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 The energy sector is considered one of the most sensitive sectors to climate change. 

Climate change has a considerable impact on environmental weather parameters such 

as temperature, humidity, radiation from the sun, precipitation, sunshine hours, wind 

direction, etc. These meteorological considerations have an impact on the electricity 

consumption rate. As a result, knowing the influence of weather conditions on energy 

demand and consumption is critical for adapting, planning, and forecasting the impact 

of changing climate on an organization's energy needs. Several factors influencing 

electricity consumption can be classified as economic, seasonal, and meteorological 

factors. This research aims to look at the influence of climate change on energy supply 

in a typical agricultural institute and utilize Artificial Neural Network (ANN) and 

Multivariate Linear Regression (MLR) models to predict the impact of changes in 

temperature on electricity generated. The approach used in this study includes: Creating 

a database of weather variables and energy demand or consumption parameters; 

analyzing and correlating electrical energy demand to weather variables, developing 

models - Multivariate Linear Regression (MLR) and Artificial Neural Networks (ANN) 

to forecast the impact of change in the weather variables on the electrical energy. 

“Average temperature” was seen to have the most influence on electrical energy with 

the highest correlation (r = 0.92 for 2015 and r = 0.86 for 2011 - 2018), while “Wind 

speed” had the least influence with the lowest correlation (r = 0.033 for 2011 - 2018). 

The ANN model was the best of the two models considered in this study. The mean 

squared error was reduced by 39% and 42% on test data and train data, respectively, 

indicating that ANNs outperformed the MLR model. Other measures, such as Mean 

Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), showed that the 

ANN performed substantially better than the MLR. The results suggest that ANN 

models perform relatively well since the algorithm learns independently and develops 

a reasonably accurate representation of the dataset. 
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1. INTRODUCTION 

 

The energy sector is one of the most vulnerable sectors to 

climate change. In recent years, the Federal Government of 

Nigeria has worked hard to reform the energy sector. Some of 

the issues that concern decision-makers across the globe 

include the level of impact climate change is having on the 

energy sector and the available strategies or mechanisms to 

cope with this critical threat to humanity in the twenty-first 

century. Energy is an essential contributor to the advancement 

of any economy because it is a vital component to the growth 

and development of any nation [1] and systematic to 

increasing the competitiveness of its economy [2]. Because the 

energy industry is critical to a country's development and 

growth, reliable and sufficient electricity generation is 

required to support economic activity and industrial 

development efforts to raise income and living standards. This 

is demonstrated by the fact that any shock to the sector 

automatically ripples through the economy, as all industries 

require energy to function. As a result, virtually all economic 

activity involves the use of energy, and it is critical to be able 

to obtain enough energy at a reasonable cost (both 

economically and environmentally), giving rise to the concept 

of "energy security" [3]. 

On the other hand, the climate has been diversely defined in 

the literature as a long-term change in the weather conditions 

of a geographical area that can be ascribed to natural 

variability and human-induced (artificial) operations. 

According to the Intergovernmental Panel on Climate Change 

(IPCC) definition, the climate is a significant statistical 

difference that lasts for a long time, usually decades or more. 

Changes in the frequency and amplitude of random weather 

events and a slow but steady rise in global mean surface 

temperature are all part of it [4]. It is considered one of the 

significant threats to society in the 21st era. Its impact on 

different sectors of the economy, including the energy industry, 

has sparked a lot of policy debate, even on a worldwide scale. 

Because its impact pervades all economic sectors, it has 

implications for long-term national development in 

sustainable development, equity, and growth [1]. Increasing 

temperatures and switching rainfall patterns are signs of 

climate change. Nigeria's current episode with periodic 
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droughts and extreme flooding are all indicators that the 

nation's climate change is happening. The Nigerian 

government attaches great importance to selecting an effective 

response to the issue of climate change, and the National 

Adaptation Strategy and Plan of Action on Climate Change for 

Nigeria (NASPA-CCN) is one of those measures taken.  

According to scientific studies and findings made available 

to policymakers, climate change will harm the energy sector 

[5, 6]. Shifting climate patterns are likely to limit the supply of 

safe, viable, and reliable energy, which is essential to the 

growth of the economy [7]. And the changing climate will 

have a substantial impact on the energy industry in various 

ways [6]. It can occur when factors such as increased 

temperatures, abnormal precipitation, and rising sea levels, 

among many others, impact energy facilities and the way to 

generate energy, primarily through thermal and hydro sources. 

According to Woodley [8], hydroelectricity is the form of 

energy most frequently identified to be impacted by climate 

change because it is susceptible to timing, precipitation 

amount, temperature, and geographical pattern. According to 

the report, low water flows and increased temperature reduce 

thermal electricity generation capabilities, while higher 

temperatures also minimize transmission capabilities. Besides 

that, severe drought causes increased evapotranspiration, 

which reduces water volume and thus hydroelectric potential. 

In addition, extreme weather events caused by climate change, 

such as floods and windstorms, will hasten the failure of 

electric utility transmission systems [8] and temporarily 

disrupt energy infrastructure and, therefore, energy supply [3]. 

A good example is the effect of Hurricane Katrina, which 

hit the Gulf of Mexico in 2005 and shut down a substantial 

portion of the United States' oil and gas production and 

processing capability. For scheduling, day-to-day control, 

operation, stability, and power system planning, accurate 

electricity demand forecasting for a short horizon is critical. 

Probabilistic variables and weather variables are the essential 

factors that influence prediction performance. Due to Nigeria's 

tropical climate, the marginal impact of climate variability on 

electricity consumption is worth investigating. Electricity 

consumption varies due to customers' erratic behaviour; 

however, some predictable patterns can be determined, such 

as weekly, daily, and seasonal. Intraday trends are attributed 

to variations in demand during the day, night, and morning 

hours. The research scientist has two options for dealing with 

these intraday patterns: the first is to allocate the individual 

variables for each hour/half-hour, while the other method is to 

create separate models for each hour/half-hour to eliminate 

intraday seasonality.  

Non-working and working days also contribute to weekday 

seasonal variation. The relationship of these seasonal variables 

is incorporated in the Institute of Agriculture data set to 

enhance forecasting accuracy. The energy industry is among 

the most weather-sensitive economic sectors. Several factors 

for determining electricity demand can be classified as 

economic variables, schedule effects, and meteorological 

conditions [9]. Climate change significantly impacts weather 

variables, such as temperatures, humidity, solar radiation, 

rainfall, sunshine hours, winds speed, etc. These weather 

factors also have an impact on electricity demand and 

consumption. Adapting to climate change entails 

concentrating on activities that reduce the adverse effects of 

the change while also taking advantage of every opportunity it 

presents [4]. The ability to plan and forecast the impact of 

changing climate on an organization's energy needs would 

provide a thorough understanding of the influence and impact 

of weather variables on energy demand and consumption. The 

project models the effect of weather variables such as 

temperature on a typical agricultural research institute's 

electricity demand and consumption, including forecasting the 

impact of implementing this variable on energy demand. The 

objectives of this research include: (i) To determine electricity 

and weather pattern within six (6) years spectrum at an 

agricultural research institute. (ii) To analyze and develop 

models that simulate the influence of change in weather 

variables on electricity demand and consumption. (iii) To 

forecast the impact of change in weather variables on 

electricity demand and consumption. (iv) To recommend 

measures to take advantage of the opportunities created by 

changing climate. The study uses the electricity and weather 

data from the International Institute of Tropical Agriculture in 

Ibadan, Nigeria, from 2012 to 2018. It analyzes the impact of 

changes in daily atmospheric minimum and maximum 

temperatures on electricity demand. 

As a result of climate change, weather and environmental 

conditions constantly change and become increasingly 

extreme. African countries, such as Nigeria, are especially 

vulnerable to climate change due to low infrastructure 

development and poverty [4]. The economic, social, and 

political development of a nation is dependent on energy, 

specifically electrical energy. The use of fossil fuels harms the 

climate, while renewable energy sources (hydro, wind, wave, 

geothermal, solar, biogas, and biomass) positively impact the 

environment. As a result, the demand and supply of electricity 

from these energy sources (hydro, wind, and solar) largely 

depend on weather variables. Staffell and Pfenninger [10] 

asserted that in recommending, planning, and managing the 

transition to renewable generation, it is critical to understand 

weather variability and its impact on the power system. These 

weather variables should also be included in electricity 

demand models to improve model accuracy and predictive 

power and provide energy managers with a deeper 

understanding of the effects on energy needs [9]. Due to the 

rising impact of changing climate and weather conditions, it is 

necessary to understand their expected effect on energy 

demand and consumption to plan and project future energy 

needs. 

Therefore, this study presented an in-depth understanding 

of the influence and impact of weather variables on energy 

generation and consumption to plan and forecast the impact of 

the changing climate on the energy needs of an organization 

with a specific focus on Nigeria. The study focused on 

analyzing the case study area's historical weather and energy 

data. It used mathematical models to represent and forecast the 

impact of the change in weather variables on energy. It focused 

on the significant differences between Traditional Machine 

Learning (MLR) processes and Modern techniques using 

Artificial Neural Network. It was found that ANNs performed 

much better than the MLR model as the mean squared error 

was reduced by 39% and 42% on test data and train data, 

respectively. 

 

1.1 Energy models 

 

The energy industry is among the most sensitive aspects of 

the economy to weather changes [11]. The following factors 

are considered in determining power consumption or demand 

on time scales varying from a few hours to about a year: (i) 

Data from the calendar: day of the week, time of day, national 
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holidays, school holidays, daylight saving time and bridge 

days; (ii) Data from the weather station: solar radiation, 

temperatures, wind speed, humidity, etc.; and (iii). Economic 

considerations include company production scheduling and 

economic development etc. Models, forecasts, and estimates 

are three vital tools in energy systems monitoring, control, 

evaluation, and planning [12]. Estimates are forecasts that 

assess the energy system supply and demand. Models are often 

used to represent the present and future patterns of the energy 

system. Together, these tools (models, estimates and forecasts) 

help build the energy system and maintain its orderly growth. 

Types of models and forecasts in energy systems include (1) 

Least-squares method (Linear and quadratic models), (2) 

Dynamic state estimation techniques (Kalman filtering; least 

absolute value filtering algorithms), (3) Static state estimation 

methods, (4) Genetic-based Algorithm (GA) techniques (5) 

Artificial Neural Networks (ANN) approach (6) Operational 

Research (OR) techniques.  

Various researchers have developed several of these energy 

models to model the impact of these factors, such as weather, 

economy, calendar data, demography, the population on 

components (minimum and peak load, daily and monthly 

consumption, heating, and cooling demand, etc.) of energy 

(electricity) demand and consumption. Kuo and Huang [13] 

used historical information from Texas, USA, to design and 

develop a high-precision ANN model for short-term energy 

using a long short-term memory system to forecast load. Nasr 

et al. [14] developed two ANN models to predict Electrical 

Energy Consumption (EEC): one was a univariate fully 

integrated ANN model with three electrical power 

consumption input layers. The other was an intermittently 

connected multivariate ANN model with EEC and degree day 

as input units. Abdel-Aal et al. [15] developed an abductory 

induction mechanism model for forecasting electrical energy 

consumption in Saudi Arabia using historical data for weather 

parameters (mean air temperature, relative humidity, and solar 

radiation), demography (population), and economic indicators 

(gross domestic product per capita). Ogcu et al. [16] used 

support vector regression (SVR) and ANN to model and 

forecast the electricity consumption of Turkey using a dataset 

of electricity consumption that covers a period of forty years 

(1970 - 2011). Hor et al. [17] used three different models to 

measure the influence of climate variability on monthly 

electricity consumption in the United Kingdom: The 

socioeconomic model (S-E), Box and Jenkin's model and 

ANN. Nagbe et al. [18] implemented a functional state-space 

model for forecasting short-term electricity demand based on 

historical consumption data integrated into a state-space model 

with a functional vector autoregressive function. In this paper, 

Gujba et al. [19] calculated the weather sensitivity of power 

demand by evaluating the effects of apparent temperature in 

Delhi, India's electricity demand using daily data from 2000 to 

2009. Chikobvu and Sigauke [9] used the piecewise linear 

regression model and the generalized extreme value 

distribution to model the effect of temperature on daily peak 

electricity demand in South Africa. Numerous different 

statistical techniques were used to assess the levels of accuracy 

and predictive performance of the existing theories, including 

Mean Square Error (MSE), Sum of Square Error (SSE), Mean 

Absolute Percentage Error (MAPE), mean absolute error 

(MAE), etc. and the models showed various degrees of 

accuracies as presented by the authors. Some of these models, 

specifically the non-parametric models (ANN, Support Vector, 

etc.), are data-dependent, and as such, the resultant models are 

tailored to the dataset. In Nigeria, accurate data (weather and 

energy) is not readily available to develop such models due to 

the unstable power supply. 

 

1.2 Salient findings on the effect of climate on energy 

consumption 

 

The World Energy Council [20] assessed the effects of 

existing climate change evaluations and how they functioned 

in achieving sustainability using the "3A's" standards 

(accessibility, availability, and acceptability). The WEC report 

found that the government and others have not been up to the 

task of mitigating climate change from the energy industry, 

based on what drives emissions and how policies have fared 

so far. Policy decisions have become too narrow and relatively 

brief, failing to recognize the correct signals for greener, 

relatively long investments. As per the WEC article, no single 

strategy or measure could give the whole arrangement, or even 

most of the solution, since all accessible means get their 

arrangement of weaknesses and advantages. Mideksa and 

Kallbekken [21] investigated the consequences of climate 

change on the electricity sector by evaluating previous and 

present studies on how climate change affects electricity 

demand and supply. Matsuo et al. assessed the impact of CO2 

emission requirements on global energy supply, demand, 

structure, and costs for both OECD and non-OECD regions 

using the MARKAL model, a linear programming model for 

energy system analyses. Akinbami [1] investigated the long-

term implications of climate change and energy system 

interactions for Nigeria, imploring the politicians to 

implement more proactive assessment in case of mitigation 

technologies. Enete and Alabi [22] completed research of key 

published papers to explore the impact of climate change on 

energy generation. They discovered evidence that climate 

change reduces power and energy production by diminishing 

renewable and non-renewable resources. Nnaji et al. [23] used 

a multivariate network to examine the relationship between 

electricity supply, CO2 emissions, fossil fuel consumption, and 

economic growth in Nigeria from 1971 to 2009. Their research 

results revealed that economic growth is linked to increased 

CO2 emissions, while electricity supply and CO2 emissions 

have a positive relationship, highlighting Nigeria's poor 

electricity supply. Uzoma et al. [24] discussed Nigerian 

sustainable development and claimed that no single energy 

mix could meet a country's energy demands indefinitely. As a 

result, incorporating all exploitable energy resources is a 

feasible method for Nigeria to achieve energy supply stability. 

They discovered that the current energy mix had had little 

impact on sustainable development, even though electricity 

generation is insufficient, and coal is no longer used, using a 

linear regression (Ordinary Least Square) estimation 

procedure. According to their findings, climate change will 

have a more significant impact on energy services. Parkpoom 

and Harrison [25] used a simple regression model for Thai data 

to conduct a micro-study of temperature for short-term load 

forecasting and climate change impact analysis. They 

addressed climate and socioeconomic occurrences and 

forecasted that peak electric demand could rise by 1.74%–

3.43% by 2020, with a 1.74℃ rise in average annual 

temperature. Wangpattarapong et al. [26] investigated the 

effects of climate and economic factors on residential power 

consumption using data from the Bangkok metropolitan area. 

The study discovered that with every one-degree Celsius 

temperature increase, housing demand increased by 6.79%. 
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Akinbami [1] explored the implications of climate change and 

power system interrelations for sustainable development, 

urging the government to be more proactive in terms of 

mitigation technologies. In investigating how the energy 

industry might be influenced by climate change and the 

management options available. 

According to Greenleaf et al. [3], the implementation of a 

percentage of climate change policies in the EU will 

significantly alter the structure of the energy system. When 

evaluating thermoelectric power vulnerability in Brazil, 

Schaeffer et al. [6] performed a climate impact assessment 

based on HadCM3 GCM temperature forecasts for the A2 and 

B2 IPCC SRES17 scenarios. The scholars found that the 

overall energy consumption would only be 2% greater than in 

the base year, implying that the effects may be minor given 

natural gas's small share of the country's energy production 

matrix. Gujba et al. [19] scheduled to investigate the 

consequences of Nigeria's climate policy by presenting a life 

cycle environmental and economic assessment of Nigeria's 

current and prospective electricity industry. Their analysis 

revealed that all life cycle impacts and economic costs 

significantly increased over the time frame evaluated, even 

though the government proposed renewable energy sources to 

reduce the environmental footprint of the energy matrix. By 

2030, however, this should necessitate a five-fold rise in power 

system investment opportunities. Analysts have used a range 

of methodologies to model consumer response to climate 

change [27-29], and there is significant regional variation. As 

previously stated, consumer electricity demand models in the 

context of climate change should consider not only 

temperature but also relative humidity, solar radiation, 

sunshine hours, and evaporation. The best indicator for human 

(residential) electricity demand is a combined heat index that 

considers temperature, relative humidity, solar radiation, 

sunshine hours, and evaporation [30-34].  

 

 

2. METHODOLOGY  

 

The overall approach used in this study includes: Creating a 

database of weather variables and energy demand or 

consumption parameters; analyzing and correlating electrical 

energy demand to weather variables, developing models - 

Multivariate Linear Regression and Artificial Neural 

Networks to forecast the impact of change in the weather 

variables on the electrical energy. 

 

2.1 Data source 

 

The study area, International Institute of Tropical 

Agriculture (IITA), Ibadan, Oyo State, Nigeria, is located at 

Latitude 07°30’N and longitude 03°55’E, at an altitude 227 m 

above sea level. The institute is a not-for-profit institution 

founded in 1967 that generates agricultural innovations to 

meet Africa’s most pressing challenges of hunger, 

malnutrition, poverty, and natural resource degradation. IITA 

campus sits on about 1,000 hectares, including a 300-hectare 

forest reserve that preserves some of the region’s indigenous 

flora and fauna. It comprises office buildings, residential 

buildings, a mini-industrial complex, an international 

conference centre, a research farm area, a primary healthcare 

facility, an international school, and a four-star international 

hotel located within the campus. Power supply to the campus 

is both from the public utility (Ibadan Electricity Distribution 

Company – IBEDC), self-generation (four 1.5 MVA 

Caterpillar Generators), and battery backup power (inverters 

and UPS), thus ensuring a 24-hour power supply with brief 

interruptions in some locations (less than 5 minutes) during 

changing of power source. IITA also has a state-of-the-art 

weather observation station located in the study area. 

Being a developing nation, Nigeria has struggled with 

providing stable electricity to its citizens. It is difficult to get 

accurate data on energy data (utilization) for research purposes, 

especially those studies that require almost uninterrupted or 

stable electricity. This location was primarily chosen for this 

study because it is one of the few locations, if not the only 

location in Nigeria that has managed to maintain and operate 

an almost stable, reliable, and available (24 hrs x 7 days) mini-

grid electricity supply to its diverse community for more than 

thirty (30) years and has an environment and facilities that is 

comparative to modern-day society or a developed country. 

 

2.1.1 Weather data 

Weather and temperature are essential drivers of electricity 

consumption. According to Crowley and Joutz [35], more than 

40% of end-use energy consumption is related to the heating 

and cooling needs in the residential and commercial sectors. 

These needs are influenced mainly by weather conditions. The 

weather data was obtained from the IITA weather observation 

station located at the case study area in Ibadan, Nigeria. The 

daily weather data (Min and Max Temp, Min and Max Rel. 

Humidity, Sunshine Hours, Solar Radiation and Wind Speed) 

from 2011 to 2018 was collected, and the monthly weather 

data (Min and Max Temperature) from 2008 to 2018 was 

collated for this study. 

 

2.1.2 Energy data 

The IITA Ibadan campus gets its electricity supply from 

IBEDC via a 33 kV feeder, stepped down by 2 x 5 MVA, 33/11 

kV power transformers. This is further stepped down to 415 V 

(3 phase) by several strategically located 11/0.415 kV 

distribution transformers before supplying the various 

buildings within the campus. Due to the unreliability of the 

electricity provided by the public utility, the campus has 4 x 

1.5 MVA hot-standby diesel generators with 4 x .415/11 kV 

step-up transformers, providing electricity to the campus when 

there is an interruption in the supply from the public utility. 

Several energy meters are installed at various levels in the 

power chain to measure different energy parameters (voltage, 

current, power, energy, power factor). Readings from these 

energy meters are manually collated and recorded in a 

hardcopy register on an hourly/daily/monthly basis. Energy 

data for this study was collated from the data provided by the 

IITA Power Unit, which is responsible for managing the 

electricity supply to the institute. Energy parameters, such as 

average power factor, minimum load (MW), maximum load 

(MW), average load (MW), generator hours (hrs), public 

utility hours (hrs), generator consumption, public utility 

consumption, total consumption, were collated daily for this 

study. 

 

2.2 Artificial Neural Network (ANN) analysis 

 

An ANN is built from a network of linked units or terminals 

known as artificial neurons, roughly modelled after the 

biological brain neurons. Like synapses in a brain, each link 

can send a signal to other neurons. An artificial neuron 

receives a signal, analyzes it, and can signal neurons to which 
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it is linked. Each neuron's output is generated by a specific 

non-linear function of the summation of its inputs, and the 

"signal" at a connection is a real number. Edges are the terms 

for the connections. The weight of neurons and edges is 

generally adjusted as learning progresses. Several systematic 

methods are followed while creating ANN models. There are 

five fundamental phases in broad: (1) gathering data, (2) 

preparing data, (3) developing the network, (4) training, and 

(5) testing the model's performance. The ANN model learns 

from each iteration of the dataset during training and modifies 

the weight of its neurons to represent the dataset more 

accurately, thus making it an effective model for interpreting 

data without any recognizable patterns. 

 

2.3 Multivariate Linear Regression (MLR) analysis 

 

Diversified linear regression analysis of weather conditions 

has been evaluated to assess the quality and objective data 

processing in difficult topography. A least-square fit to the 

pressure, temperature, and dew point data throughout the field 

is achieved by assuming a linear variance of the surface data 

(e.g., temperature) in 3-dimensional space. The linear 

regression analysis is a valuable tool for (i) evaluating data 

integrity and (ii) objectively evaluating surface weather 

forecasts. Objective strategies widely used in weather 

forecasting assessment (e.g., Barnes) [31] use a weighting of 

values from nearby data to determine an approximate at a 

specified region. Several strategies are being used to analyze 

weather parameters on quasi-horizontal surfaces, with weights 

based on the reference plane between observations and 

analysis points. Due to the strong dependence of weather 

factors on the vertical plane, a two-dimensional smoothing of 

findings (with typical station densities) in challenging 

topography will generate undependable forecasts. These 

methods allow for three-dimensional weighting schemes, but 

they are not always simple to implement. Because the use of 

the three-dimensional space is reliable and easy, the 

Multivariate Linear Regression model was examined as a 

strategy for usage in difficult terrain. 

 

2.4 Regression analysis 

 

The key to using regression analysis is the premise that a 

linear estimate of the weather parameter in three dimensions 

will be a better match over the selected region [34]. 

Considering temperature as an example, the required linear fit 

would be as follows in Eqns. (1) and (2): 

Linear Assumption:  
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where, T is the estimated temperature at a specified location 

(in three dimensions) given the temperature at the source and 

the temperature variations (calculated from the regression 

analysis). Diversified linear regression (e.g., Strait) [32] is 

used to determine T0 and the spatial derivation of T with 

observational data from a particular time frame. Because of 

non-linear temporal systems, it was not expected that 

extending this problem to the time dimension would enhance 

outcomes. 

 

 

3. RESULTS AND DISCUSSION 

 

3.1 Influence of weather on electricity consumption using 

Artificial Neural Network and Multivariate Linear 

Regression 
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Figure 1. (a-g) - Monthly energy consumption and average 

temperature patterns from 2012 to 2018 

 

This study was able to show the influence of weather 

variables (temperature) on electricity consumption in a typical 

agricultural research institute. The monthly electricity 

consumption pattern of the case study location follows a 

similar pattern as the average temperature of that location (see 

Figure 1 (a-g). Models were developed to be used to forecast 

the expected daily electricity consumption when given the 

values of the weather variables. The Artificial Neural Network 

model showed the best result in terms of error and predictive 

performance compared to MLR models. Further study should 

be carried out to analyze the extent to which each of these 

weather variables contributes to impacting the electricity 

consumption of the institute. The correlation data generated is 

presented in Table 1. 

 

3.2 Exploratory data analysis for MLR  

 

To begin writing a suitable model for the Multivariate 

Linear Regression algorithm, we must perform exploratory 

data analysis as this is necessary for the model to take shape. 

Table 2 shows Pearson Correlation and P-Value 

(Significance) between the Target Variable (Average Total 

Energy Consumption) and the Independent Variables 

(Weather Variables) while Figure 2 displays the heat map of 

correlation.  

Eliminating weather variables with Pearson correlation with 

average total electricity consumption less than 0.5 and 

variables with their significance (P-value) greater than 0.01, 

we have the following variables as input into the Multivariate 

Linear Regression model. The description and values for the 

input selection algorithm are depicted in Table 3. 

 

Table 1. Correlation data 
 

Data 

Correlation of 

Variable 

Year 

Index 

Month 

Index 

Total 

Cons 

(MWh) 

Avg. Total 

(MWh/day) 

Min 

Temp 

(°C) 

Max 

Temp 

(°C) 

Avg. 

Temp 

(°C) 

Rainfall 

(mm) 

Evaporation 

(mm) 

Wind 

Speed 

(km/hr.) 

Solar 

Radiation 

(MJ/m2/day) 

Min - 
Relative 

Humidity 

(%) 

Max - 
Relative 

Humidity 

(%) 

Sunshine 

hours 

(hrs.) 

Year Index 1 -0.0442 0.6823 0.6128 0.1096 0.0165 0.0506 0.0143 0.1383 -0.5260 0.3665 0.0166 -0.0580 -0.0116 

Month Index 
-

0.0442 
1 -0.1294 -0.1985 -0.1975 -0.5088 -0.4877 0.1269 -0.4125 -0.4740 -0.2163 0.3132 0.1474 -0.1737 

Total Cons 

(MWh) 
0.6824 -0.1294 1 0.8588 0.5519 0.3741 0.5043 -0.0597 0.4276 -0.1129 0.6313 -0.1223 -0.0339 0.3793 

Avg. Total 

(MWh/day) 
0.6128 -0.1985 0.8588 1 0.2799 0.5960 0.5899 -0.3789 0.5988 -0.1012 0.6281 -0.5149 -0.2589 0.5904 

Min. Temp 

(°C) 
0.1096 -0.1975 0.5519 0.2799 1 0.3437 0.6363 0.1423 0.2418 0.1712 0.2556 0.0955 0.3544 0.2030 

Max. Temp 

(°C) 
0.0165 -0.5088 0.3741 0.5960 0.3437 1 0.9430 -0.5168 0.8822 0.3309 0.5067 -0.8255 -0.3126 0.8215 

Avg. Temp 

(°C) 
0.0507 -0.4877 0.5043 0.5899 0.6363 0.9429 1 -0.3744 0.8091 0.3339 0.5069 -0.6435 -0.1304 0.7482 

Rainfall (mm) 0.0144 0.1268 -0.0597 -0.3789 0.1423 -0.5167 -0.3744 1 -0.2968 -0.1528 -0.0790 0.7311 0.3778 -0.4027 

Evaporation 

(mm) 
0.1384 -0.4125 0.4276 0.5988 0.2418 0.8822 0.8091 -0.2968 1 0.2785 0.6124 -0.7042 -0.4072 0.7886 

Wind Speed 

(km/hr.) 

-

0.5260 
-0.4740 -0.1129 -0.1012 0.1711 0.3309 0.3339 -0.1528 0.2785 1 0.0725 -0.1748 -0.2019 0.1315 

Solar 

Radiation 
(MJ/m2/day) 

0.3665 -0.2163 0.6313 0.6281 0.2556 0.5067 0.5069 -0.0790 0.6124 0.0725 1 -0.3130 -0.2260 0.5821 

Min. Relative 

Humidity (%) 
0.0167 0.3132 -0.1223 -0.51489 0.0955 -0.8255 -0.6435 0.7311 -0.7042 -0.1748 -0.3130 1 0.5148 -0.7053 

Max. Relative 

Humidity (%) 

-

0.0581 
0.1474 -0.0400 -0.2589 0.3544 -0.3126 -0.1304 0.3778 -0.4072 -0.2019 -0.2260 0.5148 1 -0.2728 

Sunshine hours 

(hrs.) 

-

0.0116 
-0.1737 0.3793 0.5904 0.2030 0.8215 0.7482 -0.4027 0.7886 0.1315 0.5821 -0.7053 -0.2728 1 

 

Table 2. Pearson correlation and P-value (significance) between the target variable (average total energy consumption) and the 

independent variables (weather variables) 
 

Parameter R–Average Total (MWh/day) P–Average Total (MWh/day) 

Year Index 0.612834499 2.91E-12 

Month Index -0.198484481 0.041386872 

Min. Temp (°C) 0.279874441 0.003665249 

Max. Temp (°C) 0.596024921 1.58E-11 

Avg. Temp (°C) 0.589859889 2.87E-11 

Rainfall (mm) -0.378921501 6.19E-05 

Evaporation (mm) 0.598753014 1.21E-11 

Solar Radiation (MJ/m2/day) 0.628146813 5.70E-13 

Min - Relative Humidity (%) -0.514894945 1.63E-08 

Max - Relative Humidity (%) -0.258948721 0.00735542 

Sunshine hours (hrs.) 0.590381399 2.73E-11 
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Table 3. Description and values for the input selection algorithm 

 
Input Parameter Description Value 

Trials Number The number of trials for each neural network. 3 

Tolerance Tolerance for the selection error in the training of the algorithm. 0.01 

Selection Loss Goal Goal value for the selection error. 0 

Maximum Selection Failures The maximum number of iterations at which the selection error increases. 10 

Maximum Inputs Number The maximum number of inputs in the neural network. 7 

Minimum Correlation The minimum value for the correlations to be considered. 0 

Maximum Correlation The maximum value for the correlations to be considered. 1 

Maximum Iterations Number The maximum number of iterations to perform the algorithm. 100 

Maximum Time The maximum time for the inputs selection algorithm. 3600 

Plot Training Loss History Plot a graph with the training errors of each iteration True 

Plot Selection Error History Plot a graph with the selection errors of each iteration True 

 

 
 

Figure 2. Heat map of correlation 

 

3.2.1 Model inputs of multivariate linear regression 

Let Year Index = A; Maximum Temperature (℃) = B; 

Average Temperature (℃) = C; Evaporation (mm) = D; Solar 

Radiation (MJ/m2/day) = E; Minimum Relative Humidity (%) 

= F; and Sunshine hours = G. 

 

3.2.2 Mathematical representation of multivariate linear 

regression model  

Let Average Total Consumption = Y. 

The model of the Multivariate Linear Regression is 

presented in Eq. (3). 

 

0 1 2 3 4 5 6 7Y Z Z A Z B Z C Z D Z E Z F Z G= + + + + + + +
 

(3) 

 

This model was implemented using the monthly weather 

and energy data obtained from the institute using the python 

programming language. The values for the coefficient of the 

independent variable Z0 to Z7 were calculated for the linear 

regression model as shown in Eq. (4). 

 

Y=-1.308833+0.873882A–0.074710B+0.928433C–

0.852106D+0.259264E–0.038418F+0.744448G 
(4) 

 

3.2.3 MLR training and testing dataset 

Figures 3 and 4 show the model linear regression parameters 

between predicted and actual average electricity consumption 

(Test Dataset) and (Train Dataset). The MLR model has a 

mean square error (MSE) of 2.5578, a mean absolute error 

(MAE) of 1.3510, and a mean absolute percentage error 

(MAPE) of 4.721% using the training dataset. The MLR 

model for the testing dataset has a mean square error (MSE) of 

4.8064, a mean absolute error (MAE) of 1.5570 and a mean 

absolute percentage error (MAPE) of 1.557% using the testing 

dataset, as shown in the comparison table (see Table 4). Figure 

5 presents a distribution plot of predicted value using 

training/testing data and training/testing data distribution. 

651



 

 
 

Figure 3. Model linear regression parameters between 

predicted and actual average electricity consumption (test 

dataset) 
 

  
 

Figure 4. Model Linear Regression Parameters between 

Predicted and Actual Average Electricity Consumption 

(Train Dataset) 
 

 

 
 

Figure 5. (a) Distribution plot of predicted value using 

training data vs training data distribution (b) distribution plot 

of predicted value using testing data vs testing data 

distribution 

Table 4. Comparison of models 
 

Type of Error Scenario 
MLR 

Model 

ANN 

Model 

Mean Squared Error 

(MSE) 

Test 4.8064 2.9420 

Train 2.5578 1.4677 

Mean Absolute Error 

(MAE) 

Test 1.5570 1.1995 

Train 1.3510 0.9576 

Mean Absolute 

Percentage Error (MAPE) 

Test 1.557% 1.199% 

Train 4.721% 3.332% 

 

3.3 Artificial Neural Network model 

 

The mathematical expression represented by integral parts 

of the inputs It takes the inputs Year Index_lag_0, Max 

Temp_lag_0, Avg. Temp_lag_0, Evaporation_lag_0, Solar 

Radiation_lag_0, min - Relative Humidity_lag_0, Sunshine 

hours_lag_0, to produce the output Avg. Total_lag_0. In 

forecasting models, the information is propagated in a feed-

forward fashion through the scaling, perceptron, and unscaling 

layers. Figure 6 represents a general ANN system.  
 

 
 

Figure 6. General representation of an Artificial Neural 

Networks 
 

3.3.1 ANN training dataset  
 

 
 

Figure 7. ANN model linear regression parameters between 

predicted and actual average electricity consumption (train 

dataset) 
 

 
 

Figure 8. ANN model linear regression parameters between 

predicted and actual average electricity consumption (test 

dataset) 
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Figures 7 and 8 show the ANN Model Linear Regression 

Parameters between Predicted and Actual Average Electricity 

Consumption (Train Dataset) and (Test Dataset). The ANN 

model has a Mean Square Error (MSE) of 1.4677, a Mean 

Absolute Error (MAE) of 0.9576 and a Mean Absolute 

Percentage Error (MAPE) of 3.332% using the training dataset 

as shown in the comparison table (see Table 4). 

 

3.3.2 ANN testing dataset  

The ANN model has a mean square error of 2.9420, a mean 

absolute error of 1.1995 and a mean absolute percentage error 

of 1.199% using the testing dataset. The distribution plot of 

predicted value using training/testing data and training/testing 

data distribution is illustrated in Figure 9. 

 

 

 
 

Figure 9. (a) Distribution plot of predicted value using 

training data vs training data distribution (b) distribution plot 

of predicted value using testing data vs testing data 

distribution 

 

 

4. CONCLUSIONS 

 

This study focuses on the major differences between 

Traditional Machine Learning (MLR) processes and modern 

techniques using Artificial Neural Network. The significant 

difference is the extreme need for feature engineering while 

using MLR against the complete lack of such feature 

engineering when producing a model with ANNs. It was found 

that ANNs performed much better than the MLR model as the 

mean squared error was reduced by 39% and 42% on test data 

and train data, respectively. It was also observed that the 

performance of ANN was much better than that of the MLR 

on other metrics like Mean Absolute Error (MAE) and Mean 

Absolute Percentage Error (MAPE). These results show that 

ANN models can perform better as the algorithm goes on to 

learn on its own and develop a pretty accurate representation 

of the data. This study is limited by the size of the case study 

area and the size of available historical data. This is due to the 

unreliable and unstable power supply in Nigeria and thus 

making it challenging to collect energy data representing a 

large geographical area. Further study on more significant 

geographical regions, such as cities or states, should be 

conducted to enhance energy planning and support effective 

response to climate change in Nigeria and the African 

continent. 
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