
https://link.springer.com/conference/naa
https://doi.org/10.3390/electronics9061010
https://www.researchgate.net/journal/IEEE-Access-2169-3536
http://dx.doi.org/10.1109/ACCESS.2020.2972106
http://dx.doi.org/10.3934/bdia.2016.1.1
https://ieeexplore.ieee.org/xpl/conhome/6289460/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6289460/proceeding
https://doi.org/10.1109/ICCISci.2012.6297286

